CLSQL Users' Guide

by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Develop-
ment, Inc.

CLSQL Users' Guide

by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Development, Inc.

¢ CLSQL is Copyright © 2002-2004 by Kevin M. Rosenberg, Copyright © 1999-2001 by Pierre R. Mai, and Copyright © 1999-2003 onShore
Development, Inc.

« Allegro CL® isaregistered trademark of Franz Inc.

e Common SQL, LispWorks and Xanalys are trademarks or registered trademarks of Xanalys Inc.

¢ Oracle® isaregistered trademark of Oracle Inc.

¢ Microsoft Windows® is aregistered trademark of Microsoft Inc.

¢ Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents

P e B . e e

O 1 1o o [N o 1o o PPN
U010 = PP UPTUPTN 1
LS 0] Y/ 1
L 1= 1= 0 011 == 1
S PSPPSR 1
L1 1
L P 1
Supported Common Lisp IMpPlementationc..oiiuiiiiiii e 2
Supported SQL IMPIemMENLELIONoieiiiiei e e e e e e e eans 2
F0TS = = o) o OSSP 2
ENSUre ASDF IiS1080E0iiiiiiiiie e 2
BUild C helper [IDrariEsiieeie e 2
F X (o B | 0 7 1o PRSPPI 3
AdA MDS PAEN v a e 3
Add CLSQL pathand 10ad MOAUIEoeuiiie e e 3
L0 (== S O TR L= (o] Ko g ! 3

2. COMMONSQL TULOI@l v.iveiitiit it e et e e et e e e e et e et e et e et e e st e e bt e eb e et e et eeneens
Tp 10 oo (8 ool o H PP SPPRT 4
Data Modeling With CLSQLoeuuiiiiii ettt ettt et e e eni e eenens 4
ClBSS REIGLIONS ... ettt et e et e et e et e et e e e e anaas 6
L@ o 1= ox A O == 1 o 8
[T [T @] o= ox 9
(1= 1= (] aTo o= £ 10
(00 3To: 111 T o [PPSR 11

I. Connection and TNItIaliSAHONccuiiiniiiiii e e e e e e e e e e e et e e e et e et e e e eanns
DA T ABASE ..ot e e e e et e e et e e et aaaa 13
FCONNECT AL F-EX ST S ittt e e e et e e e et e e e e as 14
FDERAULT-DATABASE® .. ot e s 15
FDEFAULT-DATABASE-TY PEY ..ottt 17
FINITIALIZED-DAT ABA SE-TY PES ..o 18
0@ |\ PP 19
CONNECTED-DATABASES ...ttt e et e et e et e e eeaans 21
CREATE-DATABASE ..ottt e e et e e et e e et r e e e et e e e eataaeeeennns 22
DATABASE-NAME ...ttt e et e e e e et e e e e et e e e eete e e e eataaeeee 23
DA T AB A SE-TY PE oo e et e e e e e e a e 24
DEST ROY DA T ABA SE .o e e 25
[1S 000 1N | = PN 26
DISCONNECT-POOLEDciiiiiiieiiiiis ettt e e e et e et a e e et e e e ea e e e eata e e aeettaaeaeatnaeaees 27
FIND -DAT ABASE ..ot e et e e et e e e e et e e e e et e e e aata e eeee 28
INITIALIZE-DATABASE-TYPE ..ottt a s 29
LIST-DATABASES ... ittt et e ettt e et e et e e e e et e e e eett e eeeataaeeee 30
PROBE-D AT ABASE ... e e e aaas 31
RECONNECT ...ttt ittt e e e e e et e e e e et e e e e et e e e e et e e e eateneeeeatt s aeeeataaaaees 32
S AN 10 1 TP 33
TRUNCATE-DATABASE ..ottt et e et e e e as 34
WITH-DATABASE ..ottt e e ettt e e et e e e e et e e e et e e e eaanes 35
WITH-DEFAULT-DATABASE ..ottt e e e e 36

[1. The SymbOolic SQL SYNEBXcceuuniiiiiiieeeit ettt e e et e et e e e et e e e eae e e e eabaaeeeees
ENABLE-SQL-READER-SY NTAX iittiiiiiitiietiii ettt e et a e e et e e e e et e e e e et s e e aat e e aaataaaaees 38
DISABLE-SQL-READER-SY NTAX .ttiiiiiiiietiiie ettt e et e e e e et a e e et e e e eet e e aearenaeaees 39
LOCALLY-ENABLE-SQL-READER-SYNTAX ittt et e et e e et eeeeaninaeeees 40
LOCALLY-DISABLE-SQL-READER-SY NTAX .ottt e et eeeana e 42

CLSQL Users Guide

RESTORE-SQL-READER-SYNTAX-STATE ..ottt et 44
S PRSP 45
SOQL-EXPRESSION ..ottt e e e e e e e e e e 47
SQL-OPERATION L.iiiiititiet ittt ettt e e et e e e et e e e et e e e e et e e e e eat e e e e aaan e e e aesan e eeennns 49
SQL-OPERATOR ...uueiiiiiieet ittt e e e et e et e e e et e e e e et e e e e ast e e e e eat e e e eeatn s eeeesanneeeesnns 51
I11. Functional Data Definition Language (FDDL)couiiiniiiii e
L@ N o 17 = PP 54
DESCRIBE-TABLE ...ttt et e e et e e et e e e eeba e eeees 55
DL | I AN = PSP 56
IS I 1Y = I SN 57
I =T S S =SSP 58
L0 NN I Y 59
DROP-VIEW ittt e e et e e e e et e e e e et e e e eate e eeeete s aeeeataaeaee 60
LIST-VIEWS oottt e ettt e e e et e e e e et e e et et e e e eett e e e eabaaeaee 61
VI E W X L ST G P e e e e e e e e e 62
(O TN 1 NI P 63
DROP-INDEX .. uiiiiiiiiet ettt e e e et e e e e et s e e e e et e e e e ee b e e e eate e e e eatt e e e eatnaaaaes 64
INDEX-EXISTS P ..ttt et e e et e e e e et e e e e et e e e e et e e e e eaan s 65
(IS I LN g s U SPPPN 66
LIST-TABLE-INDEXES ... ittt ettt e et e e et e e e eeaa e eeees 67
N I I = 1 I I I 68
LIST-ATTRIBUTE-TYPES ...ttt ettt e e e e e e e e e e et e e e e et e e e aatanaaaees 69
(IS AN B I = U I SN 70
CREATE-SEQUENCEiiiiiiiiiiiii ettt e e e e et e et r e e e e e e e et s e e e et aeeeennns 71
DROP-SEQUENCE ... ittt ettt e et e e e e et e e e ee b eeeeate e e e eetenaeeeatnaeeees 72
LIST-SEQUENGCESottt e et e e e e et e e e e et e e e eabe e e e eeta e e e eebaaeeee 73
SEQUEN CE-EXI ST S ettt e e e e e e e e et e e e aeanaen 74
SEQUEN CE-L A ST oottt ettt e et e e et e e e et e e ettt e e e e eat e e e e et e e e et neeaenans 75
SEQUEN CE-NEX T ..iiiiiiiiet ittt e ettt e et e e et e e et e e e et e e e e et e e e e eatnneeeasan e e easnn e eeesnns 76
SET-SEQUENCE-POSITIONuiiiiitiieetiiii ettt e et e e et e e e s e e e eat e e e et s e e eesanneeeennns 77
IV. Functional Data Manipulation Language (FDML)ciuiiiii e e e e e
*CACHE-TABLE-QUERIES-DEFAULT™ ...ttt 79
L N I N o N 80
CACHE-TABLE-QUERIES ittt ettt e e et e e e e e e e e aeaans 81
DELETE-RECORDScittiiiiiiiiiee et e et e e et e e e et s e e e e et s e e e e et e e e ee e e e eateaeeeetnaaeeeasnaaaees 82
10 0 U PN 83
EXECUTE-COMMAND ..ottt e et e e et e e e e et e e e eate e e e eete e eaeetenaeaees 84
FOR-EACH-ROW ...ttt ettt e et e e e ettt e e e e ata e e e eeae e e e eateaeeee 85
FREE-PREPA RED-SOL ...ttt et e e e e et e e e e et e e et e e et e aneanaanns 86
INSERT-RECORDSciiitiiieiiiiie ettt e e e et e e e et e e e e et e e e e et e e e e et e e e e et e e e e et e e eaerenans 87
LOOP-FOR-AS TUPLES ... ittt e e et e e e et e e e e et e e e eaaenaeaeatanaeaees 89
MAP-QUERY ...eiiiiiiie ittt e e e e ettt e e e ettt e e e e et e e e e et e e e e et e e e et aeaaataaaae 91
PREPARE-SQL .. .ieittiettit ettt ettt e et e e e et e e e et e e e e e et e e e et eaeata e aee 93
PRINT-QUERY .ttt ettt e et e e ettt e e e e et e e e eeba e e e eete e aeeeebaaeeees 9
(018 =3 2RSSR 95
RUN-PREPARED-SQLtuuiiiiitiietiiiis ettt e e ettt e e e eat e e e eata e e aeata e e e eata e eaeateaeaesteaaeaeatnaaaees 97
S I P 98
UPDATE-RECORDSottt e e et e e e et e e e e et e e e e et e e e e et e e e eaanes 100
AV I = 115 o o I =g To (T T
ADD-TRANSACTION-COMMIT-HOOKuuiiiiiiiiiiiiiiis et 102
ADD-TRANSACTION-ROLLBACK-HOOK ...t e e 103
L@ 1Y | L PSP 104
IN-TRANSACTION-P ... e e e e e e e et e e e e at e e e eaen s 105
[2 2 1 P 106
SET-AUTOCOMMIT .ttt e et e e et e e e e et e e e e et e e e eata e eeeatenaeeees 107
START-TRANSACTION .. ittt et e et e e et e e e e et e e e eateaaeeees 108
WITH-TRANSACTION .ot e e e e e e e e e e e aneanen 109
V1. Object Oriented Data Definition Language (OODDL)civiiiieiiiiiieeeeie et

CLSQL Users Guide

STANDARD-DB-OBUIECT ..ottt et e et e et e e e et e e e eata e e e eateaeeee 111
*DEFAULT-VARCHAR-LENGTHY oottt aeeens 112
CREATE-VIEW-FROM-CLASS ...t e e e e e e e e ans 113
[Y T PR 114
DROP-VIEW-FROM-CLASSuiiiiiiiii ettt e et e e e et e e et eeeeaan s 116
[T O S s P 117

V1. Object Oriented Data Manipulation Language (OODML)uiiiiiieiiiei e e e e
FDB-AUTO-SY INCH ittt e et e ettt e e e et e e et e e et aaaaas 119
*DEFAULT-UPDATE-OBJECTSMAX-LENY . e 120
DELETE-INSTANCE-RECORDSuuiiiiitiiieiiiii et e et e e e e et e e e et e e e et e e e e e 121
INSTANCE-REFRESHEDccoviiiiiiiiiiet et a e e et e e et e e e et e e e e aenees 122
UPDATE-INSTANCE-FROM-RECORDScciitiiiiiiiiiieeee et e e e et e e e 123
UPDATE-OBJIECTS-JOINS ...ttt ettt e e et e et e e e et e e et eeeeaan s 124
UPDATE-RECORD-FROM-SLOT ...ttt ettt e et e e e 125
UPDATE-RECORD-FROM-SLOTS ..ottt e e e e e e e e e e e e ae e 126
UPDATE-RECORDS-FROM-INSTANCEiiiiiiiiiiiiii e e e e 127
UPDATE-SLOT-FROM-RECORDuiiiiiiiiiiiiiiiiieee ittt e e e e e et e e e et e e e aai e e e eaen s 128

A TS I @ 1 = oo o (] oo
ADD-SQL-STREAM .e ittt et et 130
DELETE-SQL-STREAM ..ouiiiiiiiiiieiei ettt et e e et e et e e e et e e e eaan s 131
L ST - SOl -STREAMS ..ot e e e e e e e e e e e e e ae e 132
SQL-RECORDING-P ...cottiiiiiii ettt ettt e e e e e e e e e et e e e e et e e e aate e e e aateaaaaees 133
@ I I Y | PSPPI 134
START-SQL-RECORDINGuuiiiiiiiiieiiiiiiaee et e et e e et e e e et a e e eet s e e eata e e e eateaaeeeatnaaeees 135
STOP-SQL-RECORDINGcettiiiiiiitieeeiiie e et e et e et e et e e e e et e e e eete e e e eata e eeeetenaeeees 136

IX. CLSQL CONitiON SYSEEM ...ieuiiiiiiieii e eei e e et e e e e e e e e e e e e e e e et e e et e e et r e e e e ean e eenneeennnes
BACKEND-WARNING-BEHAVIORo 138
SQL-CONDITION ...uiiiiitiet ittt e e e e e et e e e e et e e e e et e e e eata e eeeataaeaeataaeeastnaaaeees 139
RS I (= S UPPRPN 140
SQL-WARNING ..ottt e e e et e e e e et e e e e et e e e eatt e eeeetenaeeeattaaaees 141
SQL-DATABASE-WARNING ... ittt ettt e et a e e e et e e eanenaeeees 142
SQL-USER-ERROR ... ottt et e et e e et et e e e e et e e e eaba e e eeebenaeeees 143
SQL-DATABASE-ERROR ... ottt e e e e e e e e e e e e ans 144
SQL-CONNECTION-ERROR ... ciiittiiiiiiiiie ettt et e e et e e e et s e e et e e e e et e e e aata e e e aannaaaaees 145
SQL-DATABASE-DATA-ERROR ..ottt ettt e e e e e et e eaeabe e eaees 146
SQL-TEMPORARY -ERROR ... ittt e e e e et e e e eatenaeeees 147
SQL-TIMEOUT-ERRORccittiiiiiiiiiietiiie ettt et e et e e e et e e e e et e e e eata e e e eateaeeees 148
SQL-FATAL-ERROR ...ttt e et e et e e et e e e e et e e e eeaenaeeees 149

DG I 0 =Y @ o 1= o BT oo A PP
CREATE-LARGE-OBUIECT ...ottiiiiiiiiiieeii ettt e e e et e e e et a e e et e e e e et s e e e eata e e eaatnaaaaees 151
DELETE-LARGE-OBJIECT .. .iiittiiiiiiiieeeteie e e et s e e et s e e e et s e e e et s e e e et s e e s eataeeeeataaeaesenns 152
READ-LARGE-OBJIECT ...uuiiiiiiiieeiitie e ettt e e et s e e et e e e e et s e e e et e e e e et e e e e et s e eeett e eeeenanas 153
WRITE-LARGE-OBUIECT ...ttt ettt ettt e e et e e e et e e e e aa e e e eran s 154

DO IS @ S 0 S PSP
DATABASE-INITIALIZE-DATABASE-TY PE ... 156

D1 [o PP
Alphabetical Index for package CLSQLcuuiiiiiieii e ea e eees 159

A. Database BaCK-ENOScoouniiiiiiii e
L0 o =5 | 161
[0 = = PP TSUP 161
TR (== o 161
CoNNECEION SPECITICALTIONeeeeii et e e e 161
POSIGrESQL SOCKELueiiiiiieee ittt e e e e e e e e e e e et e e e e et e e e e et e e e eren s 161
(] o = 1= PP PP PPTRN 162
Fa TR T2 1o PRSP 162
CoNNECtioN SPECITICAIONvuiiie e ee e e e e e e eae 162
TS | S PTT 162
[o= 1= PP 162

Vi

CLSQL Users Guide

Fa TR T2 1o PRSP 163
CoNNECtioN SPECITICAION ...uvuiiie e e e e e e e e e e 163
L@]3] 1 PSPPI 163
[T o = =R 163
TN 2= o o R PP PP 163
CoNNECEiON SPECITICAITON ...t 164
AODBC . oiiiei ettt e e e 164
[T o= =P P 164
TN Al ZAION ...t 164
COoNNECEION SPECITICALTONeeeeii e e e 164
S | (= O UPPRPN 164
(] o = 1= PP PTR PRI 165
Fa TR T2 1o PRSP 165
CoNNECtioN SPECITICAIONvuiii e ce e e e e e r e e ae 165
(O] 1= o [T PP EPTNPRUN 165
[T o= =R 165
TN 2= o o R PP PP 165
CoNNECLiON SPECITICAITONuiiie e 165

Vii

Preface

This guide provides reference to the features of CLSQL. The first chapter provides an introduction to CLSQL and in-
stallation instructions. The reference sections document all user accessible symbols with examples of usage. Thereis
aglossary of commonly used terms with their definitions.

viii

Chapter 1. Introduction
Purpose

CLSQL isa Common Lisp interface to SQL databases. A number of Common Lisp implementations and SQL data
bases are supported. The general structure of CLSQL is based on the CommonSQL package by Xanalys.

