CLSQL Users' Guide

by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Develop-
ment, Inc.

CLSQL Users' Guide

by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Development, Inc.

¢ CLSQL is Copyright © 2002-2004 by Kevin M. Rosenberg, Copyright © 1999-2001 by Pierre R. Mai, and Copyright © 1999-2003 onShore
Development, Inc.

« Allegro CL® isaregistered trademark of Franz Inc.

e Common SQL, LispWorks and Xanalys are trademarks or registered trademarks of Xanalys Inc.

¢ Oracle® isaregistered trademark of Oracle Inc.

¢ Microsoft Windows® is aregistered trademark of Microsoft Inc.

¢ Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents

P e B . e e

O 1 1o o [N o 1o o PPN
U010 = PP UPTUPTN 1
LS 0] Y/ 1
L 1= 1= 0 011 == 1
S PSPPSR 1
L1 1
L P 1
Supported Common Lisp IMpPlementationc..oiiuiiiiiii e 2
Supported SQL IMPIemMENLELIONoieiiiiei e e e e e e e eans 2
F0TS = = o) o OSSP 2
ENSUre ASDF IiS1080E0iiiiiiiiie e 2
BUild C helper [IDrariEsiieeie e 2
F X (o B | 0 7 1o PRSPPI 3
AdA MDS PAEN v a e 3
Add CLSQL pathand 10ad MOAUIEoeuiiie e e 3
L0 (== S O TR L= (o] Ko g ! 3

2. COMMONSQL TULOI@l v.iveiitiit it e et e e et e e e e et e et e et e et e e st e e bt e eb e et e et eeneens
Tp 10 oo (8 ool o H PP SPPRT 4
Data Modeling With CLSQLoeuuiiiiii ettt ettt et e e eni e eenens 4
ClBSS REIGLIONS ... ettt et e et e et e et e et e e e e anaas 6
L@ o 1= ox A O == 1 o 8
[T [T @] o= ox 9
(1= 1= (] aTo o= £ 10
(00 3To: 111 T o [PPSR 11

I. Connection and TNItIaliSAHONccuiiiniiiiii e e e e e e e e e e e et e e e et e et e e e eanns
DA T ABASE ..ot e e e e et e e et e e et aaaa 13
FCONNECT AL F-EX ST S ittt e e e et e e e et e e e e as 14
FDERAULT-DATABASE® .. ot e s 15
FDEFAULT-DATABASE-TY PEY ..ottt 17
FINITIALIZED-DAT ABA SE-TY PES ..o 18
0@ |\ PP 19
CONNECTED-DATABASES ...ttt e et e et e et e e eeaans 22
[AN N 2 7 N el N N PN 24
DATABASE-NAME-FROM-SPECiiiiiiiiiiiiiiiie et e et eeeaaa e eees 26
DA T AB A SE-TY PE oo e et e e e e e e a e 28
D11 @0 |\ N | = P 30
DISCONNECT-POOLEDciiiitiieiiiitite et e et e e et e e e et e e e e et e e e eata e e e eata e aeaeataaeaaes 32
FIND -DAT ABASE ..o e e e e e e e e e e e et e e e e et e e e aata e eaaes 33
INITIALIZE-DATABASE-TYPE ..ottt e e e e e e 35
RECONNECT ... uiiiiitie ettt e et a e e ettt e e e e et e e e e e e e e e eate e e e eeteaaeaeetnaeeees 37
S AN 1O 15 T PP 39
CREA T E- DA T ABASE ... e e e e e e e e e e 41
DESTROY -DA T ABASE ..ottt e e e e e e e et e e e e et e e e aata e aaaa 43
PROBE-DATABASE ... oottt e et e e e et e e e e et e e e e et e e e eett e e e eataaaeaees 45
LIST-DATABASES ... ittt e e e ettt e e e et e e e e et e e e eate e e e eettnaeeaateaaaees 47
WITH-DATABASE ..ottt e e ettt e e et e e e e et e e e et e e e eaanes 49
WITH-DEFAULT-DATABASE ..ottt e e e e 51

[1. The SymbOolic SQL SYNEBXcceuuniiiiiiieeeit ettt e e et e et e e e et e e e eae e e e eabaaeeeees
ENABLE-SQL-READER-SY NTAX iittiiiiiitiietiii ettt e et a e e et e e e e et e e e e et s e e aat e e aaataaaaees 54
DISABLE-SQL-READER-SY NTAX .ttiiiiiiiietiiie ettt e et e e e e et a e e et e e e eet e e aearenaeaees 55
LOCALLY-ENABLE-SQL-READER-SYNTAX ittt et e et e e et eeeeaninaeeees 56
LOCALLY-DISABLE-SQL-READER-SY NTAX .ottt e et eeeana e 58

