
CLSQL Users' Guide

Kevin M. Rosenberg
Pierre R. Mai

onShore Development, Inc.

CLSQL Users' Guide
by Kevin M. Rosenberg, Pierre R. Mai, and onShore Development, Inc.

• CLSQL is Copyright © 2002-2004 by Kevin M. Rosenberg, Copyright © 1999-2001 by Pierre R. Mai, and Copyright ©
1999-2003 onShore Development, Inc.

• Allegro CL® is a registered trademark of Franz Inc.

• Common SQL, LispWorks and Xanalys are trademarks or registered trademarks of Xanalys Inc.

• Oracle® is a registered trademark of Oracle Inc.

• Microsoft Windows® is a registered trademark of Microsoft Inc.

• Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents
Preface ... viii
1. Introduction .. 1

Purpose ... 1
History .. 1
Prerequisites .. 1

ASDF ... 1
UFFI .. 1
MD5 ... 1
Supported Common Lisp Implementation .. 2
Supported SQL Implementation ... 2

Installation ... 2
Ensure ASDF is loaded .. 2
Build C helper libraries .. 2
Add UFFI path ... 3
Add MD5 path ... 3
Add CLSQL path and load module ... 3
Run test suite (optional) .. 3

2. CommonSQL Tutorial .. 5
Introduction ... 5
Data Modeling with CLSQL ... 5
Class Relations ... 7
Object Creation .. 9
Finding Objects .. 11
Deleting Objects ... 12
Conclusion .. 12

I. Connection and Initialisation ...
DATABASE .. 14
CONNECT-IF-EXISTS .. 15
DEFAULT-DATABASE .. 16
DEFAULT-DATABASE-TYPE ... 18
INITIALIZED-DATABASE-TYPES .. 19
CONNECT .. 20
CONNECTED-DATABASES ... 22
CREATE-DATABASE .. 23
DATABASE-NAME ... 24
DATABASE-TYPE .. 25
DESTROY-DATABASE ... 26
DISCONNECT ... 27
DISCONNECT-POOLED .. 28
FIND-DATABASE ... 29
INITIALIZE-DATABASE-TYPE .. 30
LIST-DATABASES .. 31
PROBE-DATABASE .. 32
RECONNECT .. 33
STATUS ... 34
TRUNCATE-DATABASE ... 35
WITH-DATABASE .. 36
WITH-DEFAULT-DATABASE .. 37

II. The Symbolic SQL Syntax ...
DISABLE-SQL-READER-SYNTAX ... 39
ENABLE-SQL-READER-SYNTAX .. 40
LOCALLY-DISABLE-SQL-READER-SYNTAX .. 41
LOCALLY-ENABLE-SQL-READER-SYNTAX ... 42

iv

RESTORE-SQL-READER-SYNTAX-STATE ... 43
SQL ... 44
SQL-EXPRESSION .. 45
SQL-OPERATION ... 46
SQL-OPERATOR ... 47

III. Functional Data Definition Language (FDDL) ..
CREATE-TABLE ... 49
DESCRIBE-TABLE .. 50
DROP-TABLE ... 51
LIST-TABLES ... 52
TABLE-EXISTS-P .. 53
CREATE-VIEW ... 54
DROP-VIEW ... 55
LIST-VIEWS ... 56
VIEW-EXISTS-P .. 57
CREATE-INDEX ... 58
DROP-INDEX ... 59
INDEX-EXISTS-P .. 60
LIST-INDEXES ... 61
LIST-TABLE-INDEXES ... 62
ATTRIBUTE-TYPE .. 63
LIST-ATTRIBUTE-TYPES .. 64
LIST-ATTRIBUTES ... 65
CREATE-SEQUENCE .. 66
DROP-SEQUENCE .. 67
LIST-SEQUENCES .. 68
SEQUENCE-EXISTS-P ... 69
SEQUENCE-LAST ... 70
SEQUENCE-NEXT .. 71
SET-SEQUENCE-POSITION ... 72

IV. Functional Data Manipulation Language (FDML) ...
CACHE-TABLE-QUERIES-DEFAULT .. 74
BIND-PARAMETER .. 75
CACHE-TABLE-QUERIES ... 76
DELETE-RECORDS ... 77
DO-QUERY .. 78
EXECUTE-COMMAND .. 79
FOR-EACH-ROW .. 80
FREE-PREPARED-SQL .. 81
INSERT-RECORDS .. 82
LOOP-FOR-AS-TUPLES ... 84
MAP-QUERY .. 86
PREPARE-SQL .. 88
PRINT-QUERY ... 89
QUERY .. 90
RUN-PREPARED-SQL ... 92
SELECT ... 93
UPDATE-RECORDS .. 95

V. Transaction Handling ..
ADD-TRANSACTION-COMMIT-HOOK .. 97
ADD-TRANSACTION-ROLLBACK-HOOK .. 98
COMMIT .. 99
IN-TRANSACTION-P ... 100
ROLLBACK .. 101
SET-AUTOCOMMIT .. 102
START-TRANSACTION .. 103
WITH-TRANSACTION .. 104

VI. Object Oriented Data Definition Language (OODDL) ..

CLSQL Users' Guide

v

STANDARD-DB-OBJECT .. 106
DEFAULT-VARCHAR-LENGTH ... 107
CREATE-VIEW-FROM-CLASS ... 108
DEF-VIEW-CLASS .. 109
DROP-VIEW-FROM-CLASS ... 111
LIST-CLASSES ... 112

VII. Object Oriented Data Manipulation Language (OODML) ..
DB-AUTO-SYNC ... 114
DEFAULT-UPDATE-OBJECTS-MAX-LEN ... 115
DELETE-INSTANCE-RECORDS ... 116
INSTANCE-REFRESHED ... 117
UPDATE-INSTANCE-FROM-RECORDS .. 118
UPDATE-OBJECTS-JOINS ... 119
UPDATE-RECORD-FROM-SLOT .. 120
UPDATE-RECORD-FROM-SLOTS .. 121
UPDATE-RECORDS-FROM-INSTANCE .. 122
UPDATE-SLOT-FROM-RECORD .. 123

VIII. SQL I/O Recording ...
ADD-SQL-STREAM .. 125
DELETE-SQL-STREAM ... 126
LIST-SQL-STREAMS ... 127
SQL-RECORDING-P .. 128
SQL-STREAM ... 129
START-SQL-RECORDING ... 130
STOP-SQL-RECORDING .. 131

IX. CLSQL Condition System ..
BACKEND-WARNING-BEHAVIOR ... 133
SQL-CONDITION .. 134
SQL-ERROR ... 135
SQL-WARNING .. 136
SQL-DATABASE-WARNING ... 137
SQL-USER-ERROR .. 138
SQL-DATABASE-ERROR .. 139
SQL-CONNECTION-ERROR .. 140
SQL-DATABASE-DATA-ERROR .. 141
SQL-TEMPORARY-ERROR ... 142
SQL-TIMEOUT-ERROR ... 143
SQL-FATAL-ERROR ... 144

X. Large Object Support ..
CREATE-LARGE-OBJECT ... 146
DELETE-LARGE-OBJECT .. 147
READ-LARGE-OBJECT ... 148
WRITE-LARGE-OBJECT .. 149

XI. CLSQL-SYS ..
DATABASE-INITIALIZE-DATABASE-TYPE ... 151

XII. Index .. 153
Alphabetical Index for package CLSQL .. 154

A. Database Back-ends .. 156
PostgreSQL ... 156

Libraries .. 156
Initialization ... 156
Connection Specification .. 156

PostgreSQL Socket ... 157
Libraries .. 157
Initialization ... 157
Connection Specification .. 157

MySQL ... 158
Libraries .. 158

CLSQL Users' Guide

vi

Initialization ... 158
Connection Specification .. 158

ODBC .. 158
Libraries .. 158
Initialization ... 158
Connection Specification .. 159

AODBC .. 159
Libraries .. 159
Initialization ... 159
Connection Specification .. 159

SQLite .. 160
Libraries .. 160
Initialization ... 160
Connection Specification .. 160

Oracle ... 160
Libraries .. 160
Initialization ... 160
Connection Specification .. 161

Glossary .. 162

CLSQL Users' Guide

vii

Preface
This guide provides reference to the features of CLSQL. The first chapter provides an introduction to
CLSQL and installation instructions. The reference sections document all user accessible symbols with
examples of usage. There is a glossary of commonly used terms with their definitions.

viii

Chapter 1. Introduction
Purpose

CLSQL is a Common Lisp interface to SQL databases. A number of Common Lisp implementations and
SQL databases are supported. The general structure of CLSQL is based on the CommonSQL package by
Xanalys.

History
The CLSQL project was started by Kevin M. Rosenberg in 2001 to support SQL access on multiple
Common Lisp implementations using the UFFI library. The initial code was based substantially on
Pierre R. Mai's excellent MaiSQL package. In late 2003, the UncommonSQL library was orphaned by
its author, onShore Development, Inc. In April 2004, Marcus Pearce ported the UncommonSQL library
to CLSQL. The UncommonSQL library provides a CommonSQL-compatible API for CLSQL.

The main changes from MaiSQL and UncommonSQL are:

• Port from the CMUCL FFI to UFFI which provide compatibility with the major Common Lisp im-
plementations.

• Optimized loading of integer and floating-point fields.

• Additional database backends: ODBC, AODBC, and SQLite.

• A compatibility layer for CMUCL specific code.

• Much improved robustness for the MySQL back-end along with version 4 client library support.

• Improved library loading and installation documentation.

• Improved packages and symbol export.

• Pooled connections.

• Integrated transaction support for the classic MaiSQL iteration macros.

Prerequisites
ASDF

CLSQL uses ASDF to compile and load its components. ASDF is included in the CCLAN
[http://cclan.sourceforge.net] collection.

UFFI
CLSQL uses UFFI [http://uffi.b9.com/] as a Foreign Function Interface (FFI) to support multiple ANSI
Common Lisp implementations.

MD5

1

http://cclan.sourceforge.net
http://uffi.b9.com/

CLSQL's postgresql-socket interface uses Pierre Mai's md5 [ftp://clsql.b9.com/] module.

Supported Common Lisp Implementation
The implementations that support CLSQL is governed by the supported implementations of UFFI. The
following implementations are supported:

• AllegroCL v6.2 and 7.0b on Debian Linux x86 & x86_64 & PowerPC, FreeBSD 4.5, and Microsoft
Windows XP.

• Lispworks v4.3 on Debian Linux and Microsoft Windows XP.

• CMUCL 18e on Debian Linux, FreeBSD 4.5, and Solaris 2.8.

• SBCL 0.8.5 on Debian Linux.

• SCL 1.1.1 on Debian Linux.

• OpenMCL 0.14 on Debian Linux PowerPC.

Supported SQL Implementation
Currently, CLSQL supports the following databases:

• MySQL v3.23.51 and v4.0.18.

• PostgreSQL v7.4 with both direct API and TCP socket connections.

• SQLite.

• Direct ODBC interface.

• Oracle OCI.

• Allegro's DB interface (AODBC).

Installation
Ensure ASDF is loaded

Simply load the file asdf.lisp.

(load "asdf.lisp")

Build C helper libraries
CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL
implementations do not support 64-bit integers. Thus, C helper libraries are required to break these
64-bit integers into two compatible 32-bit integers. The helper libraries reside in the directories uffi

Introduction

2

ftp://clsql.b9.com/

and db-mysql.

Microsoft Windows

Files named Makefile.msvc are supplied for building the libraries under Microsoft Windows. Since
Microsoft Windows does not come with that compiler, compiled DLL and LIB library files are supplied
with CLSQL.

UNIX

Files named Makefile are supplied for building the libraries under UNIX. Loading the .asd files
automatically invokes make when necessary. So, manual building of the helper libraries is not necessary
on most UNIX systems. However, the location of the MySQL library files and include files may need to
adjusted in db-mysql/Makefile on non-Debian systems.

Add UFFI path
Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to
ASDF's asdf:*central-registry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the UFFI files reside in the /
usr/share/lisp/uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)

Add MD5 path
If you plan to use the clsql-postgresql-socket interface, you must load the md5 module. Unzip or untar
the cl-md5 distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf:*central-registry*. You can do that by pushing the pathname of the directory onto this
variable. The following example code assumes the cl-md5 files reside in the /
usr/share/lisp/cl-md5/ directory.

(push #P"/usr/share/lisp/cl-md5/" asdf:*central-registry*)

Add CLSQL path and load module
Unzip or untar the CLSQL distribution which creates a directory for the CLSQL files. Add that directory
to ASDF's asdf:*central-registry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the CLSQL files reside in the /
usr/share/lisp/clsql/ directory. You need to load the clsql system.