History

The CLSQL project was started by Kevin M. Rosenberg in 2001 to support SQL access on multiple Common Lisp
implementations using the UFFI library. The initial code was based substantially on Pierre R. Mai's excellent
Mai QL package. In late 2003, the UncommonSQL library was orphaned by its author, onShore Development, Inc.
In April 2004, Marcus Pearce ported the UncommonSQL library to CLSQL. The UncommonSQL library provides a
CommonSQL -compatible API for CLSQL.

The main changes from Mai SQL and UncommonSQL are:

e Port from the CMUCL FFI to UFFI which provide compatibility with the major Common Lisp implementations.
* Optimized loading of integer and floating-point fields.

e Additional database backends: ODBC, AODBC, and SQL.ite.

* A compatibility layer for CMUCL specific code.

e Muchimproved robustness for the MySQL back-end along with version 4 client library support.

* Improved library loading and installation documentation.

e Improved packages and symbol export.

* Pooled connections.

» Integrated transaction support for the classic MaiSQL iteration macros.

Prerequisites
ASDF

CLQL wuses ASDF to compile and load its components. ASDF is included in the CCLAN
[http://cclan.sourceforge.net] collection.

UFFI

CLSQL uses UFFI [http://uffi.n9.com/] as a Foreign Function Interface (FFI) to support multiple ANSI Common
Lisp implementations.

MD5

CLSQL's postgresql-socket interface uses Pierre Mai's md5 [ftp://clsgl.b9.com/] module.

http://cclan.sourceforge.net
http://uffi.b9.com/
ftp://clsql.b9.com/

Introduction

Supported Common Lisp Implementation

The implementations that support CLSQL is governed by the supported implementations of UFFI. The following
implementations are supported:

* AllegroCL v6.2 and 7.0b on Debian Linux x86 & x86_64 & PowerPC, FreeBSD 4.5, and Microsoft Windows
XP.

e Lispworksv4.3 on Debian Linux and Microsoft Windows XP.
* CMUCL 18eon Debian Linux, FreeBSD 4.5, and Solaris 2.8.
* SBCL 0.8.5 on Debian Linux.

* SCL 1.1.1 on Debian Linux.

e OpenMCL 0.14 on Debhian Linux PowerPC.

Supported SQL Implementation

Currently, CLSQL supports the following databases:

MySQL v3.23.51 and v4.0.18.

» PostgreSQL v7.4 with both direct APl and TCP socket connections.
e SQLite.

» Direct ODBC interface.

+ Oracle OCI.

» Allegro's DB interface (AODBC).

Installation
Ensure ASDF is loaded

Simply load thefileasdf . | i sp.

(l oad "asdf.lisp")

Build C helper libraries
CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL implement-

ations do not support 64-bit integers. Thus, C helper libraries are required to break these 64-hit integers into two
compatible 32-hit integers. The helper libraries reside in the directories uf f i and db- nysql .

Microsoft Windows

UNIX

Introduction

Files named Makefi | e. nsvc are supplied for building the libraries under Microsoft Windows. Since Microsoft
Windows does not come with that compiler, compiled DLL and LIB library files are supplied with CLSQL.

Files named Makef i | e are supplied for building the libraries under UNIX. Loading the . asd files automatically in-
vokes make when necessary. So, manual building of the helper libraries is not necessary on most UNIX systems.
However, the location of the MySQL library files and include files may need to adjusted in db- nysql / Makefil e
on non-Debian systems.

Add UFFI path

Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to ASDF's
asdf: *central -registry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the UFFI filesresideinthe/ usr/ share/ li sp/ uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)

Add MD5 path

If you plan to use the clsgl-postgresgl-socket interface, you must load the md5 module. Unzip or untar the cl-md5
distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf : *central -registry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the cl-md5 filesresideinthe/ usr/ share/ 1 i sp/ cl - nd5/ directory.

(push #P"/usr/share/lisp/cl-nmd5/" asdf:*central -registry*)

Add CLSQL path and load module

Unzip or untar the CLSQL distribution which creates a directory for the CLQL files. Add that directory to ASDF's
asdf: *central -regi stry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the CLSQL filesresideinthe/ usr/share/ | i sp/ cl sql / directory. You need to
load the clsgl system.

(push #P"/usr/share/lisp/clsqgl/" asdf:*central-registry*)
(asdf: operate 'asdf:load-op 'clsql) ; main CLSQL package

Run test suite (optional)

The test suite can be executed using the ASDF test-op operator. If CLSQL has not been loaded with asdf:load-op, the
asdf:test-op operator will automatically load CLSQL. A configuration file named . cl sql -t est. confi g must be
created in your home directory. There are instructures on the format of that file in the t est s/ README. After creat-
ing . cl sql -test. confi g, you can run the test suite with ASDF:

(asdf: operate 'asdf:test-op 'clsql)

Chapter 2. CommonSQL Tutorial

Based on the UncommonSQL Tutorial

Introduction

The goal of this tutorial is to guide a new developer thru the process of creating a set of CLSQL classes providing a
Object-Oriented interface to persistent data stored in an SQL database. We will assume that the reader is familiar
with how SQL works, how relations (tables) should be structured, and has created at least one SQL application pre-
viously. We will also assume aminor level of experience with Common Lisp.

CLSQL provides two different interfaces to SQL databases, a Functional interface, and an Object-Oriented interface.
The Functional interface consists of a special syntax for embedded SQL expressionsin Lisp, and provides lisp func-
tions for SQL operations like SELECT and UPDATE. The object-oriented interface provides a way for mapping
Common Lisp Objects System (CLOS) objects into databases and includes functions for inserting new objects,
guerying objects, and removing objects. Most applications will use a combination of the two.

CLSQL is based on the CommonSQL package from Xanalys, so the documentation that Xanays makes available

online is useful for CLSQL aswell. It is suggested that developers new to CLSQL read their documentation as well,
as any differences between CommonSQL and CLSQL are minor. Xanalys makes the following documents available;

e Xanalys Lispworks User Guide - The CommonSQL Package
[http:/iwww.lispworks.com/reference/lw43/L WUG/html/Iwuser-167.htm]

o Xanalys Lispworks Reference Manual - The L Package
[http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm)]

e CommonSQL Tutorial by Nick Levine [http://www.ravenbrook.com/doc/2002/09/13/common-sgl/]

Data Modeling with CLSQL

Before we can create, query and manipulate CLSQL objects, we need to define our data model as noted by Philip
Greenspun 1

When data modeling, you are telling the relational database management system (RDBMS) the following:

» What elements of the data you will store.

» How large each element can be.

* What kind of information each element can contain.

* What elements may be left blank.

» Which elements are constrained to afixed range.

* Whether and how various tables are to be linked.

With SQL database one would do this by defining a set of relations, or tables, followed by a set of queries for join-
ing the tables together in order to construct complex records. However, with CLSQL we do this by defining a set of

CLOS classes, specifying how they will be turned into tables, and how they can be joined to one another via rela-
1 Philip Greenspun's " SQL For Web Nerds' - Data Modeling [http://www.arsdigita.com/books/sgl/data-modeling.html]

4

http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm
http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm
http://www.ravenbrook.com/doc/2002/09/13/common-sql/
http://www.arsdigita.com/books/sql/data-modeling.html

CommonSQL Tutorial

tions between their attributes. The SQL tables, as well as the queries for joining them together are created for us
automatically, saving us from dealing with some of the tedium of SQL.

Let us start with asimple example of two SQL tables, and the relations between them.

CREATE TABLE EMPLOYEE (enplid NOT NULL nurnber (38),
first_name NOT NULL varchar2(30),
I ast_name NOT NULL varchar2(30),

emai | var char 2(100),
conpanyid NOT NULL nunber (38),
manageri d nunber (38))

CREATE TABLE COWPANY (companyid NOT NULL nunber (38),
nanme NOT NULL varchar 2(100),
presidentid NOT NULL number (38))

Thisis of course the canonical SQL tutorial example, "The Org Chart".

In CLSQL, we would have two "view classes' (a fancy word for a class mapped into a database). They would be
defined asfollows:

(cl sql : def -vi ew cl ass enpl oyee ()
((enplid
:db-ki nd : key
:db-constraints :not-nul
:type integer
initarg :enplid)
(first-name
;accessor first-nane
:type (string 30)
initarg :first-name)
(1 ast-name
:accessor | ast-name
:type (string 30)
intarg :1ast-nane)
(enai |
:accessor enpl oyee-enmi |
:type (string 100)
cnull's-ok t
initarg :emil)
(conpanyi d
:type 1 nteger
sinitarg :conpanyi d)
(manageri d
:type integer
cnull's-ok t
rinitarg :managerid))
(: base-tabl e enpl oyee))

(cl sql : def -vi ew cl ass conpany ()
((companyi d
:db-kind : key
:db-constraints :not-nul
:type integer
sinitarg :conpanyid)
(name
:type (string 100)
initarg :nane)
(presidentid
:type integer
initarg :presidentid))
(: base-tabl e conpany))

The DEF- VI EW CLASS macro isjust like the norma CLOS DEFCLASS macro, except that it handles several slot op-
tions that DEFCLASS doesn't. These slot options have to do with the mapping of the slot into the database. We only
use afew of the dot options in the above example, but there are several others.

5

CommonSQL Tutorial

e :column - The name of the SQL column this dlot is stored in. Defaults to the slot name. If the slot name is not a
valid SQL identifier, it is escaped, so foo-bar becomes foo_bar.

e :db-kind - The kind of database mapping which is performed for this slot. :base indicates the slot maps to an or-
dinary column of the database view. :key indicates that this slot corresponds to part of the unique keys for this
view, ;join indicates ajoin slot representing a relation to another view and :virtual indicates that this slot is an or-
dinary CLOS dot. Defaults to :base.

e :db-reader - If a string, then when reading values from the database, the string will be used for a format string,
with the only value being the value from the database. The resulting string will be used as the dot value. If a
function then it will take one argument, the value from the database, and return the value that should be put into
thedot.

e :db-writer - If a string, then when reading values from the slot for the database, the string will be used for a
format string, with the only value being the value of the slot. The resulting string will be used as the column
value in the database. If a function then it will take one argument, the value of the slot, and return the value that
should be put into the database.

e :column- - A string which will be used as the type specifier for this slots column definition in the database.

o :void-value- TheLisp valueto return if thefield iSNULL. The default is NIL.

:db-info - A join specification.

In our example each table as a primary key attribute, which is required to be unique. We indicate that aslot is part of
the primary key (CLSQL supports multi-field primary keys) by specifying the :db-kind key slot option.

The SQL type of adot when it is mapped into the database is determined by the :type slot option. The argument for
the :type option is a Common Lisp datatype. The CLSQL framework will determine the appropriate mapping de-
pending on the database system the table is being created in. If we really wanted to determine what SQL type was
used for a dot, we could specify a :db-type option like "NUMBER(38)" and we would be guaranteed that the slot
would be stored in the database as a NUMBER(38). Thisis not recomended because it could makes your view class
unportable across database systems.

DEF- VI EW CLASS also supports some class options, like :base-table. The :base-table option specifies what the table
name for the view class will be when it is mapped into the database.

Class Relations

In an SQL only application, the EMPLOY EE and COMPANY tables can be queried to determine things like, "Who
is Vladamir's manager?’, "What company does Josef work for?', and "What employees work for Widgets Inc.".
Thisis done by joining tables with an SQL query.

Who works for Widgets Inc.?

SELECT first_nanme, |ast_name FROM enpl oyee, conpany
WHERE enpl oyee. conpanyi d = conpany. conpanyi d
AND conpany. conpany_name = "Wdgets Inc."

Who is Vladamir's manager?

SELECT nmanageri d FROM enpl oyee
WHERE enpl oyee. first_name

= "Vl adam r"
AND enpl oyee. | ast _name =

"Lenin"

CommonSQL Tutorial

What company does Josef work for?

SELECT conpany_nanme FROM conpany, enpl oyee
WHERE enpl oyee. first_nane = "Josef"
AND enpl oyee. |l ast-nanme = "Stalin"
AND enpl oyee. conpanyi d = conpany. conpanyi d

With CLSQL however we do not need to write out such queries because our view classes can maintain the relations
between employees and companies, and employees to their managers for us. We can then access these relations like
we would any other attribute of an employee or company object. In order to do this we define some join slots for our
view classes.

What company does an employee work for? If we add the following slot definition to the employee class we can
then ask for it's COMPANY dot and get the appropriate result.

;7 In the enpl oyee slot |ist
(conpany
. accessor enpl oyee- conpany
:db-kind :join
:db-info (j oi n-cl ass conpany
: hone- key conpanyi d
:forei gn-key conpanyid
:set nil))

Who are the employees of a given company? And who is the president of it? We add the following slot definition to
the company view class and we can then ask for it's EMPLOY EES dlot and get the right resullt.

;7 In the conpany slot Iist
(enpl oyees
. reader conpany-enployees
cdb-kind :join
:db-info (join-class enpl oyee
: hone- key conpanyi d
:forei gn-key conpanyid
iset t))

(president

:reader president

:db-kind :join

:db-info (:join-class enployee
:hone-key presidentid
:foreign-key enplid
:set nil))

And lastly, to define the relation between an employee and their manager:

;7 In the enployee slot |ist
(manager

:accessor enpl oyee- nanager

»db-kind :join

:db-info (join-cl ass enpl oyee
: hone- key managerid
:foreign-key enplid
:set nil))

CLSQL join dlots can represent one-to-one, one-to-many, and many-to-many relations. Above we only have one-
to-one and one-to-many relations, later we will explain how to model many-to-many relations. First, let's go over the
dot definitions and the avail able options.

CommonSQL Tutorial

In order for adot to be ajoin, we must specify that it's :db-kind :join, as opposed to :base or :key. Once we do that,
we still need to tell CLSQL how to create the join statements for the relation. Thisiswhat the :db-info option does. It
isalist of keywords and values. The available keywords are:

* :join-class - The view class to which we want to join. It can be another view class, or the same view class as our
object.