CLSQL Users Guide

RESTORE-SQL-READER-SYNTAX-STATE ..ottt et 60
S PRSP 61
S @ IR)] 63
SQL-OPERATION ...ttt ettt e e et e et e e e et e e et e e et e e e tn e e e ea e eet e aetnaeeanaeees 65
SQL-OPERATOR ...uueiiiiiieet ittt e e e et e et e e e et e e e e et e e e e ast e e e e eat e e e eeatn s eeeesanneeeesnns 67
I11. Functional Data Definition Language (FDDL)couiiiniiiii e
L@ N o 17 = PP 70
DROP-TABLE ... ittt ettt e e et e e e e et e e et et e et e et e e e eaba e aae 72
I S I 7N = I S PP 74
TABLE-EX ST S P e et 76
L0 NN I Y 78
DROP-VIEW .ottt e et e e et e e e e et e e e e et e e e eate e e e eettnaeeaatnnaeaees 80
LIST-VIEWS oottt e ettt e ettt e e e e et e e e e et e e e eete e e eeett e aeeeataaeaees 82
VIEW-EXTSTS P oottt et e et e et e eeeaan s 84
L0 NN I 1 N 0 86
DROP-INDEX ..ottt ettt e e et e e et e e et e et e e et e e et e e et e e e an e e eaaaeaa e 88
[IS I LN g S PN 90
INDEX-EXISTS P ..ttt et e e et e e e e et e e e e et e e e e et e e e e eaan s 92
ATTRIBUTE-TY PE .ottt et e et e e et e e e e aan s 94
LIST-ATTRIBUTE-TYPES ...ttt et e et e e e e et s e e e et e e e eabaaeeees 96
LIST-ATTRIBUTES ...ttt ettt e e e e e e et e e e e et e e et s e et e e ean e eeenneeennaees 98
CREATE-SEQUENCE ..ottt et e et e et e e et e e e et e e et e aeanaaes 100
DROP-SEQUENCE ... coiitiiiiiiiie et e et e e et e e e e et e e e e et e e e e et e e e e et e e e erenns 102
LIST-SEQUENGCESottt e e e e e e e et e e e e et e e e et e e e e et e e e e et e eeeaann s 104
SEQUENCE-EXISTS P ettt e e e e et e e e et e eees 106
SEQUEN CE-LAST .ottt ettt e et e e e ettt e e e e et e e e eaba e eeeetenaeeees 108
S 0 18] = VL@ 1 G P 110
SET-SEQUENCE-POSITION ...ttt e e et e e e e e e et eeeaeeeanaaes 112
TRUNCATE-DATABASE ..ot et e et e e e e aeaens 114
IV. Functional Data Manipulation Language (FDML)ciuuiiiiiii e
*CACHE-TABLE-QUERIES-DEFAULT™ ...ciiiiiiiei ettt e e e 117
CACHE-TABLE-QUERIES ottt et e e eaa e 118
INSERT-RECORDSootiiiiieii ettt e e e e e e et e e et e e e e e eta e e e e e e aa e eeaneeeenaeeees 120
UPDATE-RECORDS ..ottt e e et et e et e et e e et e e et e e e tn e een e eennes 122
DELETE-RECORDScoitiiiiiiiiit ettt e et e et s e e et e e et a e e e et e e e e et e e e e et e e e e et e eaeren s 124
EXECUTE-COMMANDouiiiiiiiie ettt e e e e et e e e et e e e e et e e e e et e e e eaan s 126
L@ PSPPI 128
PRINT-QUERY .ttt e et e et e e et e e e et e e e et e e e eaan s 131
S P 133
DO-QUE RY ettt et e et e aaas 137
FOR-EACH-ROWeiiiiiiii et e e et e e e et e e e e et e e e e et e e e e et e e e e eren s 139
[P 140
MAP-QUERY ...ttt e et e e et n e e et e et e e e et a e 142
PREPARE-SQL .. ittt ettt e et e ettt e s 145
RUN-PREPARED-SQLiitiiiiiietii ettt e e e e e e e e et e e et e e e et e e et e e ean s eean e aaneeennes 146
FREE-PREPARED-SOQLuuiiiiiiiieiiiii ettt e e e e e e e e et e e e e et s e e e et s e e e e aa e e eaeran s 147
BIND-PARAMETER ...ttt et e e e et e e e et e e e et e e e e et eeeeaan s 148
AV I =0 15" o o T o (1T o
START-TRANSACTION ...ttt e et e e e et e e e e et e e e e et e e e eeteaaeeee 150
L0 1Y I PSPPSRI 152
I 2 N 1 154
IN-TRANSACTION-P ..t e e e et e e et e e et e e eanaeeees 156
ADD-TRANSACTION-COMMIT-HOOKuuiiiiiiiiiiiiiiiii et e e e e e e e e 158
ADD-TRANSACTION-ROLLBACK-HOOKciitiiiiiiiiiiieeiiiie e 160
SET-AUTOCOMMIT .ttt e et e e et e e e e et e e e e et e e e eata e eeeatenaeeees 162
WITH-TRANSACTION ..ottt e et e e e e e e e aan s 164
V1. Object Oriented Data Definition Language (OODDL)ccouuuiieiiiiiiieeiiie e eees
STANDARD-DB-OBUIECT ...ttt ettt e e e et e e et e e et e e et e e e e e et e e eaeeeanaaes 167

CLSQL Users Guide

*DEFAULT-VARCHAR-LENGTHY .ot
CREATE-VIEW-FROM-CLASS ...ttt e e e e e
DEF-VIEW-CLASS ... ittt ettt ettt e e e e enas
DROP-VIEW-FROM-CLASS ...ttt ettt e
LIST-CLASSES ... ittt ettt