(push #P"/usr/share/lisp/clsql/" asdf:*central-registry*)
(asdf:operate 'asdf:load-op 'clsql) ; main CLSQL package

Run test suite (optional)
The test suite can be executed using the ASDF test-op operator. If CLSQL has not been loaded with
asdf:load-op, the asdf:test-op operator will automatically load CLSQL. A configuration file named

Introduction

3

.clsql-test.config must be created in your home directory. There are instructures on the format
of that file in the tests/README. After creating .clsql-test.config, you can run the test suite
with ASDF:

(asdf:operate 'asdf:test-op 'clsql)

Introduction

4

1 Philip Greenspun's "SQL For Web Nerds" - Data Modeling [http://www.arsdigita.com/books/sql/data-modeling.html]

Chapter 2. CommonSQL Tutorial
Based on the UncommonSQL Tutorial

Introduction
The goal of this tutorial is to guide a new developer thru the process of creating a set of CLSQL classes
providing a Object-Oriented interface to persistent data stored in an SQL database. We will assume that
the reader is familiar with how SQL works, how relations (tables) should be structured, and has created
at least one SQL application previously. We will also assume a minor level of experience with Common
Lisp.

CLSQL provides two different interfaces to SQL databases, a Functional interface, and an Object-Ori-
ented interface. The Functional interface consists of a special syntax for embedded SQL expressions in
Lisp, and provides lisp functions for SQL operations like SELECT and UPDATE. The object-oriented
interface provides a way for mapping Common Lisp Objects System (CLOS) objects into databases and
includes functions for inserting new objects, querying objects, and removing objects. Most applications
will use a combination of the two.

CLSQL is based on the CommonSQL package from Xanalys, so the documentation that Xanalys makes
available online is useful for CLSQL as well. It is suggested that developers new to CLSQL read their
documentation as well, as any differences between CommonSQL and CLSQL are minor. Xanalys makes
the following documents available:

• Xanalys Lispworks User Guide - The CommonSQL Package
[http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm]

• Xanalys Lispworks Reference Manual - The SQL Package
[http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm]

• CommonSQL Tutorial by Nick Levine [http://www.ravenbrook.com/doc/2002/09/13/common-sql/]

Data Modeling with CLSQL
Before we can create, query and manipulate CLSQL objects, we need to define our data model as noted
by Philip Greenspun 1

When data modeling, you are telling the relational database management system (RDBMS) the follow-
ing:

• What elements of the data you will store.

• How large each element can be.

• What kind of information each element can contain.

• What elements may be left blank.

• Which elements are constrained to a fixed range.

• Whether and how various tables are to be linked.

5

http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm
http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm
http://www.ravenbrook.com/doc/2002/09/13/common-sql/
http://www.arsdigita.com/books/sql/data-modeling.html

With SQL database one would do this by defining a set of relations, or tables, followed by a set of quer-
ies for joining the tables together in order to construct complex records. However, with CLSQL we do
this by defining a set of CLOS classes, specifying how they will be turned into tables, and how they can
be joined to one another via relations between their attributes. The SQL tables, as well as the queries for
joining them together are created for us automatically, saving us from dealing with some of the tedium
of SQL.

Let us start with a simple example of two SQL tables, and the relations between them.

CREATE TABLE EMPLOYEE (emplid NOT NULL number(38),
first_name NOT NULL varchar2(30),
last_name NOT NULL varchar2(30),
email varchar2(100),
companyid NOT NULL number(38),
managerid number(38))

CREATE TABLE COMPANY (companyid NOT NULL number(38),
name NOT NULL varchar2(100),
presidentid NOT NULL number(38))

This is of course the canonical SQL tutorial example, "The Org Chart".

In CLSQL, we would have two "view classes" (a fancy word for a class mapped into a database). They
would be defined as follows:

(clsql:def-view-class employee ()
((emplid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :emplid)
(first-name
:accessor first-name
:type (string 30)
:initarg :first-name)
(last-name
:accessor last-name
:type (string 30)
:initarg :last-name)
(email
:accessor employee-email
:type (string 100)
:nulls-ok t
:initarg :email)
(companyid
:type integer
:initarg :companyid)
(managerid
:type integer
:nulls-ok t
:initarg :managerid))

(:base-table employee))

(clsql:def-view-class company ()
((companyid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :companyid)
(name

CommonSQL Tutorial

6

:type (string 100)
:initarg :name)
(presidentid
:type integer
:initarg :presidentid))

(:base-table company))

The DEF-VIEW-CLASS macro is just like the normal CLOS DEFCLASS macro, except that it handles
several slot options that DEFCLASS doesn't. These slot options have to do with the mapping of the slot
into the database. We only use a few of the slot options in the above example, but there are several oth-
ers.

• :column - The name of the SQL column this slot is stored in. Defaults to the slot name. If the slot
name is not a valid SQL identifier, it is escaped, so foo-bar becomes foo_bar.

• :db-kind - The kind of database mapping which is performed for this slot. :base indicates the slot
maps to an ordinary column of the database view. :key indicates that this slot corresponds to part of
the unique keys for this view, :join indicates a join slot representing a relation to another view and
:virtual indicates that this slot is an ordinary CLOS slot. Defaults to :base.

• :db-reader - If a string, then when reading values from the database, the string will be used for a
format string, with the only value being the value from the database. The resulting string will be
used as the slot value. If a function then it will take one argument, the value from the database, and
return the value that should be put into the slot.

• :db-writer - If a string, then when reading values from the slot for the database, the string will be
used for a format string, with the only value being the value of the slot. The resulting string will be
used as the column value in the database. If a function then it will take one argument, the value of
the slot, and return the value that should be put into the database.

• :column- - A string which will be used as the type specifier for this slots column definition in the
database.

• :void-value - The Lisp value to return if the field is NULL. The default is NIL.

• :db-info - A join specification.

In our example each table as a primary key attribute, which is required to be unique. We indicate that a
slot is part of the primary key (CLSQL supports multi-field primary keys) by specifying the :db-kind key
slot option.

The SQL type of a slot when it is mapped into the database is determined by the :type slot option. The
argument for the :type option is a Common Lisp datatype. The CLSQL framework will determine the ap-
propriate mapping depending on the database system the table is being created in. If we really wanted to
determine what SQL type was used for a slot, we could specify a :db-type option like "NUMBER(38)"
and we would be guaranteed that the slot would be stored in the database as a NUMBER(38). This is not
recomended because it could makes your view class unportable across database systems.

DEF-VIEW-CLASS also supports some class options, like :base-table. The :base-table option specifies
what the table name for the view class will be when it is mapped into the database.

Class Relations
In an SQL only application, the EMPLOYEE and COMPANY tables can be queried to determine things
like, "Who is Vladamir's manager?", "What company does Josef work for?", and "What employees work

CommonSQL Tutorial

7

for Widgets Inc.". This is done by joining tables with an SQL query.

Who works for Widgets Inc.?

SELECT first_name, last_name FROM employee, company
WHERE employee.companyid = company.companyid

AND company.company_name = "Widgets Inc."

Who is Vladamir's manager?

SELECT managerid FROM employee
WHERE employee.first_name = "Vladamir"

AND employee.last_name = "Lenin"

What company does Josef work for?

SELECT company_name FROM company, employee
WHERE employee.first_name = "Josef"

AND employee.last-name = "Stalin"
AND employee.companyid = company.companyid

With CLSQL however we do not need to write out such queries because our view classes can maintain
the relations between employees and companies, and employees to their managers for us. We can then
access these relations like we would any other attribute of an employee or company object. In order to
do this we define some join slots for our view classes.

What company does an employee work for? If we add the following slot definition to the employee class
we can then ask for it's COMPANY slot and get the appropriate result.

;; In the employee slot list
(company
:accessor employee-company
:db-kind :join
:db-info (:join-class company

:home-key companyid
:foreign-key companyid
:set nil))

Who are the employees of a given company? And who is the president of it? We add the following slot
definition to the company view class and we can then ask for it's EMPLOYEES slot and get the right
result.

;; In the company slot list
(employees
:reader company-employees
:db-kind :join
:db-info (:join-class employee

:home-key companyid
:foreign-key companyid
:set t))

(president
:reader president

CommonSQL Tutorial

8

:db-kind :join
:db-info (:join-class employee

:home-key presidentid
:foreign-key emplid
:set nil))

And lastly, to define the relation between an employee and their manager:

;; In the employee slot list
(manager
:accessor employee-manager
:db-kind :join
:db-info (:join-class employee

:home-key managerid
:foreign-key emplid
:set nil))

CLSQL join slots can represent one-to-one, one-to-many, and many-to-many relations. Above we only
have one-to-one and one-to-many relations, later we will explain how to model many-to-many relations.
First, let's go over the slot definitions and the available options.

In order for a slot to be a join, we must specify that it's :db-kind :join, as opposed to :base or :key. Once
we do that, we still need to tell CLSQL how to create the join statements for the relation. This is what the
:db-info option does. It is a list of keywords and values. The available keywords are:

• :join-class - The view class to which we want to join. It can be another view class, or the same view
class as our object.

• :home-key - The slot(s) in the immediate object whose value will be compared to the foreign-key
slot(s) in the join-class in order to join the two tables. It can be a single slot-name, or it can be a list
of slot names.

• :foreign-key - The slot(s) in the join-class which will be compared to the value(s) of the home-key.

• :set - A boolean which if false, indicates that this is a one-to-one relation, only one object will be re-
turned. If true, than this is a one-to-many relation, a list of objects will be returned when we ask for
this slots value.

There are other :join-info options available in CLSQL, but we will save those till we get to the many-
to-many relation examples.

Object Creation
Now that we have our model laid out, we should create some object. Let us assume that we have a data-
base connect set up already. We first need to create our tables in the database:

Note: the file examples/clsql-tutorial.lisp contains view class definitions which you can
load into your list at this point in order to play along at home.

(clsql:create-view-from-class 'employee)
(clsql:create-view-from-class 'company)

Then we will create our objects. We create them just like you would any other CLOS object:

CommonSQL Tutorial

9

(defvar company1 (make-instance 'company
:companyid 1
:presidentid 1
:name "Widgets Inc."))

(defvar employee1 (make-instance 'employee
:emplid 1
:first-name "Vladamir"
:last-name "Lenin"
:email "lenin@soviet.org"
:companyid 1))

(defvar employee2 (make-instance 'employee
:emplid 2
:first-name "Josef"
:last-name "Stalin"
:email "stalin@soviet.org"
:companyid 1
:managerid 1))

In order to insert an objects into the database we use the UPDATE-RECORDS-FROM-INSTANCE func-
tion as follows:

(clsql:update-records-from-instance employee1)
(clsql:update-records-from-instance employee2)
(clsql:update-records-from-instance company1)

After you make any changes to an object, you have to specifically tell CLSQL to update the SQL data-
base. The UPDATE-RECORDS-FROM-INSTANCE method will write all of the changes you have made
to the object into the database.

Since CLSQL objects are just normal CLOS objects, we can manipulate their slots just like any other ob-
ject. For instance, let's say that Lenin changes his email because he was getting too much spam from the
German Socialists.

;; Print Lenin's current email address, change it and save it to the
;; database. Get a new object representing Lenin from the database
;; and print the email

;; This lets us use the functional CLSQL interface with [] syntax
(clsql:locally-enable-sql-reader-syntax)

(format t "The email address of ~A ~A is ~A"
(first-name employee1)
(last-name employee1)
(employee-email employee1))

(setf (employee-email employee1) "lenin-nospam@soviets.org")

;; Update the database
(clsql:update-records-from-instance employee1)

(let ((new-lenin (car (clsql:select 'employee
:where [= [slot-value 'employee 'emplid] 1]))))

(format t "His new email is ~A"
(employee-email new-lenin)))

CommonSQL Tutorial

10

Everything except for the last LET expression is already familiar to us by now. To understand the call to
CLSQL:SELECT we need to discuss the Functional SQL interface and it's integration with the Object
Oriented interface of CLSQL.

Finding Objects
Now that we have our objects in the database, how do we get them out when we need to work with
them? CLSQL provides a functional interface to SQL, which consists of a special Lisp reader macro and
some functions. The special syntax allows us to embed SQL in lisp expressions, and lisp expressions in
SQL, with ease.