» :home-key - The dot(s) in the immediate object whose value will be compared to the foreign-key dot(s) in the
join-classin order to join the two tables. It can be a single slot-name, or it can be alist of ot names.

» foreign-key - The dot(s) in the join-class which will be compared to the value(s) of the home-key.

e :set - A boolean which if false, indicates that this is a one-to-one relation, only one object will be returned. If
true, than thisis a one-to-many relation, alist of objects will be returned when we ask for this slots value.

There are other :join-info options available in CLSQL, but we will save those till we get to the many-to-many rela
tion examples.

Object Creation

Now that we have our model laid out, we should create some object. Let us assume that we have a database connect
set up already. We first need to create our tables in the database:

Note: thefileexanpl es/ cl sql -tutorial . |i sp contains view class definitions which you can load into your list
at this point in order to play along at home.

(clsgl:create-viewfromclass 'enployee)
(clsqgl:create-viewfromclass 'conpany)

Then we will create our objects. We create them just like you would any other CLOS object:

(defvar conmpanyl (maeke-instance 'conpany
:conpanyid 1
ipresidentid 1
:nane "Wdgets Inc."))

(defvar enpl oyeel (make-instance 'enpl oyee
cemplid 1
:first-name "M adamir”
:last-name "Lenin"
cemail "lenin@oviet.org"
:conpanyid 1))

(defvar enpl oyee2 (make-instance 'enpl oyee
cemplid 2
:first-name "Josef”
:last-name "Stalin'
emai|l "stalin@oviet.org"
:companyid 1
:managerid 1))

In order to insert an objects into the database we use the UPDATE- RECORDS- FROM: | NSTANCE function as follows:

(cl sql :update-records-frominstance enpl oyeel)
(cl sqgl : updat e-records-frominstance enpl oyee2)
(cl sqgl : updat e-records-frominstance conpanyl)

CommonSQL Tutorial

After you make any changes to an object, you have to specifically tell CLSQL to update the SQL database. The UP-
DATE- RECORDS- FROM: | NSTANCE method will write all of the changes you have made to the object into the data-
base.

Since CLSQL objects are just normal CLOS objects, we can manipulate their slots just like any other object. For in-
stance, let's say that Lenin changes his email because he was getting too much spam from the German Socialists.

;; Print Lenin's current enmil address, change it and save it to the
;; database. Get a new object representing Lenin fromthe database
;; and print the enuil

;7 This lets us use the functional CLSQL interface with [] syntax
(clsqgl :1ocally-enabl e-sql -reader-synt ax)

(format t "The emmil address of ~A ~Ais ~A"
(first-nane enpl oyeel)
(1 ast-name enpl oyeel)
(enpl oyee-emai | enpl oyeel))

(setf (enployee-enmail enployeel) "l enin-nospam@oviets.org")

i Updat e the database
(cl sqgl : updat e-records-frominstance enpl oyeel)

(let ((newlenin (car (clsqgl:select 'enployee
where [= [slot-value 'enployee "enplid] 1]))))
(format t "His new email is ~A"
(enpl oyee-emai|l newlenin)))

Everything except for the last LET expression is already familiar to us by now. To understand the call to
CLSQL: SELECT we need to discuss the Functional SQL interface and it's integration with the Object Oriented inter-
face of CLSQL.

Finding Objects

Now that we have our objects in the database, how do we get them out when we need to work with them? CLSQL
provides a functional interface to SQL, which consists of a specia Lisp reader macro and some functions. The spe-
cial syntax allows usto embed SQL in lisp expressions, and lisp expressionsin SQL, with ease.

Once we have turned on the syntax with the expression:
(clsqgl :1ocally-enabl e-sql -reader-synt ax)

We can start entering fragments of SQL into our lisp reader. We will get back objects which represent the lisp ex-
pressions. These objects will later be compiled into SQL expressions that are optimized for the database backed we
are connected to. This means that we have a database independent SQL syntax. Here are some examples:

;; an attribute or table nane
[foo] => #<CLSQL- SYS: : SQL- | DENT- ATTRI BUTE FOO>

;; a attribute identifier with table qualifier
[foo bar] => #<CLSQL- SYS: : SQL- | DENT- ATTRI BUTE FOO BAR>

;; a attribute identifier with table qualifier
[= "Lenin" [first_nane]] =>
#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (' Leni n' = FI RST_NAME) >

[<[enplid] 3] =>
#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (EMPLID < 3)>

CommonSQL Tutorial

[and [< [enplid] 2] [= [first_nane] "Lenin"]] =>
#<CLSQL- SYS: : SQL- RELATI ONAL- EXP ((EMPLID < 2) AND
(FIRST_NAME = 'Lenin'))>

;; If we want to reference a slot in an object we can us the
;; SLOT-VALUE sqgl extension
[= [slot-value 'enpl oyee "enplid] 1] =>

#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (EMPLOYEE. EMPLI D

1) >

[= [slot-val ue 'enpl oyee 'enplid]
[slot-value 'conpany 'presidentid]] =>
#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (EMPLOYEE. EMPLI D = COVPANY. PRESI DENTI D) >

The SLOT- VALUE operator isimportant because it let's us query objects in away that is robust to any changesin the
object->table mapping, like column name changes, or table name changes. So when you are querying objects, be
sure to use the SLOT- VALUE SQL extension.

Since we can now formulate SQL relational expression which can be used as quaifiers, like we put after the
WHERE keyword in SQL statements, we can start querying our objects. CLSQL provides a function SELECT which
can return use complete objects from the database which conform to a qualifier, can be sorted, and various other
SQL operations.

The first argument to SELECT is aclass name. it also has a set of keyword arguments which are covered in the doc-
umentation. For now we will concern ourselves only with the :where keyword. Select returns a list of objects, or nil
if it can't find any. It's important to remember that it always returns a list, so even if you are expecting only one res-
ult, you should remember to extract it from thelist you get from SELECT.

;; all enpl oyees
(clsqgl :sel ect 'enployee)
;; all conpanies
(clsqgl : sel ect ' conpany)

;; enployees naned Lenin
(clsqgl :select 'enployee :where [= [slot-value 'enployee 'l ast-nane]
"Lenin"])

(clsqgl :select 'conpany :where [= [slot-val ue 'conpany ' nane]
"Wdgets Inc."])

i, Enpl oyees of Wdget's Inc.
(clsql :select 'enpl oyee
:where [and [= [slot-value 'enpl oyee ' conpanyi d]
[sl ot-val ue 'conmpany 'conpanyi d]]
[= [slot-val ue ' conpany ' nane]
"Wdgets Inc."]])

Sane thing, except that we are using the enpl oyee
relation in the conpany view class to do the join for us,
saving us the work of witing out the SQ

k&onpany-enployees conpanyl)

;; President of Wdgets Inc.
(president conpanyl)

;; Manager of Josef Stalin
(enpl oyee- nanager enpl oyee?2)

Deleting Objects

Now that we know how to create objects in our database, manipulate them and query them (including using our pre-
defined relations to save us the trouble writing alot of SQL) we should learn how to clean up after ourself. It's quite
simple really. The function DELETE- | NSTANCE- RECORDS will remove an object from the database. However, when

10

CommonSQL Tutorial

we remove an object we are responsible for making sure that the database is left in a correct state.

For example, if we remove a company record, we need to either remove al of it's employees or we need to move
them to another company. Likewise if we remove an employee, we should make sure to update any other employees
who had them as a manager.

Conclusion

There are many nooks and crannies to CLSQL, some of which are covered in the Xanalys documents we refered to
earlier, some are not. The best documentation at thistimeis still the source code for CLSQL itself and the inline doc-
umentation for its various functions.

11

Connection and Initialisation

12

Name

DATABASE -- The super-type of all CLSQL databases
DATABASE

Class Precedence List

database, standard-object, t

Description

This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses of this class
to implement their databases. No instances of this class are ever created by CLSQL.

Class detalils

(defclass DATABASE ()(...))

Slots

13

Name

CONNECT-IF-EXISTS -- Default value for thei f - exi st s parameter of connect .
CONNECT-IF-EXISTS

Value Type

A valid argument to thei f - exi st s parameter of connect , i.e. one of :new, :warn-new, :error, :warn-old, :old.

Initial Value

.error

Description

The value of this variable is used in callsto connect as the default value of thei f - exi st s parameter. See con-
nect for the semantics of the valid values for this variable.

Examples

None.

Affected By

None.

See Also

connect

Notes

None.

14

Name

DEFAULT-DATABASE -- The default database object to use

DEFAULT-DATABASE

Value Type

Any object of type database, or nil to indicate no default database.

Initial Value
nil
Description

Any function or macro in CLSQL that operates on a database uses the value of this variable as the default value for
it'sdat abase parameter.

The value of this parameter is changed by calls to connect , which sets *default-database* to the database object it
returns. It is also changed by calls to di sconnect , when the database object being disconnected is the same as the
value of *default-database*. In this case di sconnect sets *default-database* to the first database that remains in
thelist of active databases as returned by connect ed- dat abases, or nil if no further active databases exist.

The user may change * default-database* at any timeto avalid value of his choice.

Caution

If the value of *default-database* is nil, then al callsto CLSQL functions on databases must provide a suit-
able dat abase parameter, or an error will be signalled.

Examples

(connect ed- dat abases)

=> N L

(connect '("dent" "newesint "dent" "dent") :database-type :nysql)
=> #<CLSQL- MYSQL: MYSQL- DATABASE {48385F55} >

(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)
=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {483868FD} >
(connect ' ("dent" "newesint "dent" "dent") :database-type :nysqgl :if-exists :new)

=> #<CLSQL- MYSQL: MYSQL- DATABASE {48387265} >
def aul t - dat abase

=> #<CLSQL- MYSQL: MYSQL- DATABASE {48387265} >
(di sconnect)

== T

def aul t - dat abase

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {483868FD} >
(di sconnect)

== T

def aul t - dat abase

=> #<CLSQ.- MySQ.: MYSQL- DATABASE {48385F55} >
(di sconnect)

= T

def aul t - dat abase

=> N L

(connect ed- dat abases)

=> N L

15

DEFAULT-DATABASE

Affected By

connect
di sconnect

See Also

connect ed- dat abases

Notes

Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-level loop,
and because of this, connect and di sconnect provide some fairly complex behaviour to keep
default-database set to useful values. Programmatic use of CLSQL should never depend on the value of
default-database and should provide correct database objects via the dat abase parameter to functions
called.

16

Name

DEFAULT-DATABASE-TYPE -- The default database type to use

DEFAULT-DATABASE-TYPE

Value Type

Any keyword representing a valid database back-end of CLSQL, or nil.

Initial Value
nil
Description

The value of this variable isused in callstoi ni ti al i ze- dat abase-type and connect as the default value of
the dat abase- t ype parameter.

Caution

If the value of thisvariableisnil, then all callstoiniti al i ze- dat abase-t ype or connect will haveto
specify the dat abase- t ype to use, or ageneral-purpose error will be signalled.

Examples

(setf *default-database-type* :nysql)
=> :nysql

(initialize-database-type)

=> t

Affected By

None.

See Also

None.

Notes

None.

17

Name

INITIALIZED-DATABASE-TYPES -- List of al initialized database types

INITIALIZED-DATABASE-TY PES

Value Type

A list of al initialized database types, each of which represented by it's corresponding keyword.

Initial Value
nil
Description

This variable is updated whenever i ni ti al i ze- dat abase- t ype iscalled for a database type which hasn't already
been initialized before, as determined by this variable. In that case the keyword representing the database type is
pushed onto the list stored in *INITIALIZED-DATABASE-TY PES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :nysql)
=> :nysql

(initialize-database-type)

=> t

initialized-database-types

=> (:MYSQ)

Affected By

initialize-database-type

See Also

None.

Notes

Direct accessto thisvariable is primarily provided because of compatibility with Harlequin's Common SQL.

18

Name
CONNECT --
CONNECT

Syntax

(CONNECT CONNECTI ON- SPEC &KEY (| F- EXI STS * CONNECT- | F- EXI STS*) (MAKE- DEFAULT T) (POOL NIL) (DATABASE- TYPI

Arguments and Values

Description

Connects to a database of the supplied DATABASE-TY PE which defaults to *DEFAULT-DATABASE-TY PE*,
using the type-specific connection specification CONNECTION-SPEC. The value of IF-EXISTS, which defaults to
CONNECT-IF-EXISTS, determines what happens if a connection to the database specified by CONNECTION-
SPEC is already established. A value of :new means create a new connection. A value of :warn-new means warn the
user and create a new connect. A value of :warn-old means warn the user and use the old connection. A vaue of
.error means fail, notifying the user. A value of :old means return the old connection. MAKE-DEFAULT ist by de-
fault which means that *DEFAULT-DATABASE* is set to the new connection, otherwise
DEFAULT-DATABASE is not changed. If POOL ist the connection will be taken from the genera pool, if
POOL isa CONN-POOL object the connection will be taken from this pool.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

19

CONNECT

20

Name
CONNECTED-DATABASES --

CONNECTED-DATABASES
Syntax

(CONNECTED- DATABASES) [function] =>

Arguments and Values
Description

Returnsthe list of active database objects.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

21

Name
CREATE-DATABASE --

CREATE-DATABASE
Syntax

(CREATE- DATABASE CONNECTI ON- SPEC &KEY DATABASE- TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

22

Name

DATABASE-NAME --
DATABASE-NAME

Syntax

(DATABASE- NAVE (OBJ DATABASE)) [reader] =>

Arguments and Values
Description

"Returns the name of DATABASE."

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

23

Name

DATABASE-TY PE --
DATABASE-TYPE

Syntax

(DATABASE- TYPE (OBJ DATABASE)) [reader] =>

Arguments and Values
Description

"Returns the type of DATABASE."