V1. Object Oriented Data Manipulation Language (OODML)uiiuniiiiiiiieeiie e

FDB-AUTO-SYNCH ittt e e et
*DEFAULT-UPDATE-OBJECTS-MAX-LENY .. e
DELETE-INSTANCE-RECORDS ... ottt ettt e
INSTANCE-REFRESHEDcootiiiitiiiitiei ettt
UPDATE-INSTANCE-FROM-RECORDSc.oiiiiiiiiiiiiii et
UPDATE-OBJECTS-JOINS ...t
UPDATE-RECORD-FROM-SLOT ..ottt ettt e s
UPDATE-RECORD-FROM-SLOTS ..ottt
UPDATE-RECORDS-FROM-INSTANCE ..ottt
UPDATE-SLOT-FROM-RECORDcouiiiiiiiiiiiiiie ittt e e

VI SQL I/O RECOITING ..cevtiieieeiiie ettt e e e et e e e et e e e rb e e enna s

ADD-SQL-STREAM ..ot e e e
DELETE-SQL-STREAM ... eeteteeeeeeeeeeeeeeeeeeeeeee e eeeeee et eee et et et et et et et et et e eeeee e et et eeeeeeeeeeeeenn.
LIST-SQL-STREAMS ..ottt ee et et et ettt et et e e et et ee et et et et et eeee e et et et eteeeeeeeeeeene.
SQL-RECORDING-P ..ottt ettt e ettt
SOL-STREAM ...ttt ettt ettt et et e et et et ee e et e et et ee et ee e eeeneneees
START-SQL-RECORDINGeeeeteeeeeseseseeeeeseseseeeeeee e e e s e s see e seeeseneeen.
STOP-SQL-RECORDINGeceeeeeeeeeeeeeseeeeeeeeee e et ee s eeeee s e eeeeseeeseeeeen.

IX. CLSQL CONitiON SYSEEM ...euuiiiiiiieiieee e e e e e e e e e e e e e e et e e et s e e aa e e et e e et e eetn e eanaees

*BACKEND-WARNING-BEHAVIOR ...t
SQL-CONDITION .ottt et e e e et e et r et et e et e e e e eennees
SQL-ERROR ...t
SOQL-WARNING .ot e e
SQL-DATABASE-WARNINGo
SQL-USER-ERROR ..ottt ettt e e e e e e e e e e e e enne e eees
SQL-DATABASE-ERROR ..ottt ettt e e e e e e e
SQL-CONNECTION-ERROR ..ottt et e e e e
SQL-DATABASE-DATA-ERROR .. .ottt
SQL-TEMPORARY -ERROR ... ittt
SQL-TIMEOUT-ERROR ...ttt
SQL-FATAL-ERROR ... ittt ettt et e e e e e e eees

D QI 01T @] o 1= ox 1 o] oo o

CREATE-LARGE-OBUIECT ..ottt ettt et et e e e
DELETE-LARGE-OBJIECT ...ttt ettt ettt e e e
READ-LARGE-OBUJIECT ...coiiiiiiiiiiiee ettt ettt e e
WRITE-LARGE-OBJECT ..ot

X1 CLSQL-SY'S ettt ettt ettt ettt ettt ettt ettt

DATABASE-INITIALIZE-DATABASE-TYPE ..o

D LI 1 010 1= TP

Alphabetical Index for package CLSQLuuuiiiiiiieiiii e

NI = 0 s Sl ST o = 010 R

01 (0T | PPN
[o= 1=

Fa TR T2 (o PP PRT
CoNNECEiON SPECITICALTIONceeeieiee e
POSIGrESQL SOCKEL ... ettt ettt e et e e e e e
(] = 1= ST PT PR
INITTAIIZATON «..ee e et et e
CoNNECtioN SPECITICAION ..ouvuiiii e e e e e e e e e e eaes
2
o=
TN = 2= o o PP

Vi

CLSQL Users Guide

CoNNECtioN SPECITICAIONvuiiii e e e e e e e e e eees 219
L@ 3] =T PSPPI 219
(] o= =SSR 219
T T U= 14 1 Lo o R PP 219
CoNNECtioN SPECITICALTON ... e e eees 220
@ 1] =T ST 220
[T o = = PP 220
Fa TR T2 (o PRSP 220
CoNNECEiON SPECITICALTIONceieieiei et 220
S R (= TSP 220
(] = 1 PP PT PRI 221
INITTAIIZAETON «..ee e et et e 221
CoNNECtioN SPECITICAIONvuiiii e e e e e e e e e eees 221
L@ o = PSPPSRI 221
(] o= =SSR 221
T T U= 14 1 Lo o R PP 221
CoNNECtioN SPECITICALTON ... e e eees 221

Vii

Preface

This guide provides reference to the features of CLSQL. The first chapter provides an introduction to CLSQL and in-
stallation instructions. The reference sections document all user accessible symbols with examples of usage. Thereis
aglossary of commonly used terms with their definitions.

viii

Chapter 1. Introduction
Purpose

CLSQL isa Common Lisp interface to SQL databases. A number of Common Lisp implementations and SQL data
bases are supported. The general structure of CLSQL is based on the CommonSQL package by Xanalys.