Once we have turned on the syntax with the expression:

(clsql:locally-enable-sql-reader-syntax)

We can start entering fragments of SQL into our lisp reader. We will get back objects which represent
the lisp expressions. These objects will later be compiled into SQL expressions that are optimized for
the database backed we are connected to. This means that we have a database independent SQL syntax.
Here are some examples:

;; an attribute or table name
[foo] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO>

;; a attribute identifier with table qualifier
[foo bar] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO.BAR>

;; a attribute identifier with table qualifier
[= "Lenin" [first_name]] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP ('Lenin' = FIRST_NAME)>

[< [emplid] 3] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLID < 3)>

[and [< [emplid] 2] [= [first_name] "Lenin"]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP ((EMPLID < 2) AND

(FIRST_NAME = 'Lenin'))>

;; If we want to reference a slot in an object we can us the
;; SLOT-VALUE sql extension
[= [slot-value 'employee 'emplid] 1] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = 1)>

[= [slot-value 'employee 'emplid]
[slot-value 'company 'presidentid]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = COMPANY.PRESIDENTID)>

The SLOT-VALUE operator is important because it let's us query objects in a way that is robust to any
changes in the object->table mapping, like column name changes, or table name changes. So when you
are querying objects, be sure to use the SLOT-VALUE SQL extension.

Since we can now formulate SQL relational expression which can be used as qualifiers, like we put after
the WHERE keyword in SQL statements, we can start querying our objects. CLSQL provides a function
SELECT which can return use complete objects from the database which conform to a qualifier, can be
sorted, and various other SQL operations.

CommonSQL Tutorial

11

The first argument to SELECT is a class name. it also has a set of keyword arguments which are covered
in the documentation. For now we will concern ourselves only with the :where keyword. Select returns a
list of objects, or nil if it can't find any. It's important to remember that it always returns a list, so even if
you are expecting only one result, you should remember to extract it from the list you get from SE-
LECT.

;; all employees
(clsql:select 'employee)
;; all companies
(clsql:select 'company)

;; employees named Lenin
(clsql:select 'employee :where [= [slot-value 'employee 'last-name]

"Lenin"])

(clsql:select 'company :where [= [slot-value 'company 'name]
"Widgets Inc."])

;; Employees of Widget's Inc.
(clsql:select 'employee

:where [and [= [slot-value 'employee 'companyid]
[slot-value 'company 'companyid]]

[= [slot-value 'company 'name]
"Widgets Inc."]])

;; Same thing, except that we are using the employee
;; relation in the company view class to do the join for us,
;; saving us the work of writing out the SQL!
(company-employees company1)

;; President of Widgets Inc.
(president company1)

;; Manager of Josef Stalin
(employee-manager employee2)

Deleting Objects
Now that we know how to create objects in our database, manipulate them and query them (including
using our predefined relations to save us the trouble writing alot of SQL) we should learn how to clean
up after ourself. It's quite simple really. The function DELETE-INSTANCE-RECORDS will remove an
object from the database. However, when we remove an object we are responsible for making sure that
the database is left in a correct state.

For example, if we remove a company record, we need to either remove all of it's employees or we need
to move them to another company. Likewise if we remove an employee, we should make sure to update
any other employees who had them as a manager.

Conclusion
There are many nooks and crannies to CLSQL, some of which are covered in the Xanalys documents we
refered to earlier, some are not. The best documentation at this time is still the source code for CLSQL
itself and the inline documentation for its various functions.

CommonSQL Tutorial

12

Connection and Initialisation

13

Name
DATABASE -- The super-type of all CLSQL databases

DATABASE

Class Precedence List
database, standard-object, t

Description
This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses
of this class to implement their databases. No instances of this class are ever created by CLSQL.

Class details
(defclass DATABASE ()(...))

Slots

14

Name
CONNECT-IF-EXISTS -- Default value for the if-exists parameter of connect.

CONNECT-IF-EXISTS

Value Type
A valid argument to the if-exists parameter of connect, i.e. one of :new, :warn-new, :error,
:warn-old, :old.

Initial Value
:error

Description
The value of this variable is used in calls to connect as the default value of the if-exists paramet-
er. See connect for the semantics of the valid values for this variable.

Examples
None.

Affected By
None.

See Also

connect

Notes
None.

15

Name
DEFAULT-DATABASE -- The default database object to use

DEFAULT-DATABASE

Value Type
Any object of type database, or nil to indicate no default database.

Initial Value
nil

Description
Any function or macro in CLSQL that operates on a database uses the value of this variable as the de-
fault value for it's database parameter.

The value of this parameter is changed by calls to connect, which sets *default-database* to the data-
base object it returns. It is also changed by calls to disconnect, when the database object being dis-
connected is the same as the value of *default-database*. In this case disconnect sets
default-database to the first database that remains in the list of active databases as returned by con-
nected-databases, or nil if no further active databases exist.

The user may change *default-database* at any time to a valid value of his choice.

Caution

If the value of *default-database* is nil, then all calls to CLSQL functions on databases must
provide a suitable database parameter, or an error will be signalled.

Examples

(connected-databases)
=> NIL
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql :if-exists :new)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
(disconnect)
=> T
default-database
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(disconnect)
=> T
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(disconnect)
=> T
default-database

16

=> NIL
(connected-databases)
=> NIL

Affected By

connect
disconnect

See Also

connected-databases

Notes

Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-
level loop, and because of this, connect and disconnect provide some fairly complex be-
haviour to keep *default-database* set to useful values. Programmatic use of CLSQL should
never depend on the value of *default-database* and should provide correct database objects
via the database parameter to functions called.

DEFAULT-DATABASE

17

Name
DEFAULT-DATABASE-TYPE -- The default database type to use

DEFAULT-DATABASE-TYPE

Value Type
Any keyword representing a valid database back-end of CLSQL, or nil.

Initial Value
nil

Description
The value of this variable is used in calls to initialize-database-type and connect as the
default value of the database-type parameter.

Caution

If the value of this variable is nil, then all calls to initialize-database-type or con-
nect will have to specify the database-type to use, or a general-purpose error will be sig-
nalled.

Examples

(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t

Affected By
None.

See Also
None.

Notes
None.

18

Name
INITIALIZED-DATABASE-TYPES -- List of all initialized database types

INITIALIZED-DATABASE-TYPES

Value Type
A list of all initialized database types, each of which represented by it's corresponding keyword.

Initial Value
nil

Description
This variable is updated whenever initialize-database-type is called for a database type
which hasn't already been initialized before, as determined by this variable. In that case the keyword
representing the database type is pushed onto the list stored in *INITIALIZED-DATABASE-TYPES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t
initialized-database-types
=> (:MYSQL)

Affected By

initialize-database-type

See Also
None.

Notes
Direct access to this variable is primarily provided because of compatibility with Harlequin's Common
SQL.

19

Name
CONNECT --

CONNECT

Syntax

(CONNECT CONNECTION-SPEC &KEY (IF-EXISTS *CONNECT-IF-EXISTS*) (MAKE-DEFAULT T) (POOL NIL) (DATABASE-TYPE *DEFAULT-DATABASE-TYPE*)) [function] =>

Arguments and Values

Description
Connects to a database of the supplied DATABASE-TYPE which defaults to
DEFAULT-DATABASE-TYPE, using the type-specific connection specification CONNECTION-
SPEC. The value of IF-EXISTS, which defaults to *CONNECT-IF-EXISTS*, determines what happens
if a connection to the database specified by CONNECTION-SPEC is already established. A value of
:new means create a new connection. A value of :warn-new means warn the user and create a new con-
nect. A value of :warn-old means warn the user and use the old connection. A value of :error means fail,
notifying the user. A value of :old means return the old connection. MAKE-DEFAULT is t by default
which means that *DEFAULT-DATABASE* is set to the new connection, otherwise
DEFAULT-DATABASE is not changed. If POOL is t the connection will be taken from the general
pool, if POOL is a CONN-POOL object the connection will be taken from this pool.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

20

CONNECT

21

Name
CONNECTED-DATABASES --

CONNECTED-DATABASES

Syntax

(CONNECTED-DATABASES) [function] =>

Arguments and Values

Description
Returns the list of active database objects.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

22

Name
CREATE-DATABASE --

CREATE-DATABASE

Syntax

(CREATE-DATABASE CONNECTION-SPEC &KEY DATABASE-TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

23

Name
DATABASE-NAME --

DATABASE-NAME

Syntax

(DATABASE-NAME (OBJ DATABASE)) [reader] =>

Arguments and Values

Description
"Returns the name of DATABASE."

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

24

Name
DATABASE-TYPE --

DATABASE-TYPE

Syntax

(DATABASE-TYPE (OBJ DATABASE)) [reader] =>

Arguments and Values

Description
"Returns the type of DATABASE."

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

25

Name
DESTROY-DATABASE --

DESTROY-DATABASE

Syntax

(DESTROY-DATABASE CONNECTION-SPEC &KEY DATABASE-TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

26

Name
DISCONNECT --

DISCONNECT

Syntax

(DISCONNECT &KEY (DATABASE *DEFAULT-DATABASE*) (ERROR NIL)) [function] =>

Arguments and Values

Description
Closes the connection to DATABASE and resets *DEFAULT-DATABASE* if that database was dis-
connected. If DATABASE is a database instance, this object is closed. If DATABASE is a string, then a
connected database whose name matches DATABASE is sought in the list of connected databases. If no
matching database is found and ERROR and DATABASE are both non-nil an error is signaled, other-
wise nil is returned. If the database is from a pool it will be released to this pool.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

27

Name
DISCONNECT-POOLED --

DISCONNECT-POOLED

Syntax

(DISCONNECT-POOLED &OPTIONAL CLEAR) [function] =>

Arguments and Values

Description
Disconnects all connections in the pool.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

28

Name
FIND-DATABASE --

FIND-DATABASE

Syntax

(FIND-DATABASE DATABASE &KEY (ERRORP T) (DB-TYPE NIL)) [function] =>

Arguments and Values

Description
Returns the connected databases of type DB-TYPE whose names match the string DATABASE. If
DATABASE is a database object, it is returned. If DB-TYPE is nil all databases matching the string
DATABASE are considered. If no matching databases are found and ERRORP is nil then nil is returned.
If ERRORP is nil and one or more matching databases are found, then the most recently connected data-
base is returned as a first value and the number of matching databases is returned as a second value. If
no, or more than one, matching databases are found and ERRORP is true, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

29

Name
INITIALIZE-DATABASE-TYPE --

INITIALIZE-DATABASE-TYPE

Syntax

(INITIALIZE-DATABASE-TYPE &KEY (DATABASE-TYPE *DEFAULT-DATABASE-TYPE*)) [function] =>

Arguments and Values

Description
Initializes the supplied DATABASE-TYPE, if it is not already initialized, as indicated by
INITIALIZED-DATABASE-TYPES and returns DATABASE-TYPE.
DEFAULT-DATABASE-TYPE is set to DATABASE-TYPE and, if DATABASE-TYPE has not
been initialised, it is added to *INITIALIZED-DATABASE-TYPES*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

30

Name
LIST-DATABASES --

LIST-DATABASES

Syntax

(LIST-DATABASES CONNECTION-SPEC &KEY DATABASE-TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

31

Name
PROBE-DATABASE --

PROBE-DATABASE

Syntax

(PROBE-DATABASE CONNECTION-SPEC &KEY DATABASE-TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

32

Name
RECONNECT --

RECONNECT

Syntax

(RECONNECT &KEY (DATABASE *DEFAULT-DATABASE*) (ERROR NIL) (FORCE T)) [function] =>

Arguments and Values

Description
Reconnects DATABASE which defaults to *DEFAULT-DATABASE* to the underlying database man-
agement system. On success, t is returned and the variable *DEFAULT-DATABASE* is set to the
newly reconnected database. If DATABASE is a database instance, this object is closed. If DATABASE
is a string, then a connected database whose name matches DATABASE is sought in the list of connec-
ted databases. If no matching database is found and ERROR and DATABASE are both non-nil an error
is signaled, otherwise nil is returned. When the current database connection cannot be closed, if FORCE
is non-nil, as it is by default, the connection is closed and errors are suppressed. If force is nil and the
database connection cannot be closed, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

33

Name
STATUS --

STATUS

Syntax

(STATUS &OPTIONAL FULL) [function] =>

Arguments and Values

Description
Prints information about the currently connected databases to *STANDARD-OUTPUT*. The argument
FULL is nil by default and a value of t means that more detailed information about each database is
printed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

34

Name
TRUNCATE-DATABASE --

TRUNCATE-DATABASE

Syntax

(TRUNCATE-DATABASE &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

35

Name
WITH-DATABASE --

WITH-DATABASE

Syntax

(WITH-DATABASE DB-VAR CONNECTION-SPEC &REST CONNECT-ARGS &BODY BODY) [macro] =>

Arguments and Values

Description
Evaluate the body in an environment, where `db-var' is bound to the database connection given by
`connection-spec' and `connect-args'. The connection is automatically closed or released to the pool on
exit from the body.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

