X-Git-Url: http://git.kpe.io/?a=blobdiff_plain;f=libctsim%2Ffilter.cpp;h=d3a3fbdfaf01ed399ba8e2923a55ee0fd75e3443;hb=03c4bc505de131323cbc70a70bdceda9229269bf;hp=27d1829380ae5224feff90fb221a801079884f20;hpb=a8ba12a8c971de1d8cb3ef1c3a7d2d9fcf45affa;p=ctsim.git diff --git a/libctsim/filter.cpp b/libctsim/filter.cpp index 27d1829..d3a3fbd 100644 --- a/libctsim/filter.cpp +++ b/libctsim/filter.cpp @@ -9,7 +9,7 @@ ** This is part of the CTSim program ** Copyright (C) 1983-2000 Kevin Rosenberg ** -** $Id: filter.cpp,v 1.8 2000/07/04 18:33:35 kevin Exp $ +** $Id: filter.cpp,v 1.9 2000/07/04 22:21:01 kevin Exp $ ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License (version 2) as @@ -115,6 +115,7 @@ SignalFilter::init (const FilterID filterID, const FilterMethodID filterMethodID m_fail = true; return; } + m_traceLevel = TRACE_NONE; m_nameFilter = convertFilterIDToName (m_idFilter); m_nameDomain = convertDomainIDToName (m_idDomain); m_nameFilterMethod = convertFilterMethodIDToName (m_idFilterMethod); @@ -133,9 +134,9 @@ SignalFilter::init (const FilterID filterID, const FilterMethodID filterMethodID m_vecFourierSinTable[i] = sin (angleIncrement * i); } m_nFilterPoints = m_nSignalPoints; - m_filterMin = 0; - m_filterMax = m_nSignalPoints * m_signalInc; - m_filterInc = (m_filterMax - m_filterMin) / (m_nFilterPoints - 1); + m_filterMin = -1. / (2 * m_signalInc); + m_filterMax = 1. / (2 * m_signalInc); + m_filterInc = (m_filterMax - m_filterMin) / m_nFilterPoints; m_vecFilter = new double [m_nFilterPoints]; int halfFilter = m_nFilterPoints / 2; for (int i = 0; i < halfFilter; i++) @@ -143,7 +144,7 @@ SignalFilter::init (const FilterID filterID, const FilterMethodID filterMethodID for (int i = 0; i < halfFilter; i++) m_vecFilter[m_nFilterPoints - i - 1] = static_cast(i) / (halfFilter - 1) / (2 * m_signalInc); if (halfFilter % 2) // odd - m_vecFilter[halfFilter] = 1; + m_vecFilter[halfFilter] = 1 / (2 * m_signalInc); } else if (m_idFilterMethod == FILTER_METHOD_FFT || m_idFilterMethod == FILTER_METHOD_FFT_ZEROPAD_2 || m_idFilterMethod == FILTER_METHOD_FFT_ZEROPAD_4) { m_nFilterPoints = m_nSignalPoints; if (m_idFilterMethod == FILTER_METHOD_FFT_ZEROPAD_2 || m_idFilterMethod == FILTER_METHOD_FFT_ZEROPAD_4) { @@ -156,9 +157,9 @@ SignalFilter::init (const FilterID filterID, const FilterMethodID filterMethodID m_nFilterPoints = 1 << nextPowerOf2; cout << "nFilterPoints = " << m_nFilterPoints << endl; } - m_filterMin = 0; - m_filterMax = m_nSignalPoints * m_signalInc; - m_filterInc = (m_filterMax - m_filterMin) / (m_nFilterPoints - 1); + m_filterMin = -1. / (2 * m_signalInc); + m_filterMax = 1. / (2 * m_signalInc); + m_filterInc = (m_filterMax - m_filterMin) / m_nFilterPoints; m_vecFilter = new double [m_nFilterPoints]; int halfFilter = m_nFilterPoints / 2; for (int i = 0; i < halfFilter; i++) @@ -166,7 +167,7 @@ SignalFilter::init (const FilterID filterID, const FilterMethodID filterMethodID for (int i = 0; i < halfFilter; i++) m_vecFilter[m_nFilterPoints - i - 1] = static_cast(i) / (halfFilter - 1) / (2 * m_signalInc); if (halfFilter % 2) // odd - m_vecFilter[halfFilter] = 1; + m_vecFilter[halfFilter] = 1 / (2 * m_signalInc); #if HAVE_FFTW m_planForward = fftw_create_plan (m_nFilterPoints, FFTW_FORWARD, FFTW_ESTIMATE); @@ -364,11 +365,24 @@ SignalFilter::filterSignal (const float input[], double output[]) const complex complexOutput[m_nSignalPoints]; complex filteredSignal[m_nSignalPoints]; finiteFourierTransform (input, fftSignal, m_nSignalPoints, -1); + if (m_traceLevel >= TRACE_PLOT) { + double test[m_nSignalPoints]; + for (int i = 0; i < m_nSignalPoints; i++) + test[i] = abs(fftSignal[i]); + ezplot_1d(test, m_nSignalPoints); + cio_kb_getc(); + } dotProduct (m_vecFilter, fftSignal, filteredSignal, m_nSignalPoints); + if (m_traceLevel >= TRACE_PLOT) { + double test[m_nSignalPoints]; + for (int i = 0; i < m_nSignalPoints; i++) + test[i] = abs(filteredSignal[i]); + ezplot_1d(test, m_nSignalPoints); + cio_kb_getc(); + } finiteFourierTransform (filteredSignal, complexOutput, m_nSignalPoints, 1); - for (int i = 0; i < m_nSignalPoints; i++) { + for (int i = 0; i < m_nSignalPoints; i++) output[i] = abs( complexOutput[i] ); - } } else if (m_idFilterMethod == FILTER_METHOD_FFT || FILTER_METHOD_FFT_ZEROPAD_2 || FILTER_METHOD_FFT_ZEROPAD_4) { fftw_complex in[m_nFilterPoints], out[m_nFilterPoints]; for (int i = 0; i < m_nSignalPoints; i++) { @@ -379,11 +393,32 @@ SignalFilter::filterSignal (const float input[], double output[]) const in[i].re = in[i].im = 0; // ZeroPad } fftw_one(m_planForward, in, out); + if (m_traceLevel >= TRACE_PLOT) { + double test[m_nFilterPoints]; + for (int i = 0; i < m_nFilterPoints; i++) + test[i] = sqrt(out[i].re * out[i].re + out[i].im * out[i].im); + ezplot_1d(test, m_nFilterPoints); + cio_kb_getc(); + } for (int i = 0; i < m_nFilterPoints; i++) { out[i].re = m_vecFilter[i] * out[i].re / m_nSignalPoints; out[i].im = m_vecFilter[i] * out[i].im / m_nSignalPoints; } + if (m_traceLevel >= TRACE_PLOT) { + double test[m_nFilterPoints]; + for (int i = 0; i < m_nFilterPoints; i++) + test[i] = sqrt(out[i].re * out[i].re + out[i].im * out[i].im); + ezplot_1d(test, m_nFilterPoints); + cio_kb_getc(); + } fftw_one(m_planBackward, out, in); + if (m_traceLevel >= TRACE_PLOT) { + double test[m_nFilterPoints]; + for (int i = 0; i < m_nFilterPoints; i++) + test[i] = sqrt(in[i].re * in[i].re + in[i].im * in[i].im); + ezplot_1d(test, m_nFilterPoints); + cio_kb_getc(); + } for (int i = 0; i < m_nSignalPoints; i++) output[i] = sqrt (in[i].re * in[i].re + in[i].im * in[i].im); }