AVR Compiler Abstraction Layer

Introduction
Scope of Document
The need for compiler abstractions in AVR programming
Robust programming of AVR microcontrollers requires features that are not supported by the C language specification.
Overview of Abstractions Supported
Memory Spaces
Static RAM
Normal memory space as used by C programs. Limited in sized, so constant data (such as character strings) are usually stored in Flash RAM only.
Flash RAM
Used to store constant data.
Some compilers make access to flash RAM data transparent, however to support all AVR C compilers, special functions to read flash RAM are used.
EEPROM
Used to store non-volatile data. Like flash RAM, special functions are used to read and write EEPROM to support all AVR C compilers.
Compiler-specific header file loading
For example, IAR uses <ioavr.h> to load the register definitions for an AVR part where as GCC uses <avr/io.h>.
Force inline function declaration
Intrinsics
Generally translates to one assembly operation
Special intrinsic C definitions provided by IAR to avoid inline assembly and the compiler from having to assume inline assembly may have changed a register value
Inline assembly language
Simple, one-line assembly instructions supported
Interrupt Service Routines
Delay functions
Requires the CPU speed to be defined as F_CPU preprocessor macro.
Will be accurate on IAR, CodeVision, and GCC. ImageCraft will be supported, but with less accuracy.
Register storage of variables
Provides faster access to variable data for time-critical needs.
Non-initialization of global and static variables
IAR and GCC provide declarations to prevent global and static variables from being initialized to 0 as would normally be required in the C language specification.
Differences of register and bit names
For example, the “I” bit of SREG is defined as “SREG_I” on GCC, but as “I” on IAR.
main() function declaration and return value
Documentation of Abstractions
This section basically mirrors the overview of abstractions setting, but gives detailed information about each abstraction
Feature/Compiler Support Table
A matrix of which abstraction is supported on which compiler.
Several levels of abstraction
Unsupported
Supported, but not optimally efficient code
Supported 
Discussion of Sample Program
Perhaps using the serial_lcd program at http://www.avrcode.com/serial_lcd/ which already runs on IAR, GCC, ImageCraft, and CodeVision
Conclusion
Compiler-independent programs can be written
Pros
Single code base to support
Can support users using a variety of AVR C compilers
Cons
Learning and employing a compiler abstraction layer
Not taking advantage of AVR-specific features or efficiencies provided by only some AVR C-compilers