36

Name
WITH-DEFAULT-DATABASE --

WITH-DEFAULT-DATABASE

Syntax

(WITH-DEFAULT-DATABASE DATABASE &REST BODY) [macro] =>

Arguments and Values

Description
Perform BODY with DATABASE bound as *default-database*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

37

The Symbolic SQL Syntax

38

Name
DISABLE-SQL-READER-SYNTAX --

DISABLE-SQL-READER-SYNTAX

Syntax

(DISABLE-SQL-READER-SYNTAX) [macro] =>

Arguments and Values

Description
Turns off the SQL reader syntax setting the syntax state such that if the syntax is subsequently enabled,
RESTORE-SQL-READER-SYNTAX-STATE will disable it again.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

39

Name
ENABLE-SQL-READER-SYNTAX --

ENABLE-SQL-READER-SYNTAX

Syntax

(ENABLE-SQL-READER-SYNTAX) [macro] =>

Arguments and Values

Description
Turns on the SQL reader syntax setting the syntax state such that if the syntax is subsequently disabled,
RESTORE-SQL-READER-SYNTAX-STATE will enable it again.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

40

Name
LOCALLY-DISABLE-SQL-READER-SYNTAX --

LOCALLY-DISABLE-SQL-READER-SYNTAX

Syntax

(LOCALLY-DISABLE-SQL-READER-SYNTAX) [macro] =>

Arguments and Values

Description
Turns off the SQL reader syntax without changing the syntax state such that RESTORE-
SQL-READER-SYNTAX-STATE will re-establish the current syntax state.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

41

Name
LOCALLY-ENABLE-SQL-READER-SYNTAX --

LOCALLY-ENABLE-SQL-READER-SYNTAX

Syntax

(LOCALLY-ENABLE-SQL-READER-SYNTAX) [macro] =>

Arguments and Values

Description
Turns on the SQL reader syntax without changing the syntax state such that RESTORE-
SQL-READER-SYNTAX-STATE will re-establish the current syntax state.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

42

Name
RESTORE-SQL-READER-SYNTAX-STATE --

RESTORE-SQL-READER-SYNTAX-STATE

Syntax

(RESTORE-SQL-READER-SYNTAX-STATE) [macro] =>

Arguments and Values

Description
Enables the SQL reader syntax if ENABLE-SQL-READER-SYNTAX has been called more recently
than DISABLE-SQL-READER-SYNTAX and otherwise disables the SQL reader syntax. By default,
the SQL reader syntax is disabled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

43

Name
SQL --

SQL

Syntax

(SQL &REST ARGS) [function] =>

Arguments and Values

Description
Returns an SQL string generated from the SQL expressions ARGS. The expressions are translated into
SQL strings and then concatenated with a single space delimiting each expression.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

44

Name
SQL-EXPRESSION --

SQL-EXPRESSION

Syntax

(SQL-EXPRESSION &KEY STRING TABLE ALIAS ATTRIBUTE TYPE) [function] =>

Arguments and Values

Description
Returns an SQL expression constructed from the supplied arguments which may be combined as fol-
lows: ATTRIBUTE and TYPE; ATTRIBUTE; ALIAS or TABLE and ATTRIBUTE and TYPE; ALIAS
or TABLE and ATTRIBUTE; TABLE, ATTRIBUTE and TYPE; TABLE and ATTRIBUTE; TABLE
and ALIAS; TABLE; and STRING.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

45

Name
SQL-OPERATION --

SQL-OPERATION

Syntax

(SQL-OPERATION OPERATION &REST REST) [function] =>

Arguments and Values

Description
Returns an SQL expression constructed from the supplied SQL operator or function OPERATION and
its arguments REST. If OPERATION is passed the symbol FUNCTION then the first value in REST is
taken to be a valid SQL function and the remaining values in REST its arguments.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

46

Name
SQL-OPERATOR --

SQL-OPERATOR

Syntax

(SQL-OPERATOR OPERATION) [function] =>

Arguments and Values

Description
Returns the Lisp symbol corresponding to the SQL operation represented by the symbol OPERATION.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

47

Functional Data Definition
Language (FDDL)

48

Name
CREATE-TABLE --

CREATE-TABLE

Syntax

(CREATE-TABLE NAME DESCRIPTION &KEY (DATABASE *DEFAULT-DATABASE*) (CONSTRAINTS NIL) (TRANSACTIONS T)) [function] =>

Arguments and Values

Description
Creates a table called NAME, which may be a string, symbol or SQL table identifier, in DATABASE
which defaults to *DEFAULT-DATABASE*. DESCRIPTION is a list whose elements are lists contain-
ing the attribute names, types, and other constraints such as not-null or primary-key for each column in
the table. CONSTRAINTS is a string representing an SQL table constraint expression or a list of such
strings. With MySQL databases, if TRANSACTIONS is t an InnoDB table is created which supports
transactions.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

49

Name
DESCRIBE-TABLE --

DESCRIBE-TABLE

Syntax

(DESCRIBE-TABLE TABLE &KEY DATABASE) [generic] =>

Arguments and Values

Description
Describes a table, returns a list of name/type for columns in table

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

50

Name
DROP-TABLE --

DROP-TABLE

Syntax

(DROP-TABLE NAME &KEY (IF-DOES-NOT-EXIST :ERROR) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Drops the table called NAME from DATABASE which defaults to *DEFAULT-DATABASE*. If the
table does not exist and IF-DOES-NOT-EXIST is :ignore then DROP-TABLE returns nil whereas an er-
ror is signalled if IF-DOES-NOT-EXIST is :error.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

51

Name
LIST-TABLES --

LIST-TABLES

Syntax

(LIST-TABLES &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of strings representing table names in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only tables owned by users are
listed. If OWNER is a string denoting a user name, only tables owned by OWNER are listed. If OWN-
ER is :all then all tables are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

52

Name
TABLE-EXISTS-P --

TABLE-EXISTS-P

Syntax

(TABLE-EXISTS-P NAME &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Tests for the existence of an SQL table called NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only tables owned by users are
examined. If OWNER is a string denoting a user name, only tables owned by OWNER are examined. If
OWNER is :all then all tables are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

53

Name
CREATE-VIEW --

CREATE-VIEW

Syntax

(CREATE-VIEW NAME &KEY AS COLUMN-LIST (WITH-CHECK-OPTION NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Creates a view called NAME in DATABASE which defaults to *DEFAULT-DATABASE*. The view
is created using the query AS and the columns of the view may be specified using the COLUMN-LIST
parameter. The WITH-CHECK-OPTION is nil by default but if it has a non-nil value, then all insert/
update commands on the view are checked to ensure that the new data satisfy the query AS.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

54

Name
DROP-VIEW --

DROP-VIEW

Syntax

(DROP-VIEW NAME &KEY (IF-DOES-NOT-EXIST :ERROR) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Drops the view called NAME from DATABASE which defaults to *DEFAULT-DATABASE*. If the
view does not exist and IF-DOES-NOT-EXIST is :ignore then DROP-VIEW returns nil whereas an er-
ror is signalled if IF-DOES-NOT-EXIST is :error.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

55

Name
LIST-VIEWS --

LIST-VIEWS

Syntax

(LIST-VIEWS &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of strings representing view names in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only views owned by users are
listed. If OWNER is a string denoting a user name, only views owned by OWNER are listed. If OWN-
ER is :all then all views are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

56

Name
VIEW-EXISTS-P --

VIEW-EXISTS-P

Syntax

(VIEW-EXISTS-P NAME &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Tests for the existence of an SQL view called NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only views owned by users are
examined. If OWNER is a string denoting a user name, only views owned by OWNER are examined. If
OWNER is :all then all views are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

57

Name
CREATE-INDEX --

CREATE-INDEX

Syntax

(CREATE-INDEX NAME &KEY ON (UNIQUE NIL) ATTRIBUTES (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Creates an index called NAME on the table specified by ON in DATABASE which default to
DEFAULT-DATABASE. The table attributes to use in constructing the index NAME are specified by
ATTRIBUTES. The UNIQUE argument is nil by default but if it has a non-nil value then the indexed at-
tributes must have unique values.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

58

Name
DROP-INDEX --

DROP-INDEX

Syntax

(DROP-INDEX NAME &KEY (IF-DOES-NOT-EXIST :ERROR) (ON NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Drops the index called NAME in DATABASE which defaults to *DEFAULT-DATABASE*. If the in-
dex does not exist and IF-DOES-NOT-EXIST is :ignore then DROP-INDEX returns nil whereas an er-
ror is signalled if IF-DOES-NOT-EXIST is :error. The argument ON allows the optional specification of
a table to drop the index from.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

59

Name
INDEX-EXISTS-P --

INDEX-EXISTS-P

Syntax

(INDEX-EXISTS-P NAME &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Tests for the existence of an SQL index called NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only indexes owned by users
are examined. If OWNER is a string denoting a user name, only indexes owned by OWNER are ex-
amined. If OWNER is :all then all indexes are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

60

Name
LIST-INDEXES --

LIST-INDEXES

Syntax

(LIST-INDEXES &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of strings representing index names in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only indexes owned by users
are listed. If OWNER is a string denoting a user name, only indexes owned by OWNER are listed. If
OWNER is :all then all indexes are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

61

Name
LIST-TABLE-INDEXES --

LIST-TABLE-INDEXES

Syntax

(LIST-TABLE-INDEXES TABLE &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of strings representing index names on the table specified by TABLE in DATABASE
which defaults to *DEFAULT-DATABASE*. OWNER is nil by default which means that only indexes
owned by users are listed. If OWNER is a string denoting a user name, only indexes owned by OWNER
are listed. If OWNER is :all then all indexes are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

62

Name
ATTRIBUTE-TYPE --

ATTRIBUTE-TYPE

Syntax

(ATTRIBUTE-TYPE ATTRIBUTE TABLE &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a string representing the field type of the supplied attribute ATTRIBUTE in the table specified
by TABLE in DATABASE which defaults to *DEFAULT-DATABASE*. OWNER is nil by default
which means that the attribute specified by ATTRIBUTE, if it exists, must be user owned else nil is re-
turned. If OWNER is a string denoting a user name, the attribute, if it exists, must be owned by OWN-
ER else nil is returned, whereas if OWNER is :all then the attribute, if it exists, will be returned regard-
less of its owner.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

63

Name
LIST-ATTRIBUTE-TYPES --

LIST-ATTRIBUTE-TYPES

Syntax

(LIST-ATTRIBUTE-TYPES TABLE &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list containing information about the SQL types of each of the attributes in the table specified
by TABLE in DATABASE which has a default value of *DEFAULT-DATABASE*. OWNER is nil by
default which means that only attributes owned by users are listed. If OWNER is a string denoting a user
name, only attributes owned by OWNER are listed. If OWNER is :all then all attributes are listed. The
elements of the returned list are lists where the first element is the name of the attribute, the second ele-
ment is its SQL type, the third is the type precision, the fourth is the scale of the attribute and the fifth is
1 if the attribute accepts null values and otherwise 0.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

64

Name
LIST-ATTRIBUTES --

LIST-ATTRIBUTES

Syntax

(LIST-ATTRIBUTES NAME &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of strings representing the attributes of table NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only attributes owned by users
are listed. If OWNER is a string denoting a user name, only attributes owned by OWNER are listed. If
OWNER is :all then all attributes are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

65

Name
CREATE-SEQUENCE --

CREATE-SEQUENCE

Syntax

(CREATE-SEQUENCE NAME &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Creates a sequence called NAME in DATABASE which defaults to *DEFAULT-DATABASE*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

66

Name
DROP-SEQUENCE --

DROP-SEQUENCE

Syntax

(DROP-SEQUENCE NAME &KEY (IF-DOES-NOT-EXIST :ERROR) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Drops the sequence called NAME from DATABASE which defaults to *DEFAULT-DATABASE*. If
the sequence does not exist and IF-DOES-NOT-EXIST is :ignore then DROP-SEQUENCE returns nil
whereas an error is signalled if IF-DOES-NOT-EXIST is :error.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

67

Name
LIST-SEQUENCES --

LIST-SEQUENCES

Syntax

(LIST-SEQUENCES &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of strings representing sequence names in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only sequences owned by users
are listed. If OWNER is a string denoting a user name, only sequences owned by OWNER are listed. If
OWNER is :all then all sequences are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

68

Name
SEQUENCE-EXISTS-P --

SEQUENCE-EXISTS-P

Syntax

(SEQUENCE-EXISTS-P NAME &KEY (OWNER NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Tests for the existence of an SQL sequence called NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only sequences owned by users
are examined. If OWNER is a string denoting a user name, only sequences owned by OWNER are ex-
amined. If OWNER is :all then all sequences are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

69

Name
SEQUENCE-LAST --

SEQUENCE-LAST

Syntax

(SEQUENCE-LAST NAME &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Return the last value of the sequence called NAME in DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

70

Name
SEQUENCE-NEXT --

SEQUENCE-NEXT

Syntax

(SEQUENCE-NEXT NAME &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Return the next value in the sequence called NAME in DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

71

Name
SET-SEQUENCE-POSITION --

SET-SEQUENCE-POSITION

Syntax

(SET-SEQUENCE-POSITION NAME POSITION &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Explicitly set the the position of the sequence called NAME in DATABASE, which defaults to
DEFAULT-DATABSE, to POSITION.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

72

Functional Data Manipulation
Language (FDML)

73

Name
CACHE-TABLE-QUERIES-DEFAULT --

CACHE-TABLE-QUERIES-DEFAULT

Value Type

Initial Value
nil

Description

Examples

Affected By
None.