History

The CLSQL project was started by Kevin M. Rosenberg in 2001 to support SQL access on multiple Common Lisp
implementations using the UFFI library. The initial code was based substantially on Pierre R. Mai's excellent
Mai QL package. In late 2003, the UncommonSQL library was orphaned by its author, onShore Development, Inc.
In April 2004, Marcus Pearce ported the UncommonSQL library to CLSQL. The UncommonSQL library provides a
CommonSQL -compatible API for CLSQL.

The main changes from Mai SQL and UncommonSQL are:

e Port from the CMUCL FFI to UFFI which provide compatibility with the major Common Lisp implementations.
* Optimized loading of integer and floating-point fields.

e Additional database backends: ODBC, AODBC, and SQL.ite.

* A compatibility layer for CMUCL specific code.

e Muchimproved robustness for the MySQL back-end along with version 4 client library support.

* Improved library loading and installation documentation.

e Improved packages and symbol export.

* Pooled connections.

» Integrated transaction support for the classic MaiSQL iteration macros.

Prerequisites
ASDF

CLQL wuses ASDF to compile and load its components. ASDF is included in the CCLAN
[http://cclan.sourceforge.net] collection.

UFFI

CLSQL uses UFFI [http://uffi.n9.com/] as a Foreign Function Interface (FFI) to support multiple ANSI Common
Lisp implementations.

MD5

CLSQL's postgresql-socket interface uses Pierre Mai's md5 [ftp://clsgl.b9.com/] module.

http://cclan.sourceforge.net
http://uffi.b9.com/
ftp://clsql.b9.com/

Introduction

Supported Common Lisp Implementation

The implementations that support CLSQL is governed by the supported implementations of UFFI. The following
implementations are supported:

* AllegroCL v6.2 and 7.0b on Debian Linux x86 & x86_64 & PowerPC, FreeBSD 4.5, and Microsoft Windows
XP.

e Lispworksv4.3 on Debian Linux and Microsoft Windows XP.
* CMUCL 18eon Debian Linux, FreeBSD 4.5, and Solaris 2.8.
* SBCL 0.8.5 on Debian Linux.

* SCL 1.1.1 on Debian Linux.

e OpenMCL 0.14 on Debhian Linux PowerPC.

Supported SQL Implementation

Currently, CLSQL supports the following databases:

MySQL v3.23.51 and v4.0.18.

» PostgreSQL v7.4 with both direct APl and TCP socket connections.
e SQLite.

» Direct ODBC interface.

+ Oracle OCI.

» Allegro's DB interface (AODBC).

Installation
Ensure ASDF is loaded

Simply load thefileasdf . | i sp.

(l oad "asdf.lisp")

Build C helper libraries
CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL implement-

ations do not support 64-bit integers. Thus, C helper libraries are required to break these 64-hit integers into two
compatible 32-hit integers. The helper libraries reside in the directories uf f i and db- nysql .

Microsoft Windows

UNIX

Introduction

Files named Makefi | e. nsvc are supplied for building the libraries under Microsoft Windows. Since Microsoft
Windows does not come with that compiler, compiled DLL and LIB library files are supplied with CLSQL.

Files named Makef i | e are supplied for building the libraries under UNIX. Loading the . asd files automatically in-
vokes make when necessary. So, manual building of the helper libraries is not necessary on most UNIX systems.
However, the location of the MySQL library files and include files may need to adjusted in db- nysql / Makefil e
on non-Debian systems.

Add UFFI path

Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to ASDF's
asdf: *central -registry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the UFFI filesresideinthe/ usr/ share/ li sp/ uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)

Add MD5 path

If you plan to use the clsgl-postgresgl-socket interface, you must load the md5 module. Unzip or untar the cl-md5
distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf : *central -registry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the cl-md5 filesresideinthe/ usr/ share/ 1 i sp/ cl - nd5/ directory.

(push #P"/usr/share/lisp/cl-nmd5/" asdf:*central -registry*)

Add CLSQL path and load module

Unzip or untar the CLSQL distribution which creates a directory for the CLQL files. Add that directory to ASDF's
asdf: *central -regi stry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the CLSQL filesresideinthe/ usr/share/ | i sp/ cl sql / directory. You need to
load the clsgl system.

(push #P"/usr/share/lisp/clsqgl/" asdf:*central-registry*)
(asdf: operate 'asdf:load-op 'clsql) ; main CLSQL package

Run test suite (optional)

The test suite can be executed using the ASDF test-op operator. If CLSQL has not been loaded with asdf:load-op, the
asdf:test-op operator will automatically load CLSQL. A configuration file named . cl sql -t est. confi g must be
created in your home directory. There are instructures on the format of that file in the t est s/ README. After creat-
ing . cl sql -test. confi g, you can run the test suite with ASDF:

(asdf: operate 'asdf:test-op 'clsql)

Chapter 2. CommonSQL Tutorial

Based on the UncommonSQL Tutorial

Introduction

The goal of this tutorial is to guide a new developer thru the process of creating a set of CLSQL classes providing a
Object-Oriented interface to persistent data stored in an SQL database. We will assume that the reader is familiar
with how SQL works, how relations (tables) should be structured, and has created at least one SQL application pre-
viously. We will also assume aminor level of experience with Common Lisp.