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

24

Name

DESTROY-DATABASE --
DESTROY-DATABASE

Syntax

(DESTROY- DATABASE CONNECTI ON- SPEC &KEY DATABASE- TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

25

Name
DISCONNECT --

DISCONNECT

Syntax

(DI SCONNECT &KEY (DATABASE * DEFAULT- DATABASE*) (ERROR NIL)) [function] =>

Arguments and Values

Description

Closes the connection to DATABASE and resets *DEFAULT-DATABASE* if that database was disconnected. If
DATABASE is a database instance, this object is closed. If DATABASE is a string, then a connected database
whose name matches DATABASE is sought in the list of connected databases. If ho matching database is found and
ERROR and DATABASE are both non-nil an error is signaled, otherwise nil is returned. If the database is from a
pool it will be released to this pool.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

26

Name

DISCONNECT-POOLED --

DISCONNECT-POOLED

Syntax

(DI SCONNECT- POCLED &OPTI ONAL CLEAR) [function] =>

Arguments and Values
Description

Disconnects all connectionsin the poal.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

27

Name
FIND-DATABASE --

FIND-DATABASE
Syntax

(FI ND- DATABASE DATABASE &KEY (ERRORP T) (DB-TYPE NIL)) [function] =>

Arguments and Values

Description

Returns the connected databases of type DB-TY PE whose names match the string DATABASE. If DATABASE isa
database object, it is returned. If DB-TY PE is nil all databases matching the string DATABASE are considered. If
no matching databases are found and ERRORP is nil then nil is returned. If ERRORP is nil and one or more match-
ing databases are found, then the most recently connected database is returned as a first value and the number of
matching databases is returned as a second value. If no, or more than one, matching databases are found and ER-
RORP istrue, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

28

Name

INITIALIZE-DATABASE-TYPE --
INITIALIZE-DATABASE-TYPE

Syntax

(I NI TI ALI ZE- DATABASE- TYPE &KEY (DATABASE- TYPE * DEFAULT- DATABASE- TYPE*)) [function] =>

Arguments and Values

Description

Initializes the supplied DATABASE-TYPE, if it is not adready initidlized, as indicated by
INITIALIZED-DATABASE-TYPES and returns DATABASE-TYPE. *DEFAULT-DATABASE-TYPE* is set
to DATABASE-TYPE and, if DATABASE-TYPE has not been initialised, it is added to
INITIALIZED-DATABASE-TYPES.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

29

Name

LIST-DATABASES --
LIST-DATABASES

Syntax

(LI ST- DATABASES CONNECTI ON- SPEC &KEY DATABASE- TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

30

Name

PROBE-DATABASE --
PROBE-DATABASE

Syntax

(PROBE- DATABASE CONNECTI ON- SPEC &KEY DATABASE- TYPE) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

31

Name
RECONNECT --

RECONNECT

Syntax

(RECONNECT &KEY (DATABASE * DEFAULT- DATABASE*) (ERROR NIL) (FORCE T)) [function] =>

Arguments and Values

Description

Reconnects DATABASE which defaultsto * DEFAULT-DATABASE* to the underlying database management sys-
tem. On success, t is returned and the variable *DEFAULT-DATABASE* is set to the newly reconnected database.
If DATABASE is a database instance, this object is closed. If DATABASE is a string, then a connected database
whose name matches DATABASE is sought in the list of connected databases. If ho matching database is found and
ERROR and DATABASE are both non-nil an error is signaled, otherwise nil is returned. When the current database
connection cannot be closed, if FORCE is non-nil, as it is by default, the connection is closed and errors are sup-
pressed. If forceis nil and the database connection cannot be closed, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

32

Name
STATUS --
STATUS

Syntax

(STATUS &OPTI ONAL FULL) [function] =>

Arguments and Values

Description

Prints information about the currently connected databases to * STANDARD-OUTPUT*. The argument FULL is nil
by default and a value of t means that more detailed information about each database is printed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

33

Name
TRUNCATE-DATABASE --
TRUNCATE-DATABASE

Syntax

(TRUNCATE- DATABASE &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Examples

Side Effects
Affected by

Exceptional Situations

See Also

Notes

Name
WITH-DATABASE --

WITH-DATABASE

Syntax

(W TH DATABASE DB- VAR CONNECTI ON- SPEC &REST CONNECT- ARGS &BODY BCDY) [macro] =>

Arguments and Values

Description

Evaluate the body in an environment, where “db-var' is bound to the database connection given by “connection-spec'
and “connect-args. The connection is automatically closed or released to the pool on exit from the body.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

35

Name

WITH-DEFAULT-DATABASE --

WITH-DEFAULT-DATABASE

Syntax

(W TH DEFAULT- DATABASE DATABASE &REST BCDY) [rmmcro] =>

Arguments and Values
Description

Perform BODY with DATABASE bound as * defaul t-database* .

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

36

The Symbolic SQL Syntax

CLSQL provides a symbolic syntax allowing the construction of SQL expressions as lists delimited by square brack-
ets. The syntax is turned off by default. This section describes utilities for enabling and disabling the square bracket
reader syntax and for constructing symbolic SQL expressions.

37

Name

ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.
Macro ENABLE-SQL-READER-SYNTAX

Syntax

enabl e-sql - reader-syntax =>

Arguments and Values

None.

Description

Turns on the SQL reader syntax setting the syntax state such that if the syntax is subsequently disabled, r est or e-
sql - r eader - synt ax- st at e will enableit again.

Examples

None.

Side Effects

Setsthe internal syntax state to enabled.

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

di sabl e-sql -reader - synt ax

| ocal | y- enabl e-sql - r eader - synt ax
| ocal | y-di sabl e-sql -reader - synt ax
restore-sql -reader-syntax-state

Notes

The symbolic SQL syntax is disabled by default.

38

Name

DISABLE-SQL-READER-SYNTAX -- Globally disable square bracket reader syntax.
Macro DISABLE-SQL-READER-SYNTAX

Syntax

di sabl e-sql -reader-syntax =>

Arguments and Values

None.

Description

Turns off the SQL reader syntax setting the syntax state such that if the syntax is subsequently enabled, r est or e-
sql - r eader - synt ax- st at e will disableit again.

Examples

None.

Side Effects

Setsthe internal syntax state to disabled.
Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sql - r eader - synt ax

| ocal | y- enabl e-sql - r eader - synt ax
| ocal | y-di sabl e-sql -reader - synt ax
restore-sql -reader-syntax-state

Notes

The symbolic SQL syntax is disabled by default.

39

Name
LOCALLY-ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.
Macro LOCALLY-ENABLE-SQL-READER-SYNTAX

Syntax

| ocal | y- enabl e-sql -reader - syntax =>

Arguments and Values

None.

Description

Tuns on the SQL reader syntax without changing the syntax state such that restore-
sql - r eader - synt ax- st at e will re-establish the current syntax state.

Examples

Intended to be used in afile for code which uses the square bracket syntax without changing the global state.

#. (1 ocal | y- enabl e- sqgl - r eader - synt ax)
CODE USI NG SYMBOLI C SQL SYNTAX . ..

#. (restore-sql -reader-synt ax-state)

Side Effects

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sql - reader - synt ax

di sabl e-sql - reader - synt ax

| ocal | y-di sabl e-sql -reader - synt ax
restore-sql -reader-syntax-state

40

LOCALLY-ENABLE-SQL-READER-SYNTAX

Notes

The symbolic SQL syntax is disabled by default.

41

Name
LOCALLY-DISABLE-SQL-READER-SYNTAX -- Locally disable square bracket reader syntax.
Macro LOCALLY-DISABLE-SQL-READER-SYNTAX

Syntax

| ocal | y-di sabl e-sqgl -reader-syntax =>

Arguments and Values

None.

Description

Turns off the SQL reader syntax without changing the syntax state such that restore-
sql - r eader - synt ax- st at e will re-establish the current syntax state.

Examples

Intended to be used in afile for code in which the square bracket syntax should be disabled without changing the
global state.

#. (1 ocal | y-di sabl e-sql - r eader - synt ax)
CODE NOT USI NG SYMBOLI C SQL SYNTAX ...

#. (restore-sql -reader-synt ax-state)

Side Effects

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sqgl - r eader - synt ax

di sabl e-sql -reader - synt ax

| ocal | y- enabl e-sql - reader - synt ax
restore-sql -reader-syntax-state

42

LOCALLY-DISABLE-SQL-READER-SYNTAX

Notes

The symbolic SQL syntax is disabled by default.

43

Name

RESTORE-SQL-READER-SYNTAX-STATE -- Restore square bracket reader syntax to its previous state.

Macro RESTORE-SQL-READER-SYNTAX-STATE

Syntax

restore-sql -reader-syntax-state =>

Arguments and Values

None.

Description

Enables the SQL reader syntax if enabl e-sql - r eader - synt ax has been called more recently than di sabl e-
sql - r eader - synt ax and otherwise disables the SQL reader syntax. By default, the SQL reader syntax is disabled.

Examples

Seel ocal | y- enabl e- sql - reader - synt ax and | ocal | y- di sabl e- sql - r eader - synt ax.

Side Effects

Reverts the internal syntax state.

Modifies the default readtable.

Affected by

The current internal syntax state.

Exceptional Situations

None.

See Also

enabl e- sql - r eader - synt ax

di sabl e-sql -reader - synt ax

| ocal | y- enabl e-sql - reader - synt ax
| ocal | y-di sabl e- sql -reader - synt ax

Notes

The symbolic SQL syntax is disabled by default.

Name

SQL -- Construct an SQL string from supplied expressions.

Function SQL

Syntax

sql &rest args => sql - expression

Arguments and Values

args A set of expressions.
sgl-expression A string representing an SQL expression.
Description

Returns an SQL string generated from the expressions ar gs. The expressions are transated into SQL strings and
then concatenated with a single space delimiting each expression.

Examples

(sql nil)
=> "NULL"

(sql 'foo)
=> "FOO'

(sql "bar")
=> "' bar' "

(sql 10)

> " 10"

(sql "(nil foo "bar" 10))
=> "(NULL, FOO, ' bar', 10) "

(sgl #(nil foo "bar" 10))
=> "NULL, FQQ, ' bar', 10"

(sql [select [foo] [bar] :from[baz]] 'having [= [foo id] [bar id]]
"and [foo val] '< 5)
=> "SELECT FOO, BAR FROM BAZ HAVI NG (FOO. I D = BAR I D) AND FOO. VAL < 5"

Side Effects

None.

Affected by

45

None.

Exceptional Situations

An error of type sql -user-error issignaled if any element in args is not of the supported types (a symbol,
string, number or symbolic SQL expression) or alist or vector containing only these supported types.

See Also

sql - expressi on
sql - operation
sql - oper at or

Notes

None.

46

Name

SQL-EXPRESSION -- Constructs an SQL expression from supplied keyword arguments.

Function SQL-EXPRESSION

Syntax

sql -expression &ey string table alias attribute type => result

Arguments and Values

string A string.

tabl e A symbol representing a database table identifier.
alias A tablealias.

attribute A symbol representing an attribute identifier.
type A type specifier.

result A object of type sgl-expression.
Description

Returns an SQL expression constructed from the supplied arguments which may be combined as follows:

e attributeandtype;

e attribute;

e aliasortableandattribute andtype;
e aliasortableandattribute;

e table,attributeandtype;

e tableandattribute;

e tableandalias;

e table;

e string.

Examples

(sql -expression :table 'foo :attribute 'bar)
=> #<CLSQL- SYS: SQL- | DENT- ATTRI BUTE FOO. BAR>

47

SQL-EXPRESSION

(sql -expression :attribute 'baz)
=> #<CLSQL- SYS: SQL- | DENT- ATTRI BUTE BAZ>

Side Effects

None.

Affected by

None.

Exceptional Situations

An error of typesql - user - error issignaled if an unsupported combination of keyword arguments is specified.

See Also

sql
sql - operation
sql - oper at or

Notes

None.

48

Name

SQL-OPERATION -- Constructs an SQL expression from a supplied operator and arguments.

Function SQL-OPERATION

Syntax

sqgl -operation operation &est args => result

sqgl -operation 'function func &est args => result

Arguments and Values

operation A symbol denoting an SQL operator.

func A string denoting an SQL function.

args A set of arguments for the specified SQL operator or function.
result A object of typesql - expr essi on.
Description

Returns an SQL expression constructed from the supplied SQL operator or function oper at i on and its arguments
args. If operati on is passed the symbol ‘function then the first value in ar gs istaken to be avalid SQL function
and the remaining valuesin ar gs its arguments.

Examples

(sql -operation 'sel ect
(sql -expression :table 'foo :attribute 'bar)
(sql -operation 'sum (sql-expression :table 'foo :attribute 'baz))
cfrom
(sql -expression :table 'foo)
s where
(sqgl -operation '> (sql-expression :attribute 'bar) 12)
:order-by (sql-operation 'sum (sql-expression :attribute 'baz)))
=> #<SQ.- QUERY SELECT FOO. BAR, SUM FOO. BAZ) FROM FOO WHERE (BAR > 12) ORDER BY SUM BAZ) >

(sql -operation 'function "strpos" "CLSQ" "SQ")
=> #<CLSQ.- SYS: SQL- FUNCTI ON- EXP STRPOS(' CLSQL', "' SQ.') >

Side Effects

None.

Affected by

49

SQL-OPERATION

None.

Exceptional Situations

An error of typesql - user - error issignalled if oper ati on isnot asymbol representing a supported SQL operat-
or.

See Also

sql
sql - expression
sql - oper at or

Notes

None.

50

Name

SQL-OPERATOR -- Returns the symbol for the supplied SQL operator.

Function SQL-OPERATOR

Syntax

sql - operator operation => result

Arguments and Values

oper ati on A symbol denoting an SQL operator.
result The Lisp symbol used by CLSQL to represent the specified operator.
Description

Returns the Lisp symbol corresponding to the SQL operation represented by the symbol oper at i on. If oper ati on
does not represent a supported SQL operator or is not a symbol, nil is returned.

Examples
(sql -operator 'like)
=> SQ.- LI KE

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

See Also

sql
sql - expressi on
sql - operation

51

SQL-OPERATOR

Notes

CLSQL's symbolic SQL syntax currently has support for the following SQL operators:

any
some

al

not

uni on

i ntersect
m nus
except

or der - by

nul
*

+
/

like
and

<>
count

max

mn

avg

sum
function
bet ween
di stinct
nvl

sl ot - val ue
userenv
concat
substring
limt

gr oup- by
havi ng
not - nul |
exi sts
upl i ke

is

t he
coal esce
vi ew cl ass

aswell as the pseudo-operator f unct i on. Note that some of these operators are not supported by all of the RDBMS
supported by CLSQL.

52

Functional Data Definition Language
(FDDL)

53

Name

CREATE-TABLE --
CREATE-TABLE

Syntax

(CREATE- TABLE NAVE DESCRI PTI ON &KEY (DATABASE * DEFAULT- DATABASE*) (CONSTRAINTS NIL) (TRANSACTIONS T)) [f

Arguments and Values

Description

Creates atable called NAME, which may be a string, symbol or SQL table identifier, in DATABASE which defaults
to *DEFAULT-DATABASE*. DESCRIPTION is a list whose elements are lists containing the attribute names,
types, and other constraints such as not-null or primary-key for each column in the table. CONSTRAINTS isastring
representing an SQL table constraint expression or a list of such strings. With MySQL databases, if TRANSAC-
TIONS st an InnoDB tableis created which supports transactions.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

Name

DESCRIBE-TABLE --

DESCRIBE-TABLE

Syntax

(DESCRI BE- TABLE TABLE &KEY DATABASE) [generic] =>

Arguments and Values
Description

Describes atable, returns alist of name/type for columnsin table

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

55

Name
DROP-TABLE --

DROP-TABLE

Syntax

(DROP- TABLE NAME &KEY (| F- DOES- NOT- EXI ST : ERROR) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Drops the table called NAME from DATABASE which defaults to *DEFAULT-DATABASE*. If the table does not
exist and IF-DOES-NOT-EXIST is :ignore then DROP-TABLE returns nil whereas an error is signalled if 1F-
DOES-NOT-EXIST is:error.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

56

Name
LIST-TABLES--

LIST-TABLES

Syntax

(LI ST- TABLES &KEY (OWNER NI L) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns a list of strings representing table names in DATABASE which defaults to *DEFAULT-DATABASE*.
OWNER is nil by default which means that only tables owned by users are listed. If OWNER is a string denoting a
user name, only tables owned by OWNER are listed. If OWNER is:al then all tables are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

57

Name

TABLE-EXISTS-P --
TABLE-EXISTS-P

Syntax

(TABLE- EXI STS-P NAME &KEY (OANER NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Tests for the existence of an SQL table caled NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only tables owned by users are examined.
If OWNER isastring denoting a user name, only tables owned by OWNER are examined. If OWNER is:all then all
tables are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