See Also
None.

Notes
None.

74

Name
BIND-PARAMETER --

BIND-PARAMETER

Syntax

(BIND-PARAMETER PREPARED-STMT POSITION VALUE) [function] =>

Arguments and Values

Description
Sets the value of a parameter in a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

75

Name
CACHE-TABLE-QUERIES --

CACHE-TABLE-QUERIES

Syntax

(CACHE-TABLE-QUERIES TABLE &KEY (ACTION NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Controls the caching of attribute type information on the table specified by TABLE in DATABASE
which defaults to *DEFAULT-DATABASE*. ACTION specifies the caching behaviour to adopt. If its
value is t then attribute type information is cached whereas if its value is nil then attribute type informa-
tion is not cached. If ACTION is :flush then all existing type information in the cache for TABLE is re-
moved, but caching is still enabled. TABLE may be a string representing a table for which the caching
action is to be taken while the caching action is applied to all tables if TABLE is t. Alternativly, when
TABLE is :default, the default caching action specified by *CACHE-TABLE-QUERIES-DEFAULT* is
applied to all table for which a caching action has not been explicitly set.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

76

Name
DELETE-RECORDS --

DELETE-RECORDS

Syntax

(DELETE-RECORDS &KEY (FROM NIL) (WHERE NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Deletes records satisfying the SQL expression WHERE from the table specified by FROM in DATA-
BASE specifies a database which defaults to *DEFAULT-DATABASE*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

77

Name
DO-QUERY --

DO-QUERY

Syntax

(DO-QUERY &KEY (DATABASE '*DEFAULT-DATABASE*) (RESULT-TYPES :AUTO) &REST QUERY-EXPRESSION &BODY BODY) [macro] =>

Arguments and Values

Description
Repeatedly executes BODY within a binding of ARGS on the fields of each row selected by the SQL
query QUERY-EXPRESSION, which may be a string or a symbolic SQL expression, in DATABASE
which defaults to *DEFAULT-DATABASE*. The values returned by the execution of BODY are re-
turned. RESULT-TYPES is a list of symbols which specifies the lisp type for each field returned by
QUERY-EXPRESSION. If RESULT-TYPES is nil all results are returned as strings whereas the default
value of :auto means that the lisp types are automatically computed for each field.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

78

Name
EXECUTE-COMMAND --

EXECUTE-COMMAND

Syntax

(EXECUTE-COMMAND EXPRESSION &KEY DATABASE) [generic] =>

Arguments and Values

Description
Executes the SQL command EXPRESSION, which may be an SQL expression or a string representing
any SQL statement apart from a query, on the supplied DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

79

Name
FOR-EACH-ROW --

FOR-EACH-ROW

Syntax

(FOR-EACH-ROW &KEY FROM ORDER-BY WHERE DISTINCT LIMIT &REST FIELDS &BODY BODY) [macro] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

80

Name
FREE-PREPARED-SQL --

FREE-PREPARED-SQL

Syntax

(FREE-PREPARED-SQL PREPARED-STMT) [function] =>

Arguments and Values

Description
Delete the objects associated with a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

81

Name
INSERT-RECORDS --

INSERT-RECORDS

Syntax

(INSERT-RECORDS &KEY (INTO NIL) (ATTRIBUTES NIL) (VALUES NIL) (AV-PAIRS NIL) (QUERY NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Inserts records into the table specified by INTO in DATABASE which defaults to
DEFAULT-DATABASE. There are five ways of specifying the values inserted into each row. In the
first VALUES contains a list of values to insert and ATTRIBUTES, AV-PAIRS and QUERY are nil.
This can be used when values are supplied for all attributes in INTO. In the second, ATTRIBUTES is a
list of column names, VALUES is a corresponding list of values and AV-PAIRS and QUERY are nil. In
the third, ATTRIBUTES, VALUES and QUERY are nil and AV-PAIRS is an alist of (attribute value)
pairs. In the fourth, VALUES, AV-PAIRS and ATTRIBUTES are nil and QUERY is a symbolic SQL
query expression in which the selected columns also exist in INTO. In the fifth method, VALUES and
AV-PAIRS are nil and ATTRIBUTES is a list of column names and QUERY is a symbolic SQL query
expression which returns values for the specified columns.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

82

INSERT-RECORDS

83

Name
LOOP-FOR-AS-TUPLES -- Iterate over all the tuples of a query via a loop clause

LOOP-FOR-AS-TUPLES

Compatibility

Caution

loop-for-as-tuples only works with CMUCL.

Syntax
var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} query [from database]

Arguments and Values

var A d-var-spec, as defined in the grammar for loop-clauses in the ANSI Standard for
Common Lisp. This allows for the usual loop-style destructuring.

type-spec An optional type-spec either simple or destructured, as defined in the grammar for
loop-clauses in the ANSI Standard for Common Lisp.

query An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as function takes argu-
ments.

database An optional database object. This will default to the value of *default-database*.

Description
This clause is an iteration driver for loop, that binds the given variable (possibly destructured) to the
consecutive tuples (which are represented as lists of attribute values) in the result set returned by execut-
ing the SQL query expression on the database specified.

Examples

(defvar *my-db* (connect '("dent" "newesim" "dent" "dent"))
"My database"

=> *MY-DB*
(loop with time-graph = (make-hash-table :test #'equal)

with event-graph = (make-hash-table :test #'equal)
for (time event) being the tuples of "select time,event from log"
from *my-db*
do
(incf (gethash time time-graph 0))
(incf (gethash event event-graph 0))
finally
(flet ((show-graph (k v) (format t "~40A => ~5D~%" k v)))
(format t "~&Time-Graph:~%===========~%")

84

(maphash #'show-graph time-graph)
(format t "~&~%Event-Graph:~%============~%")
(maphash #'show-graph event-graph))

(return (values time-graph event-graph)))
>> Time-Graph:
>> ===========
>> D => 53000
>> X => 3
>> test-me => 3000
>>
>> Event-Graph:
>> ============
>> CLOS Benchmark entry. => 9000
>> Demo Text... => 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000
=> #<EQUAL hash table, 3 entries {48350A1D}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

Otherwise, any of the exceptional situations of loop applies.

See Also

query
map-query
do-query

Notes
None.

LOOP-FOR-AS-TUPLES

85

Name
MAP-QUERY -- Map a function over all the tuples from a query

MAP-QUERY

Syntax
map-query output-type-spec function query-expression &key database result-types => result

Arguments and Values

output-type-spec A sequence type specifier or nil.

function A function designator. function takes a single argument which is the atom
value for a query single with a single column or is a list of values for a multi-
column query.

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set.

database A database object. This will default to the value of *default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of
this argument.

result If output-type-spec is a type specifier other than nil, then a sequence of
the type it denotes. Otherwise nil is returned.

Description
Applies function to the successive tuples in the result set returned by executing the SQL query-
expression. If the output-type-spec is nil, then the result of each application of function is
discarded, and map-query returns nil. Otherwise the result of each successive application of func-
tion is collected in a sequence of type output-type-spec, where the jths element is the result of
applying function to the attributes of the jths tuple in the result set. The collected sequence is the res-
ult of the call to map-query.

If the output-type-spec is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element type
specified for the result-type, the element type of the resulting array is the result of upgrading that
element type; or, if the implementation can determine that the element type is unspecified (or *), the ele-
ment type of the resulting array is t; otherwise, an error is signaled.

If RESULT-TYPES is nil all results are returned as strings whereas the default value of :auto means that
the lisp types are automatically computed for each field.

Examples

(map-query 'list #'(lambda (tuple)

86

(multiple-value-bind (salary name) tuple
(declare (ignorable name))

(read-from-string salary)))
"select salary,name from simple where salary > 8000")

=> (10000.0 8000.5)

(map-query '(vector double-float)
#'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(declare (ignorable name))
(let ((*read-default-float-format* 'double-float))

(coerce (read-from-string salary) 'double-float))
"select salary,name from simple where salary > 8000")))

=> #(10000.0d0 8000.5d0)
(type-of *)
=> (SIMPLE-ARRAY DOUBLE-FLOAT (2))

(let (list)
(values (map-query nil #'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(push (cons name (read-from-string salary)) list))

"select salary,name from simple where salary > 8000")
list))

=> NIL
=> (("Hacker, Random J." . 8000.5) ("Mai, Pierre" . 10000.0))

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

An error of type type-error must be signaled if the output-type-spec is not a recognizable subtype
of list, not a recognizable subtype of vector, and not nil.

An error of type type-error should be signaled if output-type-spec specifies the number of ele-
ments and the size of the result set is different from that number.

See Also

query
do-query

Notes
None.

MAP-QUERY

87

Name
PREPARE-SQL --

PREPARE-SQL

Syntax

(PREPARE-SQL SQL-STMT TYPES &KEY (DATABASE *DEFAULT-DATABASE*) (RESULT-TYPES :AUTO) FIELD-NAMES) [function] =>

Arguments and Values

Description
Prepares a SQL statement for execution. TYPES contains a list of types corresponding to the input para-
meters. Returns a prepared-statement object. A type can be :int :double :null (:string n)

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

88

Name
PRINT-QUERY --

PRINT-QUERY

Syntax

(PRINT-QUERY QUERY-EXP &KEY TITLES (FORMATS T) (SIZES T) (STREAM T) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Prints a tabular report of the results returned by the SQL query QUERY-EXP, which may be a symbolic
SQL expression or a string, in DATABASE which defaults to *DEFAULT-DATABASE*. The report is
printed onto STREAM which has a default value of t which means that *STANDARD-OUTPUT* is
used. The TITLE argument, which defaults to nil, allows the specification of a list of strings to use as
column titles in the tabular output. SIZES accepts a list of column sizes, one for each column selected by
QUERY-EXP, to use in formatting the tabular report. The default value of t means that minimum sizes
are computed. FORMATS is a list of format strings to be used for printing each column selected by
QUERY-EXP. The default value of FORMATS is t meaning that ~A is used to format all columns or
~VA if column sizes are used.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

89

Name
QUERY --

QUERY

Syntax

(QUERY QUERY-EXPRESSION &KEY DATABASE RESULT-TYPES FLATP FIELD-NAMES) [generic] =>

Arguments and Values

Description
Executes the SQL query expression QUERY-EXPRESSION, which may be an SQL expression or a
string, on the supplied DATABASE which defaults to *DEFAULT-DATABASE*. RESULT-TYPES is
a list of symbols which specifies the lisp type for each field returned by QUERY-EXPRESSION. If
RESULT-TYPES is nil all results are returned as strings whereas the default value of :auto means that
the lisp types are automatically computed for each field. FIELD-NAMES is t by default which means
that the second value returned is a list of strings representing the columns selected by QUERY-
EXPRESSION. If FIELD-NAMES is nil, the list of column names is not returned as a second value.
FLATP has a default value of nil which means that the results are returned as a list of lists. If FLATP is t
and only one result is returned for each record selected by QUERY-EXPRESSION, the results are re-
turned as elements of a list.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

90

QUERY

91

Name
RUN-PREPARED-SQL --

RUN-PREPARED-SQL

Syntax

(RUN-PREPARED-SQL PREPARED-STMT) [function] =>

Arguments and Values

Description
Execute the prepared sql statment. All input parameters must be bound.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

92

Name
SELECT --

SELECT

Syntax

(SELECT &REST SELECT-ALL-ARGS) [function] =>

Arguments and Values

Description
Executes a query on DATABASE, which has a default value of *DEFAULT-DATABASE*, specified
by the SQL expressions supplied using the remaining arguments in SELECT-ALL-ARGS. The SELECT
argument can be used to generate queries in both functional and object oriented contexts. In the func-
tional case, the required arguments specify the columns selected by the query and may be symbolic SQL
expressions or strings representing attribute identifiers. Type modified identifiers indicate that the values
selected from the specified column are converted to the specified lisp type. The keyword arguments
ALL, DISTINCT, FROM, GROUP-by, HAVING, ORDER-BY, SET-OPERATION and WHERE are
used to specify, using the symbolic SQL syntax, the corresponding components of the SQL query gener-
ated by the call to SELECT. RESULT-TYPES is a list of symbols which specifies the lisp type for each
field returned by the query. If RESULT-TYPES is nil all results are returned as strings whereas the de-
fault value of :auto means that the lisp types are automatically computed for each field. FIELD-NAMES
is t by default which means that the second value returned is a list of strings representing the columns
selected by the query. If FIELD-NAMES is nil, the list of column names is not returned as a second
value. In the object oriented case, the required arguments to SELECT are symbols denoting View
Classes which specify the database tables to query. In this case, SELECT returns a list of View Class in-
stances whose slots are set from the attribute values of the records in the specified table. Slot-value is a
legal operator which can be employed as part of the symbolic SQL syntax used in the WHERE keyword
argument to SELECT. REFRESH is nil by default which means that the View Class instances returned
are retrieved from a cache if an equivalent call to SELECT has previously been issued. If REFRESH is
true, the View Class instances returned are updated as necessary from the database and the generic func-
tion INSTANCE-REFRESHED is called to perform any necessary operations on the updated instances.
In both object oriented and functional contexts, FLATP has a default value of nil which means that the
results are returned as a list of lists. If FLATP is t and only one result is returned for each record selected
in the query, the results are returned as elements of a list.