CLSQL provides two different interfaces to SQL databases, a Functional interface, and an Object-Oriented interface.
The Functional interface consists of a special syntax for embedded SQL expressionsin Lisp, and provides lisp func-
tions for SQL operations like SELECT and UPDATE. The object-oriented interface provides a way for mapping
Common Lisp Objects System (CLOS) objects into databases and includes functions for inserting new objects,
guerying objects, and removing objects. Most applications will use a combination of the two.

CLSQL is based on the CommonSQL package from Xanalys, so the documentation that Xanays makes available

online is useful for CLSQL aswell. It is suggested that developers new to CLSQL read their documentation as well,
as any differences between CommonSQL and CLSQL are minor. Xanalys makes the following documents available;

e Xanalys Lispworks User Guide - The CommonSQL Package
[http:/iwww.lispworks.com/reference/lw43/L WUG/html/Iwuser-167.htm]

o Xanalys Lispworks Reference Manual - The L Package
[http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm)]

e CommonSQL Tutorial by Nick Levine [http://www.ravenbrook.com/doc/2002/09/13/common-sgl/]

Data Modeling with CLSQL

Before we can create, query and manipulate CLSQL objects, we need to define our data model as noted by Philip
Greenspun 1

When data modeling, you are telling the relational database management system (RDBMS) the following:

» What elements of the data you will store.

» How large each element can be.

* What kind of information each element can contain.

* What elements may be left blank.

» Which elements are constrained to afixed range.

* Whether and how various tables are to be linked.

With SQL database one would do this by defining a set of relations, or tables, followed by a set of queries for join-
ing the tables together in order to construct complex records. However, with CLSQL we do this by defining a set of

CLOS classes, specifying how they will be turned into tables, and how they can be joined to one another via rela-
1 Philip Greenspun's " SQL For Web Nerds' - Data Modeling [http://www.arsdigita.com/books/sgl/data-modeling.html]

4

http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm
http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm
http://www.ravenbrook.com/doc/2002/09/13/common-sql/
http://www.arsdigita.com/books/sql/data-modeling.html

CommonSQL Tutorial

tions between their attributes. The SQL tables, as well as the queries for joining them together are created for us
automatically, saving us from dealing with some of the tedium of SQL.

Let us start with asimple example of two SQL tables, and the relations between them.

CREATE TABLE EMPLOYEE (enplid NOT NULL nurnber (38),
first_name NOT NULL varchar2(30),
I ast_name NOT NULL varchar2(30),

emai | var char 2(100),
conpanyid NOT NULL nunber (38),
manageri d nunber (38))

CREATE TABLE COWPANY (companyid NOT NULL nunber (38),
nanme NOT NULL varchar 2(100),
presidentid NOT NULL number (38))

Thisis of course the canonical SQL tutorial example, "The Org Chart".

In CLSQL, we would have two "view classes' (a fancy word for a class mapped into a database). They would be
defined asfollows:

(cl sql : def -vi ew cl ass enpl oyee ()
((enplid
:db-ki nd : key
:db-constraints :not-nul
:type integer
initarg :enplid)
(first-name
;accessor first-nane
:type (string 30)
initarg :first-name)
(1 ast-name
:accessor | ast-name
:type (string 30)
intarg :1ast-nane)
(enai |
:accessor enpl oyee-enmi |
:type (string 100)
cnull's-ok t
initarg :emil)
(conpanyi d
:type 1 nteger
sinitarg :conpanyi d)
(manageri d
:type integer
cnull's-ok t
rinitarg :managerid))
(: base-tabl e enpl oyee))

(cl sql : def -vi ew cl ass conpany ()
((companyi d
:db-kind : key
:db-constraints :not-nul
:type integer
sinitarg :conpanyid)
(name
:type (string 100)
initarg :nane)
(presidentid
:type integer
initarg :presidentid))
(: base-tabl e conpany))

The DEF- VI EW CLASS macro isjust like the norma CLOS DEFCLASS macro, except that it handles several slot op-
tions that DEFCLASS doesn't. These slot options have to do with the mapping of the slot into the database. We only
use afew of the dot options in the above example, but there are several others.

5

CommonSQL Tutorial

e :column - The name of the SQL column this dlot is stored in. Defaults to the slot name. If the slot name is not a
valid SQL identifier, it is escaped, so foo-bar becomes foo_bar.

e :db-kind - The kind of database mapping which is performed for this slot. :base indicates the slot maps to an or-
dinary column of the database view. :key indicates that this slot corresponds to part of the unique keys for this
view, ;join indicates ajoin slot representing a relation to another view and :virtual indicates that this slot is an or-
dinary CLOS dot. Defaults to :base.

e :db-reader - If a string, then when reading values from the database, the string will be used for a format string,
with the only value being the value from the database. The resulting string will be used as the dot value. If a
function then it will take one argument, the value from the database, and return the value that should be put into
thedot.

e :db-writer - If a string, then when reading values from the slot for the database, the string will be used for a
format string, with the only value being the value of the slot. The resulting string will be used as the column
value in the database. If a function then it will take one argument, the value of the slot, and return the value that
should be put into the database.

e :column- - A string which will be used as the type specifier for this slots column definition in the database.

o :void-value- TheLisp valueto return if thefield iSNULL. The default is NIL.