58

Name

CREATE-VIEW --
CREATE-VIEW

Syntax

(CREATE- VI EW NAVE &KEY AS COLUMN- LI ST (W TH CHECK- OPTI ON NI L) (DATABASE *DEFAULT- DATABASE*)) [function]

Arguments and Values

Description

Creates aview called NAME in DATABASE which defaultsto *DEFAULT-DATABASE*. Theview is created us-
ing the query AS and the columns of the view may be specified using the COLUMN-LIST parameter. The WITH-
CHECK-OPTION is nil by default but if it has a non-nil value, then all insert/update commands on the view are
checked to ensure that the new data satisfy the query AS.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

59

Name
DROP-VIEW --

DROP-VIEW

Syntax

(DROP- VI EW NAME &KEY (| F- DOES- NOT- EXI ST : ERROR) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Drops the view called NAME from DATABASE which defaults to *DEFAULT-DATABASE*. If the view does not
exist and IF-DOES-NOT-EXIST is :ignore then DROP-VIEW returns nil whereas an error is signaled if IF-
DOES-NOT-EXIST is:error.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

60

Name
LIST-VIEWS --

LIST-VIEWS

Syntax

(LI ST-VI EW8 &KEY (OWKNER NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns a list of strings representing view names in DATABASE which defaults to *DEFAULT-DATABASE*.
OWNER is nil by default which means that only views owned by users are listed. If OWNER is a string denoting a
user name, only views owned by OWNER are listed. If OWNER is:al then all views are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

61

Name
VIEW-EXISTS-P --

VIEW-EXISTS-P
Syntax

(VI EWEXI STS- P NAME &KEY (OWKNER NI L) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Tests for the exisence of an SQL view caled NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only views owned by users are examined.
If OWNER isastring denoting a user name, only views owned by OWNER are examined. If OWNER is:all then all
views are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

62

Name
CREATE-INDEX --

CREATE-INDEX

Syntax

(CREATE- | NDEX NAME &KEY ON (UNI QUE NI L) ATTRI BUTES (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Creates an index caled NAME on the table specified by ON in DATABASE which default to
DEFAULT-DATABASE. The table attributes to use in constructing the index NAME are specified by ATTRIB-
UTES. The UNIQUE argument is nil by default but if it has a non-nil value then the indexed attributes must have
unique values.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

63

Name
DROP-INDEX --

DROP-INDEX

Syntax

(DROP- | NDEX NANME &KEY (I F- DOES- NOT- EXI ST : ERROR) (ON NIL) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Drops the index called NAME in DATABASE which defaults to *DEFAULT-DATABASE*. If the index does not
exist and IF-DOES-NOT-EXIST is :ignore then DROP-INDEX returns nil whereas an error is signalled if IF-
DOES-NOT-EXIST is:error. The argument ON allows the optional specification of atable to drop the index from.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

Name
INDEX-EXISTS-P --

INDEX-EXISTS-P
Syntax

(1 NDEX- EXI STS-P NAME &KEY (OAKNER NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Tests for the existence of an SQL index caled NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only indexes owned by users are examined.
If OWNER is a string denoting a user name, only indexes owned by OWNER are examined. If OWNER is :al then
all indexes are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

65

Name
LIST-INDEXES --

LIST-INDEXES

Syntax

(LI ST- | NDEXES &KEY (OWNER NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns a list of strings representing index names in DATABASE which defaults to *DEFAULT-DATABASE*.
OWNER is nil by default which means that only indexes owned by users are listed. If OWNER is a string denoting a
user name, only indexes owned by OWNER arelisted. If OWNER is :all then al indexes are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

66

Name

LIST-TABLE-INDEXES --

LIST-TABLE-INDEXES

Syntax

(LI ST- TABLE- | NDEXES TABLE &KEY (OWNER NI L) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns a list of strings representing index names on the table specified by TABLE in DATABASE which defaults
to *DEFAULT-DATABASE*. OWNER is nil by default which means that only indexes owned by users are listed.
If OWNER is a string denoting a user name, only indexes owned by OWNER are listed. If OWNER is :al then all
indexes are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

67

Name
ATTRIBUTE-TYPE --

ATTRIBUTE-TYPE
Syntax

(ATTRI BUTE- TYPE ATTRI BUTE TABLE &KEY (OANER NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns a string representing the field type of the supplied attribute ATTRIBUTE in the table specified by TABLE
in DATABASE which defaults to *DEFAULT-DATABASE*. OWNER is nil by default which means that the at-
tribute specified by ATTRIBUTE, if it exists, must be user owned else nil is returned. If OWNER is a string denot-
ing a user name, the attribute, if it exists, must be owned by OWNER else nil is returned, whereas if OWNER is :all
then the attribute, if it exists, will be returned regardiess of its owner.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

68

Name

LIST-ATTRIBUTE-TYPES --

LIST-ATTRIBUTE-TYPES

Syntax

(LI ST- ATTRI BUTE- TYPES TABLE &KEY (OMER NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns a list containing information about the SQL types of each of the attributes in the table specified by TABLE
in DATABASE which has a default value of *DEFAULT-DATABASE*. OWNER is nil by default which means
that only attributes owned by users are listed. If OWNER is a string denoting a user name, only attributes owned by
OWNER are listed. If OWNER is :al then all attributes are listed. The elements of the returned list are lists where
the first element is the name of the attribute, the second element is its SQL type, the third is the type precision, the
fourth is the scale of the attribute and the fifth is 1 if the attribute accepts null values and otherwise 0.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

69

Name
LIST-ATTRIBUTES --

LIST-ATTRIBUTES
Syntax

(LI ST- ATTRI BUTES NAME &KEY (OWNER NI L) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns a list of strings representing the attributes of table NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER isnil by default which means that only attributes owned by users are listed. If
OWNER is a string denoting a user name, only attributes owned by OWNER are listed. If OWNER is :al then all
attributes are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

70

Name

CREATE-SEQUENCE --
CREATE-SEQUENCE

Syntax

(CREATE- SEQUENCE NAME &KEY (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Creates a sequence called NAME in DATABASE which defaultsto *DEFAULT-DATABASE*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

71

Name

DROP-SEQUENCE --
DROP-SEQUENCE

Syntax

(DROP- SEQUENCE NAME &KEY (| F- DOES- NOT- EXI ST : ERROR) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Drops the sequence called NAME from DATABASE which defaultsto * DEFAULT-DATABASE*. If the sequence
does not exist and IF-DOES-NOT-EXIST is :ignore then DROP-SEQUENCE returns nil whereas an error is sig-
nalled if IF-DOES-NOT-EXIST is:error.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

72

Name
LIST-SEQUENCES --
LIST-SEQUENCES

Syntax

(LI ST- SEQUENCES &KEY (OWKNER NI L) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns alist of strings representing sequence names in DATABASE which defaultsto * DEFAULT-DATABASE*.
OWNER is nil by default which means that only sequences owned by users are listed. If OWNER is a string denot-
ing a user name, only sequences owned by OWNER are listed. If OWNER is :al then all sequences are listed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

73

Name

SEQUENCE-EXISTS-P --
SEQUENCE-EXISTS-P

Syntax

(SEQUENCE- EXI STS- P NAME &KEY (OMER NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Tests for the existence of an SQL sequence called NAME in DATABASE which defaults to
DEFAULT-DATABASE. OWNER is nil by default which means that only sequences owned by users are ex-
amined. If OWNER is a string denoting a user name, only sequences owned by OWNER are examined. If OWNER
is:all then all sequences are examined.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

74

Name

SEQUENCE-LAST --
SEQUENCE-LAST

Syntax

(SEQUENCE- LAST NAME &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Return the last value of the sequence called NAME in DATABASE which defaultsto *DEFAULT-DATABASE*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

75

Name

SEQUENCE-NEXT --
SEQUENCE-NEXT

Syntax

(SEQUENCE- NEXT NAME &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Return the next value in the sequence called NAME in DATABASE which defaultsto *DEFAULT-DATABASE*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

76

Name
SET-SEQUENCE-POSITION --
SET-SEQUENCE-POSITION

Syntax

(SET- SEQUENCE- PCSI TI ON NAME POSI TI ON &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Explicitly set the the position of the sequence caled NAME in DATABASE, which defaults to
DEFAULT-DATABSE, to POSITION.

Examples

Side Effects
Affected by

Exceptional Situations

See Also

Notes

77

Functional Data Manipulation
Language (FDML)

78

Name

CACHE-TABLE-QUERIES-DEFAULT --
CACHE-TABLE-QUERIES-DEFAULT

Value Type

Initial Value
nil
Description
Examples

Affected By

None.

See Also

None.

Notes

None.

Name

BIND-PARAMETER --

BIND-PARAMETER

Syntax

(BI ND- PARAMETER PREPARED- STMI' POSI TI ON VALUE) [function] =>

Arguments and Values
Description

Setsthe value of a parameter in a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

80

Name

CACHE-TABLE-QUERIES --
CACHE-TABLE-QUERIES

Syntax

(CACHE- TABLE- QUERI ES TABLE &KEY (ACTI ON NI L) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Controls the caching of attribute type information on the table specified by TABLE in DATABASE which defaults
to *DEFAULT-DATABASE*. ACTION specifies the caching behaviour to adopt. If its value ist then attribute type
information is cached whereas if its value is nil then attribute type information is not cached. If ACTION is :flush
then all existing type information in the cache for TABLE isremoved, but caching is still enabled. TABLE may be a
string representing a table for which the caching action is to be taken while the caching action is applied to all tables
if TABLE is t. Alternativly, when TABLE is :default, the default caching action specified by
CACHE-TABLE-QUERIES-DEFAULT is applied to al table for which a caching action has not been explicitly
Set.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

81

Name
DELETE-RECORDS --
DELETE-RECORDS

Syntax

(DELETE- RECORDS &KEY (FROM NIL) (WHERE NI L) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Deletes records satisfying the SQL expression WHERE from the table specified by FROM in DATABASE specifies
adatabase which defaultsto *DEFAULT-DATABASE*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

82

Name

DO-QUERY --
DO-QUERY

Syntax

(DO QUERY &KEY (DATABASE ' * DEFAULT- DATABASE*) (RESULT- TYPES : AUTO) &REST QUERY- EXPRESSI ON &BCDY BODY) [1

Arguments and Values

Description

Repeatedly executes BODY within a binding of ARGS on the fields of each row selected by the SQL query
QUERY -EXPRESSION, which may be a string or a symbolic SQL expression, in DATABASE which defaults to
DEFAULT-DATABASE. The values returned by the execution of BODY are returned. RESULT-TYPESisalist
of symbols which specifies the lisp type for each field returned by QUERY -EXPRESSION. If RESULT-TYPES is
nil all results are returned as strings whereas the default value of :auto means that the lisp types are automatically
computed for each field.

Examples

Side Effects
Affected by

Exceptional Situations

See Also

Notes

83

Name
EXECUTE-COMMAND --
EXECUTE-COMMAND

Syntax

(EXECUTE- COWAND EXPRESS| ON &KEY DATABASE) [generic] =>

Arguments and Values

Description

Executes the SQL command EXPRESSION, which may be an SQL expression or a string representing any SQL
statement apart from a query, on the supplied DATABASE which defaultsto *DEFAULT-DATABASE*.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

Name

FOR-EACH-ROW --
FOR-EACH-ROW

Syntax

(FOR- EACH ROW &KEY FROM ORDER- BY WHERE DI STINCT LIM T &REST FI ELDS &BODY BODY) [macro] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

85

Name

FREE-PREPARED-SQL --
FREE-PREPARED-SQL

Syntax

(FREE- PREPARED- SQL PREPARED- STMI) [function] =>

Arguments and Values
Description

Delete the objects associated with a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

86

Name
INSERT-RECORDS --

INSERT-RECORDS
Syntax

(I NSERT- RECORDS &KEY (I NTO NIL) (ATTRIBUTES NIL) (VALUES NIL) (AV-PAIRS NIL) (QUERY NIL) (DATABASE *DEF/

Arguments and Values

Description

Inserts records into the table specified by INTO in DATABASE which defaults to *DEFAULT-DATABASE*.
There are five ways of specifying the values inserted into each row. In the first VALUES contains alist of valuesto
insert and ATTRIBUTES, AV-PAIRS and QUERY are nil. This can be used when values are supplied for all attrib-
utes in INTO. In the second, ATTRIBUTES is a list of column names, VALUES is a corresponding list of values
and AV-PAIRS and QUERY arenil. In the third, ATTRIBUTES, VALUES and QUERY are nil and AV-PAIRS is
an alist of (attribute value) pairs. In the fourth, VALUES, AV-PAIRS and ATTRIBUTES are nil and QUERY isa
symbolic SQL query expression in which the selected columns also exist in INTO. In the fifth method, VALUES
and AV-PAIRS are nil and ATTRIBUTES is alist of column names and QUERY is a symbolic SQL query expres-
sion which returns values for the specified columns.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

87

INSERT-RECORDS

88

Name

LOOP-FOR-AS-TUPLES -- Iterate over al the tuples of a query viaaloop clause
LOOP-FOR-AS-TUPLES

Compatibility

Caution

| oop-f or - as-t upl es only works with CMUCL.

Syntax

var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} query [from database]

Arguments and Values

var A d- var - spec, as defined in the grammar for | oop-clauses in the ANSI Standard for Com-
mon Lisp. This alows for the usual loop-style destructuring.

t ype- spec An optiona t ype- spec either simple or destructured, as defined in the grammar for | oop-
clausesin the ANSI Standard for Common Lisp.

query An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes asf unct i on takes arguments.

dat abase An optional database object. Thiswill default to the value of * default-database*.

Description

This clause is an iteration driver for | oop, that binds the given variable (possibly destructured) to the consecutive
tuples (which are represented as lists of attribute values) in the result set returned by executing the SQL query ex-
pression on the dat abase specified.

Examples

(defvar *ny-db* (connect '("dent" "newesin "dent" "dent"))
"My dat abase”

=> *W_ m*

(loop with tine-graph = (nmake-hash-table :test # equal)
wi th event-graph = (make-hash-table :test # equal)
for (time event) being the tuples of "select time,event fromlog"
from *ny-db*
do
(incf (gethash tine tinme-graph 0))
(i ncf (gethash event event-graph 0))

finally

(flet ((showgraph (k v) (format t "~40A => ~5D~% k v)))
(format t "~&Ti nme- G aph: ~Y%F==========~0)
(maphash #' show graph tinme-graph)
(format t "~&%Event - G aph: ~%===========~0)

(maphash #' show graph event-graph))

89

LOOP-FOR-AS-TUPLES

(return (val ues time-graph event-graph)))
>> Ti me- G aph:
>> === ===—====

>> D => 53000
>> X => 3
>> test-nme => 3000
>>

>> Event - G aph:

>> —===========

>> CLOS Benchnmark entry. => 9000
>> Denp Text. .. => 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchnark entry => 32000

=> #<EQUAL hash table, 3 entries {48350A1D}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

Otherwise, any of the exceptional situations of | oop applies.

See Also

query
map- query
do- query

Notes

None.

90

Name

MAP-QUERY -- Map afunction over al the tuples from a query
MAP-QUERY

Syntax

map- query out put-type-spec function query-expression &ey database result-types => result

Arguments and Values

out put - t ype- spec A sequence type specifier or nil.

function A function designator. f unct i on takes a single argument which is the atom value for
aquery singlewith asingle column or is alist of values for a multi-column query.

quer y- expr essi on An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set.

dat abase A database object. Thiswill default to the value of * default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of this argu-
ment.

result If out put -t ype- spec isatype specifier other than nil, then a sequence of the type it

denotes. Otherwise nil is returned.