Examples

Side Effects

93

Affected by

Exceptional Situations

See Also

Notes

SELECT

94

Name
UPDATE-RECORDS --

UPDATE-RECORDS

Syntax

(UPDATE-RECORDS TABLE &KEY (ATTRIBUTES NIL) (VALUES NIL) (AV-PAIRS NIL) (WHERE NIL) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Updates the attribute values of existing records satsifying the SQL expression WHERE in the table spe-
cified by TABLE in DATABASE which defaults to *DEFAULT-DATABASE*. There are three ways
of specifying the values to update for each row. In the first, VALUES contains a list of values to use in
the update and ATTRIBUTES, AV-PAIRS and QUERY are nil. This can be used when values are sup-
plied for all attributes in TABLE. In the second, ATTRIBUTES is a list of column names, VALUES is a
corresponding list of values and AV-PAIRS and QUERY are nil. In the third, ATTRIBUTES, VALUES
and QUERY are nil and AV-PAIRS is an alist of (attribute value) pairs.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

95

Transaction Handling

96

Name
ADD-TRANSACTION-COMMIT-HOOK --

ADD-TRANSACTION-COMMIT-HOOK

Syntax

(ADD-TRANSACTION-COMMIT-HOOK DATABASE COMMIT-HOOK) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

97

Name
ADD-TRANSACTION-ROLLBACK-HOOK --

ADD-TRANSACTION-ROLLBACK-HOOK

Syntax

(ADD-TRANSACTION-ROLLBACK-HOOK DATABASE ROLLBACK-HOOK) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

98

Name
COMMIT --

COMMIT

Syntax

(COMMIT &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
If DATABASE, which defaults to *DEFAULT-DATABASE*, is currently within the scope of a trans-
action, commits changes made since the transaction began.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

99

Name
IN-TRANSACTION-P --

IN-TRANSACTION-P

Syntax

(IN-TRANSACTION-P &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
A predicate to test whether DATABASE, which defaults to *DEFAULT-DATABASE*, is currently
within the scope of a transaction.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

100

Name
ROLLBACK --

ROLLBACK

Syntax

(ROLLBACK &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
If DATABASE, which defaults to *DEFAULT-DATABASE*, is currently within the scope of a trans-
action, rolls back changes made since the transaction began.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

101

Name
SET-AUTOCOMMIT --

SET-AUTOCOMMIT

Syntax

(SET-AUTOCOMMIT VALUE &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Sets autocommit on or off. Returns old value of of autocommit flag.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

102

Name
START-TRANSACTION --

START-TRANSACTION

Syntax

(START-TRANSACTION &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Starts a transaction block on DATABASE which defaults to *DEFAULT-DATABASE* and which con-
tinues until ROLLBACK or COMMIT are called.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

103

Name
WITH-TRANSACTION --

WITH-TRANSACTION

Syntax

(WITH-TRANSACTION &KEY (DATABASE '*DEFAULT-DATABASE*) &REST BODY) [macro] =>

Arguments and Values

Description
Starts a transaction in the database specified by DATABASE, which is *DEFAULT-DATABASE* by
default, and executes BODY within that transaction. If BODY aborts or throws, DATABASE is rolled
back and otherwise the transaction is committed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

104

Object Oriented Data Definition
Language (OODDL)

105

Name
STANDARD-DB-OBJECT -- Superclass for all CLSQL View Classes.

STANDARD-DB-OBJECT

Class Precedence List
standard-db-object, standard-object, t

Description
This class is the superclass of all CLSQL View Classes.

Class details
(defclass STANDARD-DB-OBJECT ()(...))

Slots

106

Name
DEFAULT-VARCHAR-LENGTH --

DEFAULT-VARCHAR-LENGTH

Value Type

Initial Value
nil

Description

Examples

Affected By
None.

See Also
None.

Notes
None.

107

Name
CREATE-VIEW-FROM-CLASS --

CREATE-VIEW-FROM-CLASS

Syntax

(CREATE-VIEW-FROM-CLASS VIEW-CLASS-NAME &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Creates a table as defined by the View Class VIEW-CLASS-NAME in DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

108

Name
DEF-VIEW-CLASS --

DEF-VIEW-CLASS

Syntax

(DEF-VIEW-CLASS CLASS SUPERS SLOTS &REST CL-OPTIONS) [macro] =>

Arguments and Values

Description
Creates a View Class called CLASS whose slots SLOTS can map onto the attributes of a table in a data-
base. If SUPERS is nil then the superclass of CLASS will be STANDARD-DB-OBJECT, otherwise SU-
PERS is a list of superclasses for CLASS which must include STANDARD-DB-OBJECT or a descend-
ent of this class. The syntax of DEFCLASS is extended through the addition of a class option :base-table
which defines the database table onto which the View Class maps and which defaults to CLASS. The
DEFCLASS syntax is also extended through additional slot options. The :db-kind slot option specifies
the kind of DB mapping which is performed for this slot and defaults to :base which indicates that the
slot maps to an ordinary column of the database table. A :db-kind value of :key indicates that this slot is
a special kind of :base slot which maps onto a column which is one of the unique keys for the database
table, the value :join indicates this slot represents a join onto another View Class which contains View
Class objects, and the value :virtual indicates a standard CLOS slot which does not map onto columns of
the database table. If a slot is specified with :db-kind :join, the slot option :db-info contains a list which
specifies the nature of the join. For slots of :db-kind :base or :key, the :type slot option has a special in-
terpretation such that Lisp types, such as string, integer and float are automatically converted into appro-
priate SQL types for the column onto which the slot maps. This behaviour may be over-ridden using the
:db-type slot option which is a string specifying the vendor-specific database type for this slot's column
definition in the database. The :column slot option specifies the name of the SQL column which the slot
maps onto, if :db-kind is not :virtual, and defaults to the slot name. The :void-value slot option specifies
the value to store if the SQL value is NULL and defaults to NIL. The :db-constraints slot option is a
string representing an SQL table constraint expression or a list of such strings.

Examples

Side Effects

Affected by

109

Exceptional Situations

See Also

Notes

DEF-VIEW-CLASS

110

Name
DROP-VIEW-FROM-CLASS --

DROP-VIEW-FROM-CLASS

Syntax

(DROP-VIEW-FROM-CLASS VIEW-CLASS-NAME &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Removes a table defined by the View Class VIEW-CLASS-NAME from DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

111

Name
LIST-CLASSES --

LIST-CLASSES

Syntax

(LIST-CLASSES &KEY (TEST #'IDENTITY) (ROOT-CLASS (FIND-CLASS 'STANDARD-DB-OBJECT)) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of all the View Classes which are connected to DATABASE, which defaults to
DEFAULT-DATABASE, and which descend from the class ROOT-CLASS and which satisfy the
function TEST. By default ROOT-CLASS is STANDARD-DB-OBJECT and TEST is IDENTITY.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

112

Object Oriented Data Manipulation
Language (OODML)

113

Name
DB-AUTO-SYNC --

DB-AUTO-SYNC

Value Type

Initial Value
nil

Description

Examples

Affected By
None.

See Also
None.

Notes
None.

114

Name
DEFAULT-UPDATE-OBJECTS-MAX-LEN --

DEFAULT-UPDATE-OBJECTS-MAX-LEN

Value Type

Initial Value
nil

Description

Examples

Affected By
None.

See Also
None.

Notes
None.

115

Name
DELETE-INSTANCE-RECORDS --

DELETE-INSTANCE-RECORDS

Syntax

(DELETE-INSTANCE-RECORDS OBJECT) [generic] =>

Arguments and Values

Description
Deletes the records represented by OBJECT in the appropriate table of the database associated with OB-
JECT. If OBJECT is not yet associated with a database, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

116

Name
INSTANCE-REFRESHED --

INSTANCE-REFRESHED

Syntax

(INSTANCE-REFRESHED OBJECT) [generic] =>

Arguments and Values

Description
Provides a hook which is called within an object oriented call to SELECT with a non-nil value of RE-
FRESH when the View Class instance OBJECT has been updated from the database. A method special-
ised on STANDARD-DB-OBJECT is provided which has no effects. Methods specialised on particular
View Classes can be used to specify any operations that need to be made on View Classes instances
which have been updated in calls to SELECT.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

117

Name
UPDATE-INSTANCE-FROM-RECORDS --

UPDATE-INSTANCE-FROM-RECORDS

Syntax

(UPDATE-INSTANCE-FROM-RECORDS OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the slot values of the View Class instance OBJECT using the attribute values of the appropriate
table of DATABASE which defaults to the database associated with OBJECT or, if OBJECT is not as-
sociated with a database, *DEFAULT-DATABASE*. Join slots are updated but instances of the class on
which the join is made are not updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

118

Name
UPDATE-OBJECTS-JOINS --

UPDATE-OBJECTS-JOINS

Syntax

(UPDATE-OBJECTS-JOINS OBJECTS &KEY (SLOTS T) (FORCE-P T) CLASS-NAME (MAX-LEN *DEFAULT-UPDATE-OBJECTS-MAX-LEN*)) [function] =>

Arguments and Values

Description
Updates from the records of the appropriate database tables the join slots specified by SLOTS in the
supplied list of View Class instances OBJECTS. SLOTS is t by default which means that all join slots
with :retrieval :immediate are updated. CLASS-NAME is used to specify the View Class of all instance
in OBJECTS and default to nil which means that the class of the first instance in OBJECTS is used.
FORCE-P is t by default which means that all join slots are updated whereas a value of nil means that
only unbound join slots are updated. MAX-LEN defaults to
DEFAULT-UPDATE-OBJECTS-MAX-LEN and when non-nil specifies that UPDATE-OB-
JECT-JOINS may issue multiple database queries with a maximum of MAX-LEN instances updated in
each query.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

119

Name
UPDATE-RECORD-FROM-SLOT --

UPDATE-RECORD-FROM-SLOT

Syntax

(UPDATE-RECORD-FROM-SLOT OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the value stored in the column represented by the slot, specified by the CLOS slot name SLOT,
of View Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and specifies the
database in which the update is made only if OBJECT is not associated with a database. In this case, a
record is created in DATABASE and the attribute represented by SLOT is initialised from the value of
the supplied slots with other attributes having default values. Furthermore, OBJECT becomes associated
with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

120

Name
UPDATE-RECORD-FROM-SLOTS --

UPDATE-RECORD-FROM-SLOTS

Syntax

(UPDATE-RECORD-FROM-SLOTS OBJECT SLOTS &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the values stored in the columns represented by the slots, specified by the CLOS slot names
SLOTS, of View Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and
specifies the database in which the update is made only if OBJECT is not associated with a database. In
this case, a record is created in the appropriate table of DATABASE and the attributes represented by
SLOTS are initialised from the values of the supplied slots with other attributes having default values.
Furthermore, OBJECT becomes associated with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