:db-info - A join specification.

In our example each table as a primary key attribute, which is required to be unique. We indicate that aslot is part of
the primary key (CLSQL supports multi-field primary keys) by specifying the :db-kind key slot option.

The SQL type of adot when it is mapped into the database is determined by the :type slot option. The argument for
the :type option is a Common Lisp datatype. The CLSQL framework will determine the appropriate mapping de-
pending on the database system the table is being created in. If we really wanted to determine what SQL type was
used for a dot, we could specify a :db-type option like "NUMBER(38)" and we would be guaranteed that the slot
would be stored in the database as a NUMBER(38). Thisis not recomended because it could makes your view class
unportable across database systems.

DEF- VI EW CLASS also supports some class options, like :base-table. The :base-table option specifies what the table
name for the view class will be when it is mapped into the database.

Class Relations

In an SQL only application, the EMPLOY EE and COMPANY tables can be queried to determine things like, "Who
is Vladamir's manager?’, "What company does Josef work for?', and "What employees work for Widgets Inc.".
Thisis done by joining tables with an SQL query.

Who works for Widgets Inc.?

SELECT first_nanme, |ast_name FROM enpl oyee, conpany
WHERE enpl oyee. conpanyi d = conpany. conpanyi d
AND conpany. conpany_name = "Wdgets Inc."

Who is Vladamir's manager?

SELECT nmanageri d FROM enpl oyee
WHERE enpl oyee. first_name

= "Vl adam r"
AND enpl oyee. | ast _name =

"Lenin"

CommonSQL Tutorial

What company does Josef work for?

SELECT conpany_nanme FROM conpany, enpl oyee
WHERE enpl oyee. first_nane = "Josef"
AND enpl oyee. |l ast-nanme = "Stalin"
AND enpl oyee. conpanyi d = conpany. conpanyi d

With CLSQL however we do not need to write out such queries because our view classes can maintain the relations
between employees and companies, and employees to their managers for us. We can then access these relations like
we would any other attribute of an employee or company object. In order to do this we define some join slots for our
view classes.

What company does an employee work for? If we add the following slot definition to the employee class we can
then ask for it's COMPANY dot and get the appropriate result.

;7 In the enpl oyee slot |ist
(conpany
. accessor enpl oyee- conpany
:db-kind :join
:db-info (j oi n-cl ass conpany
: hone- key conpanyi d
:forei gn-key conpanyid
:set nil))

Who are the employees of a given company? And who is the president of it? We add the following slot definition to
the company view class and we can then ask for it's EMPLOY EES dlot and get the right resullt.

;7 In the conpany slot Iist
(enpl oyees
. reader conpany-enployees
cdb-kind :join
:db-info (join-class enpl oyee
: hone- key conpanyi d
:forei gn-key conpanyid
iset t))

(president

:reader president

:db-kind :join

:db-info (:join-class enployee
:hone-key presidentid
:foreign-key enplid
:set nil))

And lastly, to define the relation between an employee and their manager:

;7 In the enployee slot |ist
(manager

:accessor enpl oyee- nanager

»db-kind :join

:db-info (join-cl ass enpl oyee
: hone- key managerid
:foreign-key enplid
:set nil))

CLSQL join dlots can represent one-to-one, one-to-many, and many-to-many relations. Above we only have one-
to-one and one-to-many relations, later we will explain how to model many-to-many relations. First, let's go over the
dot definitions and the avail able options.

CommonSQL Tutorial

In order for adot to be ajoin, we must specify that it's :db-kind :join, as opposed to :base or :key. Once we do that,
we still need to tell CLSQL how to create the join statements for the relation. Thisiswhat the :db-info option does. It
isalist of keywords and values. The available keywords are:

* :join-class - The view class to which we want to join. It can be another view class, or the same view class as our
object.

» :home-key - The dot(s) in the immediate object whose value will be compared to the foreign-key dot(s) in the
join-classin order to join the two tables. It can be a single slot-name, or it can be alist of ot names.

» foreign-key - The dot(s) in the join-class which will be compared to the value(s) of the home-key.

e :set - A boolean which if false, indicates that this is a one-to-one relation, only one object will be returned. If
true, than thisis a one-to-many relation, alist of objects will be returned when we ask for this slots value.

There are other :join-info options available in CLSQL, but we will save those till we get to the many-to-many rela
tion examples.

Object Creation

Now that we have our model laid out, we should create some object. Let us assume that we have a database connect
set up already. We first need to create our tables in the database:

Note: thefileexanpl es/ cl sql -tutorial . |i sp contains view class definitions which you can load into your list
at this point in order to play along at home.

(clsgl:create-viewfromclass 'enployee)
(clsqgl:create-viewfromclass 'conpany)

Then we will create our objects. We create them just like you would any other CLOS object:

(defvar conmpanyl (maeke-instance 'conpany
:conpanyid 1
ipresidentid 1
:nane "Wdgets Inc."))