Description

Appliesf uncti on to the successive tuples in the result set returned by executing the SQL quer y- expr essi on. If
the out put - t ype- spec is nil, then the result of each application of f uncti on is discarded, and map- query re-
turns nil. Otherwise the result of each successive application of f uncti on is collected in a sequence of type out -
put - t ype- spec, where the jths element is the result of applying f unct i on to the attributes of the jths tuple in the
result set. The collected sequence is the result of the call to map- query.

If theout put - t ype- spec isasubtype of list, the result will be alist.

If theresul t - type isasubtype of vector, then if the implementation can determine the element type specified for
theresul t - t ype, the element type of the resulting array is the result of upgrading that element type; or, if the im-
plementation can determine that the element type is unspecified (or *), the element type of the resulting array isft;
otherwise, an error is signaled.

If RESULT-TYPES is nil all results are returned as strings whereas the default value of :auto means that the lisp
types are automatically computed for each field.

Examples

(map-query 'list # (lanbda (tuple)
(rmul tipl e-val ue-bind (salary nane) tuple
(decl are (ignorable nane))
(read-fromstring salary)))
"sel ect salary, name from sinple where salary > 8000")

91

MAP-QUERY

=> (10000.0 8000. 5)

(map- query ' (vector double-float)
(1l anbda (tuple)
(rmul tipl e-val ue-bind (salary nane) tuple
(decl are (ignorable nane))
(let ((*read-default-float-format* 'double-float))
(coerce (read-fromstring salary) 'double-float))
"sel ect salary,nanme fromsinple where salary > 8000")))
=> #(10000. 0d0 8000. 5d0)
(type-of *)
=> (S| MPLE- ARRAY DOUBLE- FLOAT (2))

(let (list)
(val ues (map-query nil # (lanbda (tuple)
(rmul tipl e-val ue-bind (salary nane) tuple
(push (cons nane (read-fromstring salary)) list))
"sel ect salary, name from sinple where salary > 8000")

list))
=> N L
=> (("Hacker, RandomJ." . 8000.5) ("Mai, Pierre" . 10000.0))

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

An error of type type-error must be signaled if the out put - t ype- spec is not a recognizable subtype of list, not a
recognizable subtype of vector, and not nil.

An error of type type-error should be signaled if out put - t ype- spec specifies the number of elements and the size
of the result set is different from that number.

See Also

query
do- query

Notes

None.

92

Name

PREPARE-SQL --
PREPARE-SQL

Syntax

(PREPARE- SQL SQL- STMI' TYPES &KEY (DATABASE * DEFAULT- DATABASE*) (RESULT- TYPES : AUTO) FI ELD- NAMES) [functi

Arguments and Values

Description

Prepares a SQL statement for execution. TY PES contains a list of types corresponding to the input parameters. Re-
turns a prepared-statement object. A type can be :int :double :null (:string n)

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

93

Name

PRINT-QUERY --
PRINT-QUERY

Syntax

(PRI NT- QUERY QUERY- EXP &KEY TI TLES (FORMATS T) (SIZES T) (STREAM T) (DATABASE * DEFAULT- DATABASE*)) [f unc

Arguments and Values

Description

Prints a tabular report of the results returned by the SQL query QUERY -EXP, which may be a symbolic SQL ex-
pression or a string, in DATABASE which defaults to *DEFAULT-DATABASE*. The report is printed onto
STREAM which has a default value of t which means that * STANDARD-OUTPUT* isused. The TITLE argument,
which defaults to nil, allows the specification of alist of strings to use as column titles in the tabular output. SIZES
accepts alist of column sizes, one for each column selected by QUERY -EXP, to use in formatting the tabular report.
The default value of t means that minimum sizes are computed. FORMATS is alist of format strings to be used for
printing each column selected by QUERY-EXP. The default value of FORMATS is t meaning that ~A is used to
format all columns or ~VA if column sizes are used.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

94

Name

QUERY --
QUERY

Syntax

(QUERY QUERY- EXPRESSI ON &KEY DATABASE RESULT- TYPES FLATP FI ELD- NAMES) [generic] =>

Arguments and Values

Description

Executes the SQL query expression QUERY -EXPRESSION, which may be an SQL expression or a string, on the
supplied DATABASE which defaults to *DEFAULT-DATABASE*. RESULT-TYPES is alist of symbols which
specifies the lisp type for each field returned by QUERY-EXPRESSION. If RESULT-TYPES is nil al results are
returned as strings whereas the default value of :auto means that the lisp types are automatically computed for each
field. FIELD-NAMES ist by default which means that the second value returned is alist of strings representing the
columns selected by QUERY -EXPRESSION. If FIELD-NAMES s nil, the list of column names is not returned as a
second value. FLATP has a default value of nil which means that the results are returned as alist of lists. If FLATP
ist and only one result is returned for each record selected by QUERY -EXPRESSION, the results are returned as
elements of alist.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

95

QUERY

96

Name

RUN-PREPARED-SQL --
RUN-PREPARED-SQL

Syntax

(RUN- PREPARED- SQL PREPARED- STMI) [function] =>

Arguments and Values
Description

Execute the prepared sgl statment. All input parameters must be bound.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

97

Name
SELECT --

SELECT

Syntax

(SELECT &REST SELECT- ALL- ARGS) [function] =>

Arguments and Values

Description

Executes a query on DATABASE, which has a default value of *DEFAULT-DATABASE*, specified by the SQL
expressions supplied using the remaining arguments in SELECT-ALL-ARGS. The SELECT argument can be used
to generate queries in both functional and object oriented contexts. In the functional case, the required arguments
specify the columns selected by the query and may be symbolic SQL expressions or strings representing attribute
identifiers. Type modified identifiers indicate that the values selected from the specified column are converted to the
specified lisp type. The keyword arguments ALL, DISTINCT, FROM, GROUP-by, HAVING, ORDER-BY, SET-
OPERATION and WHERE are used to specify, using the symbolic SQL syntax, the corresponding components of
the SQL query generated by the call to SELECT. RESULT-TYPES isalist of symbols which specifies the lisp type
for each field returned by the query. If RESULT-TYPES is nil all results are returned as strings whereas the default
value of :auto means that the lisp types are automatically computed for each field. FIELD-NAMES is t by default
which means that the second value returned is a list of strings representing the columns selected by the query. If
FIELD-NAMES s nil, thelist of column namesis not returned as a second value. In the object oriented case, the re-
quired arguments to SELECT are symbols denoting View Classes which specify the database tables to query. In this
case, SELECT returns a list of View Class instances whose slots are set from the attribute values of the records in
the specified table. Slot-value is alegal operator which can be employed as part of the symbolic SQL syntax used in
the WHERE keyword argument to SELECT. REFRESH is nil by default which means that the View Class instances
returned are retrieved from a cache if an equivalent call to SELECT has previously been issued. If REFRESH is
true, the View Class instances returned are updated as necessary from the database and the generic function IN-
STANCE-REFRESHED is called to perform any necessary operations on the updated instances. In both object ori-
ented and functional contexts, FLATP has a default value of nil which means that the results are returned as a list of
lists. If FLATP ist and only one result is returned for each record selected in the query, the results are returned as
elements of alist.

Examples

Side Effects

Affected by

98

SELECT

Exceptional Situations

See Also

Notes

99

Name
UPDATE-RECORDS --

UPDATE-RECORDS
Syntax

(UPDATE- RECORDS TABLE &KEY (ATTRIBUTES NIL) (VALUES NIL) (AV-PAIRS NIL) (WHERE NI L) (DATABASE * DEFAULT-

Arguments and Values

Description

Updates the attribute values of existing records satsifying the SQL expression WHERE in the table specified by TA-
BLE in DATABASE which defaults to *DEFAULT-DATABASE*. There are three ways of specifying the valuesto
update for each row. In the first, VALUES contains a list of values to use in the update and ATTRIBUTES, AV-
PAIRS and QUERY are nil. This can be used when values are supplied for al attributesin TABLE. In the second,
ATTRIBUTES is alist of column names, VALUES is a corresponding list of values and AV-PAIRS and QUERY
are nil. In the third, ATTRIBUTES, VALUES and QUERY are nil and AV-PAIRS is an alist of (attribute value)
pairs.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

100

Transaction Handling

101

Name

ADD-TRANSACTION-COMMIT-HOOK --
ADD-TRANSACTION-COMMIT-HOOK

Syntax

(ADD- TRANSACTI ON- COVM T- HOOK DATABASE COMM T- HOOK) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

102

Name

ADD-TRANSACTION-ROLLBACK-HOOK --
ADD-TRANSACTION-ROLLBACK-HOOK

Syntax

(ADD- TRANSACTI ON- ROLLBACK- HOOK DATABASE ROLLBACK- HOOK) [function] =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

103

Name
COMMIT --
COMMIT

Syntax

(COVMM T &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

If DATABASE, which defaults to * DEFAULT-DATABASE?*, is currently within the scope of a transaction, com-
mits changes made since the transaction began.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

104

Name
IN-TRANSACTION-P --

IN-TRANSACTION-P
Syntax

(I N- TRANSACTI ON- P &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

A predicate to test whether DATABASE, which defaults to *DEFAULT-DATABASE?*, is currently within the
scope of atransaction.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

105

Name

ROLLBACK --
ROLLBACK

Syntax

(ROLLBACK &KEY (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

If DATABASE, which defaults to * DEFAULT-DATABASE*, is currently within the scope of a transaction, rolls
back changes made since the transaction began.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

106

Name
SET-AUTOCOMMIT --

SET-AUTOCOMMIT
Syntax

(SET- AUTOCOMM T VALUE &KEY (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Sets autocommit on or off. Returns old value of of autocommit flag.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

107

Name
START-TRANSACTION --

START-TRANSACTION
Syntax

(START- TRANSACTI ON &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Starts a transaction block on DATABASE which defaults to *DEFAULT-DATABASE* and which continues until
ROLLBACK or COMMIT are called.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

108

Name
WITH-TRANSACTION --
WITH-TRANSACTION

Syntax

(W TH TRANSACTI ON &KEY (DATABASE ' * DEFAULT- DATABASE*) &REST BODY) [nmcro] =>

Arguments and Values

Description

Starts a transaction in the database specified by DATABASE, which is *DEFAULT-DATABASE* by default, and
executes BODY within that transaction. If BODY aborts or throws, DATABASE is rolled back and otherwise the
transaction is committed.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

109

Object Oriented Data Definition
Language (OODDL)

110

Name

STANDARD-DB-OBJECT -- Superclassfor all CLSQL View Classes.
STANDARD-DB-OBJECT

Class Precedence List

standard-db-object, standard-object, t

Description

Thisclass is the superclass of all CLSQL View Classes.

Class detalls

(defcl ass STANDARD- DB- OBJECT () (...))

Slots

111

Name

DEFAULT-VARCHAR-LENGTH --
DEFAULT-VARCHAR-LENGTH

Value Type

Initial Value
nil
Description
Examples

Affected By

None.

See Also

None.

Notes

None.

112

Name

CREATE-VIEW-FROM-CLASS --
CREATE-VIEW-FROM-CLASS

Syntax

(CREATE- VI EW FROM CLASS VI EW CLASS- NAME &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Creates a table as defined by the View Class VIEW-CLASS-NAME in DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

113

Name
DEF-VIEW-CLASS --

DEF-VIEW-CLASS
Syntax

(DEF- VI EW CLASS CLASS SUPERS SLOTS &REST CL- OPTIONS) [nmacro] =>

Arguments and Values

Description

Creates a View Class called CLASS whose slots SLOTS can map onto the attributes of atable in a database. If SU-
PERS is nil then the superclass of CLASS will be STANDARD-DB-OBJECT, otherwise SUPERS isalist of super-
classes for CLASS which must include STANDARD-DB-OBJECT or a descendent of this class. The syntax of DE-
FCLASS is extended through the addition of a class option :base-table which defines the database table onto which
the View Class maps and which defaultsto CLASS. The DEFCLASS syntax is also extended through additional slot
options. The :db-kind slot option specifies the kind of DB mapping which is performed for this slot and defaults to
:base which indicates that the slot maps to an ordinary column of the database table. A :db-kind value of :key indic-
ates that this slot is a special kind of :base slot which maps onto a column which is one of the unique keys for the
database table, the value :join indicates this slot represents a join onto another View Class which contains View
Class objects, and the value :virtual indicates a standard CLOS slot which does not map onto columns of the data-
base table. If a slot is specified with :db-kind :join, the slot option :db-info contains a list which specifies the nature
of the join. For slots of :db-kind :base or :key, the :type slot option has a specia interpretation such that Lisp types,
such as string, integer and float are automatically converted into appropriate SQL types for the column onto which
the dlot maps. This behaviour may be over-ridden using the :db-type slot option which is a string specifying the
vendor-specific database type for this slot's column definition in the database. The :column slot option specifies the
name of the SQL column which the slot maps onto, if :db-kind is not :virtual, and defaults to the slot name. The
:void-value slot option specifies the value to store if the SQL value is NULL and defaults to NIL. The
.db-constraints slot option is a string representing an SQL table constraint expression or alist of such strings.

Examples

Side Effects

Affected by

Exceptional Situations

114

DEF-VIEW-CLASS

See Also

Notes

115

Name
DROP-VIEW-FROM-CLASS --
DROP-VIEW-FROM-CLASS

Syntax

(DROP- VI EW FROM CLASS VI EW CLASS- NAME &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Removes a table defined by the View Class VIEW-CLASS-NAME from DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

116

Name
LIST-CLASSES --

LIST-CLASSES

Syntax

(LI ST- CLASSES &KEY (TEST #' | DENTI TY) (ROOT-CLASS (FI ND- CLASS ' STANDARD- DB- OBJECT)) (DATABASE * DEFAULT- Dy

Arguments and Values

Description

Returns a list of al the View Classes which are connected to DATABASE, which defaults to
DEFAULT-DATABASE, and which descend from the class ROOT-CLASS and which satisfy the function TEST.
By default ROOT-CLASSis STANDARD-DB-OBJECT and TEST isIDENTITY.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

117

Object Oriented Data Manipulation
Language (OODML)

118

Name

DB-AUTO-SYNC --
DB-AUTO-SYNC

Value Type

Initial Value
nil
Description
Examples

Affected By

None.

See Also

None.

Notes

None.

119

Name

DEFAULT-UPDATE-OBJECTS-MAX-LEN --
DEFAULT-UPDATE-OBJECTS-MAX-LEN

Value Type

Initial Value
nil
Description
Examples

Affected By

None.

See Also

None.

Notes

None.