121

Name
UPDATE-RECORDS-FROM-INSTANCE --

UPDATE-RECORDS-FROM-INSTANCE

Syntax

(UPDATE-RECORDS-FROM-INSTANCE OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Using an instance of a View Class, OBJECT, update the table that stores its instance data. DATABASE
defaults to *DEFAULT-DATABASE* and specifies the database in which the update is made only if
OBJECT is not associated with a database. In this case, a record is created in the appropriate table of
DATABASE using values from the slot values of OBJECT, and OBJECT becomes associated with
DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

122

Name
UPDATE-SLOT-FROM-RECORD --

UPDATE-SLOT-FROM-RECORD

Syntax

(UPDATE-SLOT-FROM-RECORD OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the slot value, specified by the CLOS slot name SLOT, of the View Class instance OBJECT us-
ing the attribute values of the appropriate table of DATABASE which defaults to the database associ-
ated with OBJECT or, if OBJECT is not associated with a database, *DEFAULT-DATABASE*. Join
slots are updated but instances of the class on which the join is made are not updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

123

SQL I/O Recording

124

Name
ADD-SQL-STREAM --

ADD-SQL-STREAM

Syntax

(ADD-SQL-STREAM STREAM &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Adds the supplied stream STREAM (or T for *standard-output*) as a component of the recording broad-
cast stream for the SQL recording type specified by TYPE on DATABASE which defaults to
DEFAULT-DATABASE. TYPE must be one of :commands, :results, or :both, defaulting to
:commands, depending on whether the stream is to be added for recording SQL commands, results or
both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

125

Name
DELETE-SQL-STREAM --

DELETE-SQL-STREAM

Syntax

(DELETE-SQL-STREAM STREAM &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Removes the supplied stream STREAM from the recording broadcast stream for the SQL recording type
specified by TYPE on DATABASE which defaults to *DEFAULT-DATABASE*. TYPE must be one
of :commands, :results, or :both, defaulting to :commands, depending on whether the stream is to be ad-
ded for recording SQL commands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

126

Name
LIST-SQL-STREAMS --

LIST-SQL-STREAMS

Syntax

(LIST-SQL-STREAMS &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns the list of component streams for the broadcast stream recording SQL commands sent to and/or
results returned from DATABASE which defaults to *DEFAULT-DATABASE*. TYPE must be one of
:commands, :results, or :both, defaulting to :commands, and determines whether the listed streams con-
tain those recording SQL commands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

127

Name
SQL-RECORDING-P --

SQL-RECORDING-P

Syntax

(SQL-RECORDING-P &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Predicate to test whether the SQL recording specified by TYPE is currently enabled for DATABASE
which defaults to *DEFAULT-DATABASE*. TYPE may be one of :commands, :results, :both or
:either, defaulting to :commands, otherwise nil is returned.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

128

Name
SQL-STREAM --

SQL-STREAM

Syntax

(SQL-STREAM &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns the broadcast stream used for recording SQL commands sent to or results returned from DATA-
BASE which defaults to *DEFAULT-DATABASE*. TYPE must be one of :commands or :results, de-
faulting to :commands, and determines whether the stream returned is that used for recording SQL com-
mands or results.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

129

Name
START-SQL-RECORDING --

START-SQL-RECORDING

Syntax

(START-SQL-RECORDING &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Starts recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The SQL is output on one or more broadcast streams, initially just
STANDARD-OUTPUT, and the functions ADD-SQL-STREAM and DELETE-SQL-STREAM may
be used to add or delete command or result recording streams. The default value of TYPE is :commands
which means that SQL commands sent to DATABASE are recorded. If TYPE is :results then SQL res-
ults returned from DATABASE are recorded. Both commands and results may be recorded by passing
TYPE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

130

Name
STOP-SQL-RECORDING --

STOP-SQL-RECORDING

Syntax

(STOP-SQL-RECORDING &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Stops recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The default value of TYPE is :commands which means that SQL com-
mands sent to DATABASE will no longer be recorded. If TYPE is :results then SQL results returned
from DATABASE will no longer be recorded. Recording may be stopped for both commands and res-
ults by passing TYPE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

131

CLSQL Condition System

132

Name
BACKEND-WARNING-BEHAVIOR --

BACKEND-WARNING-BEHAVIOR

Value Type

Initial Value
nil

Description
Action to perform on warning messages from backend. Default is to :warn. May also be set to :error to
signal an error or :ignore/nil to silently ignore the warning.

Examples

Affected By
None.

See Also
None.

Notes
None.

133

Name
SQL-CONDITION -- the super-type of all CLSQL-specific conditions

SQL-CONDITION

Class Precedence List
sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specif-
ic interfaces. There are no defined initialization arguments nor any accessors.

134

Name
SQL-ERROR -- the super-type of all CLSQL-specific errors

SQL-ERROR

Class Precedence List
sql-error, error, serious-condition, sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or
any of it's database-specific interfaces. There are no defined initialization arguments nor any accessors.

135

Name
SQL-WARNING -- the super-type of all CLSQL-specific warnings

SQL-WARNING

Class Precedence List
sql-warning, warning, sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL,
or any of it's database-specific interfaces. There are no defined initialization arguments nor any ac-
cessors.

136

Name
SQL-DATABASE-WARNING -- Used to warn while accessing a CLSQL database.

SQL-DATABASE-WARNING

Class Precedence List
sql-database-warning, sql-warning, warning, sql-condition, condition, t

Description
This condition represents warnings signalled while accessing a database. The following initialization ar-
guments and accessors exist:
Initarg: :database
Accessor: sql-warning-database
Description: The database object that was involved in the incident.

137

Name
SQL-USER-ERROR -- condition representing errors because of invalid parameters from the library
user.

SQL-USER-ERROR

Class Precedence List
sql-user-error, sql-error, sql-condition, condition, t

Description
This condition represents errors that occur because the user supplies invalid data to CLSQL. This in-
cludes errors such as an invalid format connection specification or an error in the syntax for the LOOP
macro extensions. The following initialization arguments and accessors exist:
Initarg: :message
Accessor: sql-user-error-message
Description: The error message.

138

Name
SQL-DATABASE-ERROR -- condition representing errors during query or command execution

SQL-DATABASE-ERROR

Class Precedence List
sql-database-error, sql-error, error, serious-condition, sql-condition, condition, t

Description
This condition represents errors that occur while executing SQL statements, either as part of query oper-
ations or command execution, either explicitly or implicitly, as caused e.g. by with-transaction.
The following initialization arguments and accessors exist:
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

139

Name
SQL-CONNECTION-ERROR -- condition representing errors during connection

SQL-CONNECTION-ERROR

Class Precedence List
sql-connection-error, sql-database-error, sql-error, sql-condition, condition, t

Description
This condition represents errors that occur while trying to connect to a database. The following initializ-
ation arguments and accessors exist:
Initarg: :database-type
Accessor: sql-connection-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-connection-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-database-error-error
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

140

Name
SQL-DATABASE-DATA-ERROR -- Used to signal an error with the SQL data passed to a database.

SQL-DATABASE-DATA-ERROR

Class Precedence List
sql-database-data-error, sql-database-error, sql-error, error, serious-condition, sql-condition, condition, t

Description
This condition represents errors that occur while executing SQL statements, specifically as a result of
malformed SQL expressions. The following initialization arguments and accessors exist:
Initarg: :expression
Accessor: sql-database-error-expression
Description: The SQL expression whose execution caused the error.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

141

Name
SQL-TEMPORARY-ERROR -- Used to signal a temporary error in the database backend.

SQL-TEMPORARY-ERROR

Class Precedence List
sql-database-error, sql-error, error, serious-condition, sql-condition, condition, t

Description
This condition represents errors occurring when the database cannot currently process a valid interaction
because, for example, it is still executing another command possibly issued by another user. The follow-
ing initialization arguments and accessors exist:
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

142

Name
SQL-TIMEOUT-ERROR -- condition representing errors when a connection times out.

SQL-TIMEOUT-ERROR

Class Precedence List
sql-connection-error, sql-database-error, sql-error, sql-condition, condition, t

Description
This condition represents errors that occur when the database times out while processing some opera-
tion. The following initialization arguments and accessors exist:
Initarg: :database-type
Accessor: sql-connection-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-connection-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

143

Name
SQL-FATAL-ERROR -- condition representing a fatal error in a database connection

SQL-FATAL-ERROR

Class Precedence List
sql-connection-error, sql-database-error, sql-error, sql-condition, condition, t

Description
This condition represents errors occurring when the database connection is no longer usable. The fol-
lowing initialization arguments and accessors exist:
Initarg: :database-type
Accessor: sql-connection-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-connection-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

144

Large Object Support

145

Name
CREATE-LARGE-OBJECT --

CREATE-LARGE-OBJECT

Syntax

(CREATE-LARGE-OBJECT &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Creates a new large object in the database and returns the object identifier

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

146

Name
DELETE-LARGE-OBJECT --

DELETE-LARGE-OBJECT

Syntax

(DELETE-LARGE-OBJECT OBJECT-ID &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Deletes the large object in the database

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

147

Name
READ-LARGE-OBJECT --

READ-LARGE-OBJECT

Syntax

(READ-LARGE-OBJECT OBJECT-ID &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Reads the large object content

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

148

Name
WRITE-LARGE-OBJECT --

WRITE-LARGE-OBJECT

Syntax

(WRITE-LARGE-OBJECT OBJECT-ID DATA &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Writes data to the large object

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

149

CLSQL-SYS
This part gives a reference to the symbols exported from the package CLSQL-SYS, which are not ex-
ported from CLSQL package.. These symbols are part of the interface for database back-ends, but not
part of the normal user-interface of CLSQL.

150

Name
DATABASE-INITIALIZE-DATABASE-TYPE -- Back-end part of
initialize-database-type.

DATABASE-INITIALIZE-DATABASE-TYPE

Syntax
database-initialize-database-type database-type => result

Arguments and Values

database-type A keyword indicating the database type to initialize.

result Either t if the initialization succeeds or nil if it fails.

Description
This generic function implements the main part of the database type initialization performed by ini-
tialize-database-type. After initialize-database-type has checked that the given
database type has not been initialized before, as indicated by *initialized-database-types*, it will call this
function with the database type as it's sole parameter. Database back-ends are required to define a meth-
od on this generic function which is specialized via an eql-specializer to the keyword representing their
database type.

Database back-ends shall indicate successful initialization by returning t from their method, and nil oth-
erwise. Methods for this generic function are allowed to signal errors of type clsql-error or subtypes
thereof. They may also signal other types of conditions, if appropriate, but have to document this.

Examples

Side Effects
All necessary side effects to initialize the database instance.

Affected By
None.

Exceptional Situations
Conditions of type clsql-error or other conditions may be signalled, depending on the database back-end.

See Also

initialize-database-type

151

initialized-database-types

Notes
None.