(defvar enpl oyeel (make-instance 'enpl oyee
cemplid 1
:first-name "M adamir”
:last-name "Lenin"
cemail "lenin@oviet.org"
:conpanyid 1))

(defvar enpl oyee2 (make-instance 'enpl oyee
cemplid 2
:first-name "Josef”
:last-name "Stalin'
emai|l "stalin@oviet.org"
:companyid 1
:managerid 1))

In order to insert an objects into the database we use the UPDATE- RECORDS- FROM: | NSTANCE function as follows:

(cl sql :update-records-frominstance enpl oyeel)
(cl sqgl : updat e-records-frominstance enpl oyee2)
(cl sqgl : updat e-records-frominstance conpanyl)

CommonSQL Tutorial

After you make any changes to an object, you have to specifically tell CLSQL to update the SQL database. The UP-
DATE- RECORDS- FROM: | NSTANCE method will write all of the changes you have made to the object into the data-
base.

Since CLSQL objects are just normal CLOS objects, we can manipulate their slots just like any other object. For in-
stance, let's say that Lenin changes his email because he was getting too much spam from the German Socialists.

;; Print Lenin's current enmil address, change it and save it to the
;; database. Get a new object representing Lenin fromthe database
;; and print the enuil

;7 This lets us use the functional CLSQL interface with [] syntax
(clsqgl :1ocally-enabl e-sql -reader-synt ax)

(format t "The emmil address of ~A ~Ais ~A"
(first-nane enpl oyeel)
(1 ast-name enpl oyeel)
(enpl oyee-emai | enpl oyeel))

(setf (enployee-enmail enployeel) "l enin-nospam@oviets.org")

i Updat e the database
(cl sqgl : updat e-records-frominstance enpl oyeel)

(let ((newlenin (car (clsqgl:select 'enployee
where [= [slot-value 'enployee "enplid] 1]))))
(format t "His new email is ~A"
(enpl oyee-emai|l newlenin)))

Everything except for the last LET expression is already familiar to us by now. To understand the call to
CLSQL: SELECT we need to discuss the Functional SQL interface and it's integration with the Object Oriented inter-
face of CLSQL.

Finding Objects

Now that we have our objects in the database, how do we get them out when we need to work with them? CLSQL
provides a functional interface to SQL, which consists of a specia Lisp reader macro and some functions. The spe-
cial syntax allows usto embed SQL in lisp expressions, and lisp expressionsin SQL, with ease.

Once we have turned on the syntax with the expression:
(clsqgl :1ocally-enabl e-sql -reader-synt ax)

We can start entering fragments of SQL into our lisp reader. We will get back objects which represent the lisp ex-
pressions. These objects will later be compiled into SQL expressions that are optimized for the database backed we
are connected to. This means that we have a database independent SQL syntax. Here are some examples:

;; an attribute or table nane
[foo] => #<CLSQL- SYS: : SQL- | DENT- ATTRI BUTE FOO>

;; a attribute identifier with table qualifier
[foo bar] => #<CLSQL- SYS: : SQL- | DENT- ATTRI BUTE FOO BAR>

;; a attribute identifier with table qualifier
[= "Lenin" [first_nane]] =>
#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (' Leni n' = FI RST_NAME) >

[<[enplid] 3] =>
#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (EMPLID < 3)>

CommonSQL Tutorial

[and [< [enplid] 2] [= [first_nane] "Lenin"]] =>
#<CLSQL- SYS: : SQL- RELATI ONAL- EXP ((EMPLID < 2) AND
(FIRST_NAME = 'Lenin'))>

;; If we want to reference a slot in an object we can us the
;; SLOT-VALUE sqgl extension
[= [slot-value 'enpl oyee "enplid] 1] =>

#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (EMPLOYEE. EMPLI D

1) >

[= [slot-val ue 'enpl oyee 'enplid]
[slot-value 'conpany 'presidentid]] =>
#<CLSQ.- SYS: : SQL- RELATI ONAL- EXP (EMPLOYEE. EMPLI D = COVPANY. PRESI DENTI D) >

The SLOT- VALUE operator isimportant because it let's us query objects in away that is robust to any changesin the
object->table mapping, like column name changes, or table name changes. So when you are querying objects, be
sure to use the SLOT- VALUE SQL extension.

Since we can now formulate SQL relational expression which can be used as quaifiers, like we put after the
WHERE keyword in SQL statements, we can start querying our objects. CLSQL provides a function SELECT which
can return use complete objects from the database which conform to a qualifier, can be sorted, and various other
SQL operations.

The first argument to SELECT is aclass name. it also has a set of keyword arguments which are covered in the doc-
umentation. For now we will concern ourselves only with the :where keyword. Select returns a list of objects, or nil
if it can't find any. It's important to remember that it always returns a list, so even if you are expecting only one res-
ult, you should remember to extract it from thelist you get from SELECT.

;; all enpl oyees
(clsqgl :sel ect 'enployee)
;; all conpanies
(clsqgl : sel ect ' conpany)

;; enployees naned Lenin
(clsqgl :select 'enployee :where [= [slot-value 'enployee 'l ast-nane]
"Lenin"])

(clsqgl :select 'conpany :where [= [slot-val ue 'conpany ' nane]
"Wdgets Inc."])

i, Enpl oyees of Wdget's Inc.
(clsql :select 'enpl oyee
:where [and [= [slot-value 'enpl oyee ' conpanyi d]
[sl ot-val ue 'conmpany 'conpanyi d]]
[= [slot-val ue ' conpany ' nane]
"Wdgets Inc."]])