120

Name
DELETE-INSTANCE-RECORDS --
DELETE-INSTANCE-RECORDS

Syntax

(DELETE- | NSTANCE- RECORDS OBJECT) [generic] =>

Arguments and Values

Description

Deletes the records represented by OBJECT in the appropriate table of the database associated with OBJECT. If
OBJECT is not yet associated with a database, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

121

Name

INSTANCE-REFRESHED --
INSTANCE-REFRESHED

Syntax

(1 NSTANCE- REFRESHED OBJECT) [generic] =>

Arguments and Values

Description

Provides a hook which is called within an object oriented call to SELECT with a non-nil value of REFRESH when
the View Class instance OBJECT has been updated from the database. A method specialised on STANDARD-
DB-OBJECT is provided which has no effects. Methods specialised on particular View Classes can be used to spe-
cify any operations that need to be made on View Classes instances which have been updated in callsto SELECT.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

122

Name
UPDATE-INSTANCE-FROM-RECORDS --

UPDATE-INSTANCE-FROM-RECORDS
Syntax

(UPDATE- | NSTANCE- FROM RECORDS OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the slot values of the View Class instance OBJECT using the attribute values of the appropriate table of
DATABASE which defaults to the database associated with OBJECT or, if OBJECT is not associated with a data-
base, *DEFAULT-DATABASE*. Join dots are updated but instances of the class on which the join is made are not
updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

123

Name
UPDATE-OBJECTS-JOINS --

UPDATE-OBJECTS-JOINS
Syntax

(UPDATE- OBJECTS- JO NS OBJECTS &KEY (SLOTS T) (FORCE-P T) CLASS- NAME (MAX- LEN * DEFAULT- UPDATE- OBJECTS- MA

Arguments and Values

Description

Updates from the records of the appropriate database tables the join slots specified by SLOTS in the supplied list of
View Classinstances OBJECTS. SLOTS st by default which meansthat all join slots with :retrieval :immediate are
updated. CLASS-NAME is used to specify the View Class of all instance in OBJECTS and default to nil which
means that the class of the first instance in OBJECTS is used. FORCE-P is t by default which means that al join
dlots are updated whereas a value of nil means that only unbound join slots are updated. MAX-LEN defaults to
DEFAULT-UPDATE-OBJECTS-MAX-LEN and when non-nil specifies that UPDATE-OBJECT-JOINS may is-
sue multiple database queries with a maximum of MAX-LEN instances updated in each query.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

124

Name

UPDATE-RECORD-FROM-SLOT --

UPDATE-RECORD-FROM-SLOT

Syntax

(UPDATE- RECORD- FROM SLOT OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the value stored in the column represented by the dot, specified by the CLOS slot name SLOT, of View
Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and specifies the database in which
the update is made only if OBJECT is not associated with a database. In this case, a record is created in DATA-
BASE and the attribute represented by SLOT isinitialised from the value of the supplied slots with other attributes
having default values. Furthermore, OBJECT becomes associated with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

125

Name
UPDATE-RECORD-FROM-SLOTS --

UPDATE-RECORD-FROM-SLOTS
Syntax

(UPDATE- RECORD- FROM SLOTS OBJECT SLOTS &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the values stored in the columns represented by the slots, specified by the CLOS slot names SLOTS, of
View Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and specifies the database in
which the update is made only if OBJECT is not associated with a database. In this case, a record is created in the
appropriate table of DATABASE and the attributes represented by SLOTS are initialised from the values of the sup-
plied dots with other attributes having default values. Furthermore, OBJECT becomes associated with DATA-
BASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

126

Name
UPDATE-RECORDS-FROM-INSTANCE --

UPDATE-RECORDS-FROM-INSTANCE
Syntax

(UPDATE- RECORDS- FROM | NSTANCE OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Using an instance of a View Class, OBJECT, update the table that stores its instance data. DATABASE defaults to
DEFAULT-DATABASE and specifies the database in which the update is made only if OBJECT is not associ-
ated with a database. In this case, arecord is created in the appropriate table of DATABASE using values from the
slot values of OBJECT, and OBJECT becomes associated with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

127

Name
UPDATE-SLOT-FROM-RECORD --
UPDATE-SLOT-FROM-RECORD

Syntax

(UPDATE- SLOT- FROM RECORD OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the slot value, specified by the CLOS slot name SLOT, of the View Class instance OBJECT using the at-
tribute values of the appropriate table of DATABASE which defaults to the database associated with OBJECT or, if
OBJECT is not associated with a database, *DEFAULT-DATABASE*. Join slots are updated but instances of the
class on which the join is made are not updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

128

SQL 1/0O Recording

129

Name
ADD-SQL-STREAM --
ADD-SQL-STREAM

Syntax

(ADD- SQL- STREAM STREAM &KEY (TYPE : COVMMANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Adds the supplied stream STREAM (or T for * standard-output*) as a component of the recording broadcast stream
for the SQL recording type specified by TYPE on DATABASE which defaults to *DEFAULT-DATABASE*.
TY PE must be one of :commands, :results, or :both, defaulting to :commands, depending on whether the stream isto
be added for recording SQL commands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

130

Name

DELETE-SQL-STREAM --
DELETE-SQL-STREAM

Syntax

(DELETE- SQL- STREAM STREAM &KEY (TYPE : COVMANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Removes the supplied stream STREAM from the recording broadcast stream for the SQL recording type specified
by TYPE on DATABASE which defaults to *DEFAULT-DATABASE*. TYPE must be one of :commands,
‘results, or :both, defaulting to :commands, depending on whether the stream is to be added for recording SQL com-
mands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

131

Name

LIST-SQL-STREAMS --
LIST-SQL-STREAMS

Syntax

(LI ST- SQL- STREAMS &KEY (TYPE : COMVANDS) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns the list of component streams for the broadcast stream recording SQL commands sent to and/or results re-
turned from DATABASE which defaults to * DEFAULT-DATABASE*. TY PE must be one of :commands, :resullts,
or :both, defaulting to :commands, and determines whether the listed streams contain those recording SQL com-
mands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

132

Name

SQL-RECORDING-P --
SQL-RECORDING-P

Syntax

(SQL- RECORDI NG P &KEY (TYPE : COWRNDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Predicate to test whether the SQL recording specified by TY PE is currently enabled for DATABASE which defaults
to *DEFAULT-DATABASE*. TY PE may be one of :commands, :results, :both or :either, defaulting to :commands,
otherwise nil is returned.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

133

Name
SQL-STREAM --
SQL-STREAM

Syntax

(SQL- STREAM &KEY (TYPE : COWRNDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns the broadcast stream used for recording SQL commands sent to or results returned from DATABASE which
defaultsto *DEFAULT-DATABASE*. TYPE must be one of :commands or :results, defaulting to :commands, and
determines whether the stream returned is that used for recording SQL commands or results.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

134

Name

START-SQL-RECORDING --
START-SQL-RECORDING

Syntax

(START- SQL- RECORDI NG &KEY (TYPE : COWANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Starts recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The SQL is output on one or more broadcast streams, initialy just
STANDARD-OUTPUT, and the functions ADD-SQL-STREAM and DELETE-SQL-STREAM may be used to
add or delete command or result recording streams. The default value of TY PE is :commands which means that SQL
commands sent to DATABASE are recorded. If TYPE is :results then SQL results returned from DATABASE are
recorded. Both commands and results may be recorded by passing TY PE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

135

Name

STOP-SQL-RECORDING --
STOP-SQL-RECORDING

Syntax

(STOP- SQL- RECORDI NG &KEY (TYPE : COMMANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Stops recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The default value of TYPE is :commands which means that SQL commands sent to
DATABASE will no longer be recorded. If TYPE is :results then SQL results returned from DATABASE will no
longer be recorded. Recording may be stopped for both commands and results by passing TY PE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

136

CLSQL Condition System

137

Name
BACKEND-WARNING-BEHAVIOR --

BACKEND-WARNING-BEHAVIOR

Value Type

Initial Value
nil

Description

Action to perform on warning messages from backend. Default is to :warn. May also be set to :error to signal an er-
ror or :ignore/nil to silently ignore the warning.

Examples

Affected By

None.

See Also

None.

Notes

None.

138

Name
SQL-CONDITION -- the super-type of all CLSQL-specific conditions
SQL-CONDITION

Class Precedence List

sqgl-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specific inter-
faces. There are no defined initialization arguments nor any accessors.

139

Name

SQL-ERROR -- the super-type of all CLSQL-specific errors
SQL-ERROR

Class Precedence List

sql-error, error, serious-condition, sgl-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or any of it's
database-specific interfaces. There are no defined initialization arguments nor any accessors.

140

Name
SQL-WARNING -- the super-type of all CLSQL-specific warnings
SQL-WARNING

Class Precedence List

sgl-warning, warning, sql-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL, or any of it's
database-specific interfaces. There are no defined initialization arguments nor any accessors.

141

Name

SQL-DATABASE-WARNING -- Used to warn while accessing a CLSQL database.
SQL-DATABASE-WARNING

Class Precedence List

sgl-database-warning, sql-warning, warning, sgl-condition, condition, t

Description

This condition represents warnings signalled while accessing a database. The following initialization arguments and
accessors exist:

Initarg: :database

Accessor: sql - war ni ng- dat abase

Description: The database object that was involved in the incident.

142

Name

SQL-USER-ERROR -- condition representing errors because of invalid parameters from the library user.

SQL-USER-ERROR

Class Precedence List

sql-user-error, sql-error, sgl-condition, condition, t

Description

This condition represents errors that occur because the user supplies invalid data to CLSQL. This includes errors
such as an invalid format connection specification or an error in the syntax for the LOOP macro extensions. The fol-
lowing initialization arguments and accessors exist:

Initarg: :message

Accessor: sql - user-error-nessage

Description: The error message.

143

Name

SQL-DATABASE-ERROR -- condition representing errors during query or command execution
SQL-DATABASE-ERROR

Class Precedence List

sgl-database-error, sql-error, error, serious-condition, sgl-condition, condition, t

Description

This condition represents errors that occur while executing SQL statements, either as part of query operations or
command execution, either explicitly or implicitly, as caused e.g. by wi t h-t r ansact i on. The following initializa-
tion arguments and accessors exist:

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sqgl -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

Initarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

144

Name

SQL-CONNECTION-ERROR -- condition representing errors during connection
SQL-CONNECTION-ERROR

Class Precedence List

sgl-connection-error, sql-database-error, sgl-error, sgl-condition, condition, t

Description

This condition represents errors that occur while trying to connect to a database. The following initialization argu-
ments and accessors exist:

I nitarg: :database-type

Accessor: sql - connecti on-error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - connecti on-error-connection-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :message

Accessor: sgl - dat abase-error-error

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

145

Name

SQL-DATABASE-DATA-ERROR -- Used to signal an error with the SQL data passed to a database.
SQL-DATABASE-DATA-ERROR

Class Precedence List

sgl-database-data-error, sql-database-error, sgl-error, error, serious-condition, sgl-condition, condition, t

Description

This condition represents errors that occur while executing SQL statements, specifically as a result of malformed
SQL expressions. The following initialization arguments and accessors exist:

Initarg: :expression

Accessor: sql - dat abase- error - expr essi on

Description: The SQL expression whose execution caused the error.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sqgl -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

146

Name

SQL-TEMPORARY -ERROR -- Used to signal atemporary error in the database backend.
SQL-TEMPORARY -ERROR

Class Precedence List

sgl-database-error, sql-error, error, serious-condition, sgl-condition, condition, t

Description

This condition represents errors occurring when the database cannot currently process a valid interaction because,
for example, it is still executing another command possibly issued by another user. The following initialization argu-
ments and accessors exist:

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sqgl -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

Initarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

147

Name

SQL-TIMEOUT-ERROR -- condition representing errors when a connection times out.

SQL-TIMEOUT-ERROR

Class Precedence List

sgl-connection-error, sql-database-error, sgl-error, sgl-condition, condition, t

Description

This condition represents errors that occur when the database times out while processing some operation. The fol-
lowing initialization arguments and accessors exist:

I nitarg: :database-type

Accessor: sql - connecti on-error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - connecti on-error-connection-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :message

Accessor: sql - error-dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

148

Name

SQL-FATAL-ERROR -- condition representing afatal error in a database connection

SQL-FATAL-ERROR

Class Precedence List

sgl-connection-error, sql-database-error, sgl-error, sgl-condition, condition, t

Description

This condition represents errors occurring when the database connection is no longer usable. The following initializ-
ation arguments and accessors exist:

I nitarg: :database-type

Accessor: sql - connecti on-error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - connecti on-error-connection-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :message

Accessor: sql - error-dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

149

Large Object Support

150

Name
CREATE-LARGE-OBJECT --

CREATE-LARGE-OBJECT
Syntax

(CREATE- LARGE- OBJECT &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Creates anew large object in the database and returns the object identifier

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

151

Name

DELETE-LARGE-OBJECT --

DELETE-LARGE-OBJECT

Syntax

(DELETE- LARGE- OBJECT OBJECT- | D &KEY (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Deletes the large object in the database

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

152

Name

READ-LARGE-OBJECT --
READ-LARGE-OBJECT

Syntax

(READ- LARGE- OBJECT OBJECT- | D &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Reads the large object content

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

153

Name
WRITE-LARGE-OBJECT --

WRITE-LARGE-OBJECT

Syntax

(VRI TE- LARGE- OBJECT OBJECT-| D DATA &KEY (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Writes data to the large object

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

154

CLSQL-SYS

This part gives a reference to the symbols exported from the package CLSQL-SY S, which are not exported from
CLSQL package.. These symbols are part of the interface for database back-ends, but not part of the normal user-
interface of CLSQL.

155

Name

DATABASE-INITIALIZE-DATABASE-TYPE -- Back-end part of i ni ti al i ze- dat abase-t ype.
DATABASE-INITIALIZE-DATABASE-TY PE

Syntax

dat abase-initial i ze-dat abase-type database-type => result

Arguments and Values

dat abase-type A keyword indicating the database type to initialize.
result Either t if theinitialization succeeds or nil if it fails.
Description

This generic function implements the main part of the database type initiaization performed by i ni ti al i ze- dat a-
base-type. Afterini ti al i ze- dat abase-t ype has checked that the given database type has not been initialized
before, as indicated by *initialized-database-types*, it will call this function with the database type as it's sole para-
meter. Database back-ends are required to define a method on this generic function which is specialized via an eql-
specializer to the keyword representing their database type.

Database back-ends shall indicate successful initialization by returning t from their method, and nil otherwise. Meth-
ods for this generic function are allowed to signal errors of type clsgl-error or subtypes thereof. They may also sig-
nal other types of conditions, if appropriate, but have to document this.

Examples

Side Effects

All necessary side effects to initialize the database instance.

Affected By

None.

Exceptional Situations

Conditions of type clsgl-error or other conditions may be signalled, depending on the database back-end.

See Also

initialize-database-type
initialized-database-types

156

DATABASE-INITIALIZE-DATABASE-TYPE

Notes

None.