DATABASE-INITIAL-
IZE-DATABASE-TYPE

152

Index

153

Name
Alphabetical Index for package CLSQL -- Clickable index of all symbols

Alphabetical Index for package CLSQL

BACKEND-WARNING-BEHAVIOR INSTANCE-REFRESHED
CACHE-TABLE-QUERIES-DEFAULT LIST-ATTRIBUTE-TYPES
CONNECT-IF-EXISTS LIST-ATTRIBUTES
DB-AUTO-SYNC LIST-CLASSES
DEFAULT-DATABASE LIST-DATABASES
DEFAULT-DATABASE-TYPE LIST-INDEXES
DEFAULT-UPDATE-OBJECTS-MAX-LEN LIST-SEQUENCES
DEFAULT-VARCHAR-LENGTH LIST-SQL-STREAMS
INITIALIZED-DATABASE-TYPES LIST-TABLE-INDEXES
ADD-SQL-STREAM LIST-TABLES
ADD-TRANSACTION-COMMIT-HOOK LIST-VIEWS
ADD-TRANSACTION-ROLLBACK-HOOK LOCALLY-DISABLE-SQL-READER-SYNTAX
ATTRIBUTE-TYPE LOCALLY-ENABLE-SQL-READER-SYNTAX
BIND-PARAMETER LOOP-FOR-AS-TUPLES
CACHE-TABLE-QUERIES MAP-QUERY
COMMIT PREPARE-SQL
CONNECT PROBE-DATABASE
CONNECTED-DATABASES QUERY
CREATE-DATABASE READ-LARGE-OBJECT
CREATE-INDEX RECONNECT
CREATE-LARGE-OBJECT RESTORE-SQL-READER-SYNTAX-STATE
CREATE-SEQUENCE ROLLBACK
CREATE-TABLE RUN-PREPARED-SQL
CREATE-VIEW SELECT
CREATE-VIEW-FROM-CLASS SEQUENCE-EXISTS-P
DATABASE SEQUENCE-LAST
DATABASE-NAME SEQUENCE-NEXT
DATABASE-TYPE SET-AUTOCOMMIT
DEF-VIEW-CLASS SET-SEQUENCE-POSITION
DELETE-INSTANCE-RECORDS SQL
DELETE-LARGE-OBJECT SQL-EXPRESSION
DELETE-RECORDS SQL-OPERATION
DELETE-SQL-STREAM SQL-OPERATOR
DESCRIBE-TABLE SQL-RECORDING-P
DESTROY-DATABASE SQL-STREAM
DISABLE-SQL-READER-SYNTAX START-SQL-RECORDING
DISCONNECT START-TRANSACTION
DISCONNECT-POOLED STATUS
DO-QUERY STOP-SQL-RECORDING
DROP-INDEX TABLE-EXISTS-P
DROP-SEQUENCE TRUNCATE-DATABASE
DROP-TABLE UPDATE-INSTANCE-FROM-RECORDS
DROP-VIEW UPDATE-OBJECTS-JOINS
DROP-VIEW-FROM-CLASS UPDATE-RECORD-FROM-SLOT
ENABLE-SQL-READER-SYNTAX UPDATE-RECORD-FROM-SLOTS
EXECUTE-COMMAND UPDATE-RECORDS
FIND-DATABASE UPDATE-RECORDS-FROM-INSTANCE
FOR-EACH-ROW UPDATE-SLOT-FROM-RECORD
FREE-PREPARED-SQL VIEW-EXISTS-P
IN-TRANSACTION-P WITH-DATABASE

154

INDEX-EXISTS-P WITH-DEFAULT-DATABASE
INITIALIZE-DATABASE-TYPE WITH-TRANSACTION
INSERT-RECORDS WRITE-LARGE-OBJECT

Alphabetical Index for package CLSQL

155

Appendix A. Database Back-ends
PostgreSQL
Libraries

The PostgreSQL back-end requires the PostgreSQL C client library (libpq.so). The location of this
library is specified via *postgresql-so-load-path*, which defaults to /usr/lib/libpq.so. Addition-
al flags to ld needed for linking are specified via *postgresql-so-libraries*, which defaults to ("-lcrypt" "-
lc").

Initialization
Use

(asdf:operate 'adsf:load-op 'clsql-postgresql)

to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresql.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment vari-
ables (see PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the
C client library are used.

host String representing the hostname or IP address the PostgreSQL server resides on. Use the
empty string to indicate a connection to localhost via Unix-Domain sockets instead of
TCP/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

port String representing the port to use for communication with the PostgreSQL server.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.

156

PostgreSQL Socket
Libraries

The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it commu-
nicates directly with the PostgreSQL server using the published frontend/backend protocol, version 2.0.
This eases installation and makes it possible to dump CMU CL images containing CLSQL and this
backend, contrary to backends which require FFI code.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-postgresql-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is
:postgresql-socket.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host If this is a string, it represents the hostname or IP address the PostgreSQL server resides
on. In this case communication with the server proceeds via a TCP connection to the giv-
en host and port.

If this is a pathname, then it is assumed to name the directory that contains the server's
Unix-Domain sockets. The full name to the socket is then constructed from this and the
port number passed, and communication will proceed via a connection to this unix-do-
main socket.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication. This can be the
empty string if no password is required for authentication.

port Integer representing the port to use for communication with the PostgreSQL server. This
defaults to 5432.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.

Database Back-ends

157

MySQL
Libraries

The MySQL back-end requires the MySQL C client library (libmysqlclient.so). The location of
this library is specified via *mysql-so-load-path*, which defaults to /
usr/lib/libmysqlclient.so. Additional flags to ld needed for linking are specified via
mysql-so-libraries, which defaults to ("-lc").

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-mysql)

to load the MySQL back-end. The database type for the MySQL back-end is :mysql.

Connection Specification

Syntax of connection-spec

(host db user password)

Description of connection-spec

host String representing the hostname or IP address the MySQL server resides on, or nil to in-
dicate the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix
user ID.

password String representing the unencrypted password to use for authentication, or nil if the au-
thentication record has an empty password field.

ODBC
Libraries

The ODBC back-end requires access to an ODBC driver manager as well as ODBC drivers for the un-
derlying database server. CLSQL has been tested with unixODBC ODBC Driver Manager as well as Mi-
crosoft's ODBC manager. These driver managers have been tested with the psqlODBC
[http://odbc.postgresql.org] driver for PostgreSQL and the MyODBC
[http://www.mysql.com/products/connector/odbc/] driver for MySQL.

Initialization
Use

Database Back-ends

158

http://odbc.postgresql.org
http://www.mysql.com/products/connector/odbc/

(asdf:operate 'asdf:load-op 'clsql-odbc)

to load the ODBC back-end. The database type for the ODBC back-end is :odbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

AODBC
Libraries

The AODBC back-end requires access to the ODBC interface of AllegroCL named DBI. This interface
is not available in the trial version of AllegroCL

Initialization
Use

(require 'aodbc-v2)
(asdf:operate 'asdf:load-op 'clsql-aodbc)

to load the AODBC back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

Database Back-ends

159

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

SQLite
Libraries

The SQLite back-end requires the SQLite shared library file. Its default file name is /
usr/lib/libsqlite.so.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-sqlite)

to load the SQLite back-end. The database type for the SQLite back-end is :sqlite.

Connection Specification

Syntax of connection-spec

(filename)

Description of connection-spec

filename String representing the filename of the SQLite database file.

Oracle
Libraries

The Oracle back-end requires the Oracle OCI client library. (libclntsh.so). The location of this lib-
rary is specified relative to the ORACLE_HOME value in the operating system environment. CLSQL
has tested sucessfully using the client library from Oracle 9i and Oracle 10g server installations as well
as Oracle's 10g Instant Client library.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-oracle)

to load the Oracle back-end. The database type for the Oracle back-end is :oracle.

Database Back-ends

160

Connection Specification

Syntax of connection-spec

(global-name user password)

Description of connection-spec

global-name String representing the global name of the Orace database. This is looked up through
the tnsnames.ora file.

user String representing the user name to use for authentication.

password String representing the password to use for authentication..

Database Back-ends

161

Glossary
Note

This glossary is still very thinly populated, and not all references in the main text have been
properly linked and coordinated with this glossary. This will hopefully change in future revi-
sions.

Active database See Database Object.

Connection See Database Object.

Closed Database
An object of type closed-database. This is in contrast to the terms
connection, database, active database or database object which don't
include objects which are closed database.

database See Database Object.

Foreign Function Interface
(FFI) An interface from Common Lisp to a external library which contains

compiled functions written in other programming languages, typic-
ally C.

Database Object
An object of type database.

Field Types Specifier
A value that specifies the type of each field in a query.

Structured Query Language
(SQL) An ANSI standard language for storing and retrieving data in a rela-

tional database.

SQL Expression
Either a string containing a valid SQL statement, or an object of type
sql-expression.

Note

This has not been implemented yet, so only strings are valid SQL expressions for the moment.

162

	CLSQL Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	History
	Prerequisites
	ASDF
	UFFI
	MD5
	Supported Common Lisp Implementation
	Supported SQL Implementation

	Installation
	Ensure ASDF is loaded
	Build C helper libraries
	Microsoft Windows
	UNIX

	Add UFFI path
	Add MD5 path
	Add CLSQL path and load module
	Run test suite (optional)

	Chapter 2. CommonSQL Tutorial
	Introduction
	Data Modeling with CLSQL
	Class Relations
	Object Creation
	Finding Objects
	Deleting Objects
	Conclusion

	Connection and Initialisation
	DATABASE
	CONNECT-IF-EXISTS
	DEFAULT-DATABASE
	DEFAULT-DATABASE-TYPE
	INITIALIZED-DATABASE-TYPES
	CONNECT
	CONNECTED-DATABASES
	CREATE-DATABASE
	DATABASE-NAME
	DATABASE-TYPE
	DESTROY-DATABASE
	DISCONNECT
	DISCONNECT-POOLED
	FIND-DATABASE
	INITIALIZE-DATABASE-TYPE
	LIST-DATABASES
	PROBE-DATABASE
	RECONNECT
	STATUS
	TRUNCATE-DATABASE
	WITH-DATABASE
	WITH-DEFAULT-DATABASE

	The Symbolic SQL Syntax
	DISABLE-SQL-READER-SYNTAX
	ENABLE-SQL-READER-SYNTAX
	LOCALLY-DISABLE-SQL-READER-SYNTAX
	LOCALLY-ENABLE-SQL-READER-SYNTAX
	RESTORE-SQL-READER-SYNTAX-STATE
	SQL
	SQL-EXPRESSION
	SQL-OPERATION
	SQL-OPERATOR

	Functional Data Definition Language (FDDL)
	CREATE-TABLE
	DESCRIBE-TABLE
	DROP-TABLE
	LIST-TABLES
	TABLE-EXISTS-P
	CREATE-VIEW
	DROP-VIEW
	LIST-VIEWS
	VIEW-EXISTS-P
	CREATE-INDEX
	DROP-INDEX
	INDEX-EXISTS-P
	LIST-INDEXES
	LIST-TABLE-INDEXES
	ATTRIBUTE-TYPE
	LIST-ATTRIBUTE-TYPES
	LIST-ATTRIBUTES
	CREATE-SEQUENCE
	DROP-SEQUENCE
	LIST-SEQUENCES
	SEQUENCE-EXISTS-P
	SEQUENCE-LAST
	SEQUENCE-NEXT
	SET-SEQUENCE-POSITION

	Functional Data Manipulation Language (FDML)
	CACHE-TABLE-QUERIES-DEFAULT
	BIND-PARAMETER
	CACHE-TABLE-QUERIES
	DELETE-RECORDS
	DO-QUERY
	EXECUTE-COMMAND
	FOR-EACH-ROW
	FREE-PREPARED-SQL
	INSERT-RECORDS
	LOOP-FOR-AS-TUPLES
	MAP-QUERY
	PREPARE-SQL
	PRINT-QUERY
	QUERY
	RUN-PREPARED-SQL
	SELECT
	UPDATE-RECORDS

	Transaction Handling
	ADD-TRANSACTION-COMMIT-HOOK
	ADD-TRANSACTION-ROLLBACK-HOOK
	COMMIT
	IN-TRANSACTION-P
	ROLLBACK
	SET-AUTOCOMMIT
	START-TRANSACTION
	WITH-TRANSACTION

	Object Oriented Data Definition Language (OODDL)
	STANDARD-DB-OBJECT
	DEFAULT-VARCHAR-LENGTH
	CREATE-VIEW-FROM-CLASS
	DEF-VIEW-CLASS
	DROP-VIEW-FROM-CLASS
	LIST-CLASSES

	Object Oriented Data Manipulation Language (OODML)
	DB-AUTO-SYNC
	DEFAULT-UPDATE-OBJECTS-MAX-LEN
	DELETE-INSTANCE-RECORDS
	INSTANCE-REFRESHED
	UPDATE-INSTANCE-FROM-RECORDS
	UPDATE-OBJECTS-JOINS
	UPDATE-RECORD-FROM-SLOT
	UPDATE-RECORD-FROM-SLOTS
	UPDATE-RECORDS-FROM-INSTANCE
	UPDATE-SLOT-FROM-RECORD

	SQL I/O Recording
	ADD-SQL-STREAM
	DELETE-SQL-STREAM
	LIST-SQL-STREAMS
	SQL-RECORDING-P
	SQL-STREAM
	START-SQL-RECORDING
	STOP-SQL-RECORDING

	CLSQL Condition System
	BACKEND-WARNING-BEHAVIOR
	SQL-CONDITION
	SQL-ERROR
	SQL-WARNING
	SQL-DATABASE-WARNING
	SQL-USER-ERROR
	SQL-DATABASE-ERROR
	SQL-CONNECTION-ERROR
	SQL-DATABASE-DATA-ERROR
	SQL-TEMPORARY-ERROR
	SQL-TIMEOUT-ERROR
	SQL-FATAL-ERROR

	Large Object Support
	CREATE-LARGE-OBJECT
	DELETE-LARGE-OBJECT
	READ-LARGE-OBJECT
	WRITE-LARGE-OBJECT

	CLSQL-SYS
	DATABASE-INITIALIZE-DATABASE-TYPE

	Index
	Alphabetical Index for package CLSQL

	Appendix A. Database Back-ends
	PostgreSQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	PostgreSQL Socket
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	MySQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	ODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	AODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	SQLite
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Oracle
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Glossary