157

Index

158

Name

Alphabetical Index for package CLSQL -- Clickableindex of all symbols

Alphabetical Index for package CLSQL

BACKEND-WARNING-BEHAVIOR
* CACHE-TABLE-QUERIES-DEFAULT*
* CONNECT-IF-EXISTS*
DB-AUTO-SYNC
DEFAULT-DATABASE
DEFAULT-DATABASE-TY PE
DEFAULT-UPDATE-OBJECTS-MAX-LEN
DEFAULT-VARCHAR-LENGTH
INITIALIZED-DATABASE-TY PES
ADD-SQL-STREAM
ADD-TRANSACTION-COMMIT-HOOK
ADD-TRANSACTION-ROLLBACK-HOOK
ATTRIBUTE-TYPE
BIND-PARAMETER
CACHE-TABLE-QUERIES

COMMIT

CONNECT
CONNECTED-DATABASES
CREATE-DATABASE
CREATE-INDEX
CREATE-LARGE-OBJECT
CREATE-SEQUENCE
CREATE-TABLE

CREATE-VIEW
CREATE-VIEW-FROM-CLASS
DATABASE

DATABASE-NAME
DATABASE-TYPE
DEF-VIEW-CLASS
DELETE-INSTANCE-RECORDS
DELETE-LARGE-OBJECT
DELETE-RECORDS
DELETE-SQL-STREAM
DESCRIBE-TABLE
DESTROY-DATABASE
DISABLE-SQL-READER-SYNTAX
DISCONNECT
DISCONNECT-POOLED
DO-QUERY

DROP-INDEX

DROP-SEQUENCE

DROP-TABLE

DROP-VIEW
DROP-VIEW-FROM-CLASS
ENABLE-SQL-READER-SYNTAX
EXECUTE-COMMAND
FIND-DATABASE
FOR-EACH-ROW
FREE-PREPARED-SQL
IN-TRANSACTION-P
INDEX-EXISTS-P
INITIALIZE-DATABASE-TYPE

INSTANCE-REFRESHED
LIST-ATTRIBUTE-TYPES
LIST-ATTRIBUTES
LIST-CLASSES
LIST-DATABASES
LIST-INDEXES
LIST-SEQUENCES
LIST-SQL-STREAMS
LIST-TABLE-INDEXES
LIST-TABLES

LIST-VIEWS
LOCALLY-DISABLE-SQL-READER-SYNTAX
LOCALLY-ENABLE-SQL-READER-SYNTAX
LOOP-FOR-AS-TUPLES
MAP-QUERY

PREPARE-SQL
PROBE-DATABASE

QUERY

READ-LARGE-OBJECT
RECONNECT
RESTORE-SQL-READER-SYNTAX-STATE
ROLLBACK
RUN-PREPARED-SQL

SELECT

SEQUENCE-EXISTS-P
SEQUENCE-LAST
SEQUENCE-NEXT
SET-AUTOCOMMIT
SET-SEQUENCE-POSITION

SoL

SQL-EXPRESSION
SQL-OPERATION
SQL-OPERATOR
SQL-RECORDING-P
SQL-STREAM
START-SQL-RECORDING
START-TRANSACTION

STATUS
STOP-SQL-RECORDING
TABLE-EXISTS-P
TRUNCATE-DATABASE
UPDATE-INSTANCE-FROM-RECORDS
UPDATE-OBJECTS-JOINS
UPDATE-RECORD-FROM-SLOT
UPDATE-RECORD-FROM-SLOTS
UPDATE-RECORDS
UPDATE-RECORDS-FROM-INSTANCE
UPDATE-SLOT-FROM-RECORD
VIEW-EXISTS-P
WITH-DATABASE
WITH-DEFAULT-DATABASE
WITH-TRANSACTION

159

Alphabetical Index for package CLSQL

INSERT-RECORDS WRITE-LARGE-OBJECT

160

Appendix A. Database Back-ends
PostgreSQL

Libraries

The PostgreSQL back-end requires the PostgreSQL C client library (I i bpg. so). The location of thislibrary is spe-
cified via *postgresgl-so-load-path*, which defaults to / usr/1i b/ 1i bpg. so. Additional flags to Id needed for
linking are specified via* postgresgl-so-libraries*, which defaults to ("-lcrypt” "-Ic").

Initialization

Use
(asdf: operate 'asdf:|oad-op 'clsql-postgresql)
to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresql.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment variables (see
PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the C client library are

used.

host String representing the hostname or 1P address the PostgreSQL server resides on. Use the empty
string to indicate a connection to localhost via Unix-Domain sockets instead of TCF/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

passwor d String representing the unencrypted password to use for authentication.

port String representing the port to use for communication with the PostgreSQL server.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL server.

PostgreSQL Socket

161

Database Back-ends

Libraries

The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it communicates directly
with the PostgreSQL server using the published frontend/backend protocol, version 2.0. This eases installation and
makes it possible to dump CMU CL images containing CLSQL and this backend, contrary to backends which re-

quire FFI code.

Initialization

Use

(asdf: operate 'asdf:|oad-op 'clsql-postgresqgl-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is

:postgresgl-socket.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host

db
user

password
port

options

tty

MySQL

Libraries

If thisis a string, it represents the hostname or |P address the PostgreSQL server resides on. In
this case communication with the server proceeds via a TCP connection to the given host and
port.

If this is a pathname, then it is assumed to name the directory that contains the server's Unix-
Domain sockets. The full name to the socket is then constructed from this and the port number
passed, and communication will proceed via a connection to this unix-domain socket.

String representing the name of the database on the server to connect to.

String representing the user name to use for authentication.

String representing the unencrypted password to use for authentication. This can be the empty
string if no password is required for authentication.

Integer representing the port to use for communication with the PostgreSQL server. This de-
faults to 5432.

String representing further runtime options for the PostgreSQL server.

String representing the tty or file to use for debugging messages from the PostgreSQL server.

162

Database Back-ends

The MySQL back-end requires the MySQL C client library (Ii brysqgl cl i ent . so). The location of this library is
specified via * mysqgl-so-load-path*, which defaults to /usr/1i b/ 1ibmysgl client.so. Additiona flags to Id
needed for linking are specified via * mysgl-so-libraries*, which defaults to ("-Ic").

Initialization

Use

(asdf: operate 'asdf:load-op 'clsqgl-nysql)

to load the MySQL back-end. The database type for the MySQL back-end is :mysql.
Connection Specification

Syntax of connection-spec

(host db user password)

Description of connection-spec

host String representing the hostname or |P address the MySQL server resides on, or nil to indicate
the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix user
ID.

passwor d String representing the unencrypted password to use for authentication, or nil if the authentica-

tion record has an empty password field.

ODBC

Libraries

The ODBC back-end requires access to an ODBC driver manager as well as ODBC drivers for the underlying data-
base server. CLSQL has been tested with unixODBC ODBC Driver Manager as well as Microsoft's ODBC manager.
These driver managers have been tested with the psqlODBC [http://odbc.postgresql.org] driver for PostgreSQL and
the MyODBC [http://www.mysqgl.com/products/connector/odbc/] driver for MySQL.

Initialization

Use
(asdf: operate 'asdf:|oad-op 'clsql-odbc)

to load the ODBC back-end. The database type for the ODBC back-end is :odbc.

163

http://odbc.postgresql.org
http://www.mysql.com/products/connector/odbc/

Database Back-ends

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.
user String representing the user name to use for authentication.
passwor d String representing the unencrypted password to use for authentication.

AODBC

Libraries

The AODBC back-end requires access to the ODBC interface of AllegroCL named DBI. This interface is not avail-
ablein thetrial version of AllegroCL

Initialization

Use

(require 'aodbc-v2)
(asdf: operate 'asdf:|oad-op 'clsql-aodbc)

to load the AODBC back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.
user String representing the user name to use for authentication.
passwor d String representing the unencrypted password to use for authentication.

SQLite

164

Database Back-ends

Libraries

The SQL ite back-end requires the SQL ite shared library file. Its default file nameis/usr/1ib/1ibsqglite. so.

Initialization

Use

(asdf:operate 'asdf:load-op 'clsql-sqglite)

to load the SQL ite back-end. The database type for the SQL ite back-end is :sqlite.
Connection Specification

Syntax of connection-spec

(fil enane)

Description of connection-spec

fil enane String representing the filename of the SQL ite databasefile.

Oracle

Libraries

The Oracle back-end requires the Oracle OCI client library. (1 i bcl nt sh. so). The location of this library is spe-
cified relative to the ORACLE_HOME value in the operating system environment. CLSQL has tested sucessfully
using the client library from Oracle 9i and Oracle 10g server installations as well as Oracle's 10g Instant Client lib-
rary.

Initialization

Use
(asdf : operate 'asdf:load-op 'clsqgl-oracle)

to load the Oracle back-end. The database type for the Oracle back-end is :oracle.

Connection Specification

Syntax of connection-spec

(gl obal - nane user password)

Description of connection-spec

165

Database Back-ends

gl obal - name String representing the global name of the Orace database. Thisis looked up through the
tnsnames.orafile.

user String representing the user name to use for authentication.

passwor d String representing the password to use for authentication..

166

Glossary

Note

This glossary is till very thinly populated, and not all referencesin the main text have been properly linked
and coordinated with this glossary. Thiswill hopefully change in future revisions.

Attribute

Active database
Connection
Column

Data Definition
(DDL)

Language

Data Manipulation Language
(DML)

database

Database Object

Field

Field Types Specifier

Interface

Foreign Function

(FFI)

Query

RDBMS

Record

Row

Structured Query Language
(SQL)

A property of objects stored in a database table. Attributes are represented as
columns (or fields) in atable.

See Database ObjectAn object of type database..

See Database ObjectAn object of type database..

See Attribute A property of objects stored in a database table. Attributes are rep-
resented as columns (or fields) in atable. .

The subset of SQL used for defining and examining the structure of a database.
The subset of SQL used for inserting, deleting, updating and fetching datain a
database.

See Database ObjectAn object of type database..

An object of type database.

See Attribute A property of objects stored in a database table. Attributes are rep-
resented as columns (or fields) in atable. .

A value that specifies the type of each field in aquery.

An interface from Common Lisp to a external library which contains compiled
functions written in other programming languages, typically C.

An SQL statement which returns a set of results.

A Relational DataBase Management System (RDBMYS) is a software package
for managing a database in which the data is defined, organised and accessed as
rows and columns of atable.

A sequence of attribute values stored in a database table.

See Record A seguence of attribute values stored in a database table. .

An ANSI standard language for storing and retrieving data in a relational data
base.

167

Glossary

SQL Expression
Either a string containing a valid SQL statement, or an object of type sql-

expression.

Table
A collection of data which is defined, stored and accessed as tuples of attribute
values (i.e., rows and columns).

Transaction
An atomic unit of one or more SQL statements of which al or none are success-
fully executed.

Tuple See Record A sequence of attribute values stored in a database table. .

View

A table display whose structure and content are derived from an existing table
viaaquery.

168

	CLSQL Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	History
	Prerequisites
	ASDF
	UFFI
	MD5
	Supported Common Lisp Implementation
	Supported SQL Implementation

	Installation
	Ensure ASDF is loaded
	Build C helper libraries
	Microsoft Windows
	UNIX

	Add UFFI path
	Add MD5 path
	Add CLSQL path and load module
	Run test suite (optional)

	Chapter 2. CommonSQL Tutorial
	Introduction
	Data Modeling with CLSQL
	Class Relations
	Object Creation
	Finding Objects
	Deleting Objects
	Conclusion

	Connection and Initialisation
	DATABASE
	CONNECT-IF-EXISTS
	DEFAULT-DATABASE
	DEFAULT-DATABASE-TYPE
	INITIALIZED-DATABASE-TYPES
	CONNECT
	CONNECTED-DATABASES
	CREATE-DATABASE
	DATABASE-NAME
	DATABASE-TYPE
	DESTROY-DATABASE
	DISCONNECT
	DISCONNECT-POOLED
	FIND-DATABASE
	INITIALIZE-DATABASE-TYPE
	LIST-DATABASES
	PROBE-DATABASE
	RECONNECT
	STATUS
	TRUNCATE-DATABASE
	WITH-DATABASE
	WITH-DEFAULT-DATABASE

	The Symbolic SQL Syntax
	ENABLE-SQL-READER-SYNTAX
	DISABLE-SQL-READER-SYNTAX
	LOCALLY-ENABLE-SQL-READER-SYNTAX
	LOCALLY-DISABLE-SQL-READER-SYNTAX
	RESTORE-SQL-READER-SYNTAX-STATE
	SQL
	SQL-EXPRESSION
	SQL-OPERATION
	SQL-OPERATOR

	Functional Data Definition Language (FDDL)
	CREATE-TABLE
	DESCRIBE-TABLE
	DROP-TABLE
	LIST-TABLES
	TABLE-EXISTS-P
	CREATE-VIEW
	DROP-VIEW
	LIST-VIEWS
	VIEW-EXISTS-P
	CREATE-INDEX
	DROP-INDEX
	INDEX-EXISTS-P
	LIST-INDEXES
	LIST-TABLE-INDEXES
	ATTRIBUTE-TYPE
	LIST-ATTRIBUTE-TYPES
	LIST-ATTRIBUTES
	CREATE-SEQUENCE
	DROP-SEQUENCE
	LIST-SEQUENCES
	SEQUENCE-EXISTS-P
	SEQUENCE-LAST
	SEQUENCE-NEXT
	SET-SEQUENCE-POSITION

	Functional Data Manipulation Language (FDML)
	CACHE-TABLE-QUERIES-DEFAULT
	BIND-PARAMETER
	CACHE-TABLE-QUERIES
	DELETE-RECORDS
	DO-QUERY
	EXECUTE-COMMAND
	FOR-EACH-ROW
	FREE-PREPARED-SQL
	INSERT-RECORDS
	LOOP-FOR-AS-TUPLES
	MAP-QUERY
	PREPARE-SQL
	PRINT-QUERY
	QUERY
	RUN-PREPARED-SQL
	SELECT
	UPDATE-RECORDS

	Transaction Handling
	ADD-TRANSACTION-COMMIT-HOOK
	ADD-TRANSACTION-ROLLBACK-HOOK
	COMMIT
	IN-TRANSACTION-P
	ROLLBACK
	SET-AUTOCOMMIT
	START-TRANSACTION
	WITH-TRANSACTION

	Object Oriented Data Definition Language (OODDL)
	STANDARD-DB-OBJECT
	DEFAULT-VARCHAR-LENGTH
	CREATE-VIEW-FROM-CLASS
	DEF-VIEW-CLASS
	DROP-VIEW-FROM-CLASS
	LIST-CLASSES

	Object Oriented Data Manipulation Language (OODML)
	DB-AUTO-SYNC
	DEFAULT-UPDATE-OBJECTS-MAX-LEN
	DELETE-INSTANCE-RECORDS
	INSTANCE-REFRESHED
	UPDATE-INSTANCE-FROM-RECORDS
	UPDATE-OBJECTS-JOINS
	UPDATE-RECORD-FROM-SLOT
	UPDATE-RECORD-FROM-SLOTS
	UPDATE-RECORDS-FROM-INSTANCE
	UPDATE-SLOT-FROM-RECORD

	SQL I/O Recording
	ADD-SQL-STREAM
	DELETE-SQL-STREAM
	LIST-SQL-STREAMS
	SQL-RECORDING-P
	SQL-STREAM
	START-SQL-RECORDING
	STOP-SQL-RECORDING

	CLSQL Condition System
	BACKEND-WARNING-BEHAVIOR
	SQL-CONDITION
	SQL-ERROR
	SQL-WARNING
	SQL-DATABASE-WARNING
	SQL-USER-ERROR
	SQL-DATABASE-ERROR
	SQL-CONNECTION-ERROR
	SQL-DATABASE-DATA-ERROR
	SQL-TEMPORARY-ERROR
	SQL-TIMEOUT-ERROR
	SQL-FATAL-ERROR

	Large Object Support
	CREATE-LARGE-OBJECT
	DELETE-LARGE-OBJECT
	READ-LARGE-OBJECT
	WRITE-LARGE-OBJECT

	CLSQL-SYS
	DATABASE-INITIALIZE-DATABASE-TYPE

	Index
	Alphabetical Index for package CLSQL

	Appendix A. Database Back-ends
	PostgreSQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	PostgreSQL Socket
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	MySQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	ODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	AODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	SQLite
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Oracle
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Glossary