Sane thing, except that we are using the enpl oyee
relation in the conpany view class to do the join for us,
saving us the work of witing out the SQ

k&onpany-enployees conpanyl)

;; President of Wdgets Inc.
(president conpanyl)

;; Manager of Josef Stalin
(enpl oyee- nanager enpl oyee?2)

Deleting Objects

Now that we know how to create objects in our database, manipulate them and query them (including using our pre-
defined relations to save us the trouble writing alot of SQL) we should learn how to clean up after ourself. It's quite
simple really. The function DELETE- | NSTANCE- RECORDS will remove an object from the database. However, when

10

CommonSQL Tutorial

we remove an object we are responsible for making sure that the database is left in a correct state.

For example, if we remove a company record, we need to either remove al of it's employees or we need to move
them to another company. Likewise if we remove an employee, we should make sure to update any other employees
who had them as a manager.

Conclusion

There are many nooks and crannies to CLSQL, some of which are covered in the Xanalys documents we refered to
earlier, some are not. The best documentation at thistimeis still the source code for CLSQL itself and the inline doc-
umentation for its various functions.

11

Connection and Initialisation

This section describes the CLSQL interface for initialising database interfaces of different types, creating and des-
troying databases and connecting and disconnecting from databases.

12

Name
DATABASE -- The super-type of all CLSQL databases

ClassDATABASE

Class Precedence List

database, standard-object, t

Description

This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses of this class
to implement their databases. No instances of this class are ever created by CLSQL.

13

Name

CONNECT-IF-EXISTS -- Default value for thei f - exi st s parameter of connect .
Variable *CONNECT-I F-EXISTS*

Value Type

A valid argument to thei f - exi st s parameter of connect , i.e. one of :new, :warn-new, :error, :warn-old, :old.

Initial Value

.error

Description

The value of this variable is used in callsto connect as the default value of thei f - exi st s parameter. See con-
nect for the semantics of the valid values for this variable.

Examples

None.

Affected By

None.

See Also

connect

Notes

None.

14

Name
DEFAULT-DATABASE -- The default database object to use.

Variable*DEFAULT-DATABASE*

Value Type

Any object of type database, or NIL to indicate no default database.

Initial Value

NIL

Description

Any function or macro in CLSQL that operates on a database uses the value of this variable as the default value for
it'sdat abase parameter.

The value of this parameter is changed by calls to connect , which sets *default-database* to the database object it
returns. It is also changed by calls to di sconnect , when the database object being disconnected is the same as the
value of *default-database*. In this case di sconnect sets *default-database* to the first database that remains in
thelist of active databases as returned by connect ed- dat abases, or NIL if no further active databases exist.

The user may change * default-database* at any timeto avalid value of his choice.

Caution

If the value of *default-database* is NIL, then all calls to CLSQL functions on databases must provide a
suitable dat abase parameter, or an error will be signalled.

Examples

(connect ed- dat abases)

=> N L

(connect '("dent" "newesint "dent" "dent") :database-type :nysql)
=> #<CLSQL- MYSQL: MYSQL- DATABASE {48385F55} >

(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)
=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {483868FD} >
(connect ' ("dent" "newesint "dent" "dent") :database-type :nysqgl :if-exists :new)

=> #<CLSQL- MYSQL: MYSQL- DATABASE {48387265} >
def aul t - dat abase

=> #<CLSQL- MYSQL: MYSQL- DATABASE {48387265} >
(di sconnect)

== T

def aul t - dat abase

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {483868FD} >
(di sconnect)

== T

def aul t - dat abase

=> #<CLSQ.- MySQ.: MYSQL- DATABASE {48385F55} >
(di sconnect)

= T

def aul t - dat abase

=> N L

(connect ed- dat abases)

=> N L

15

DEFAULT-DATABASE

Affected By

connect
di sconnect

See Also

connect ed- dat abases

Notes
Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-level loop,
and because of this, connect and di sconnect provide some fairly complex behaviour to keep
default-database set to useful values. Programmatic use of CLSQL should never depend on the value of
default-database and should provide correct database objects via the dat abase parameter to functions
caled.

16

Name

DEFAULT-DATABASE-TYPE -- The default database type to use

Variable*DEFAULT-DATABASE-TYPE*

Value Type

Any keyword representing a valid database back-end of CLSQL, or NIL.

Initial Value

NIL

Description

The value of this variable isused in callstoi ni ti al i ze- dat abase-type and connect as the default value of
the dat abase- t ype parameter.

Caution

If the value of thisvariable is NIL, then all callstoi niti al i ze- dat abase-type or connect will have
to specify the dat abase-t ype to use, or ageneral-purpose error will be signalled.

Examples

(setf *default-database-type* :nysql)
=> :nysql

(initialize-database-type)

=> t

Affected By

None.

See Also

intitialize-database-type

Notes

None.

17

Name

INITIALIZED-DATABASE-TYPES -- List of al initialized database types
Variable*INITIALIZED-DATABASE-TYPES*

Value Type

A list of al initialized database types, each of which represented by it's corresponding keyword.

Initial Value

NIL

Description

This variable is updated whenever i ni ti al i ze- dat abase- t ype iscalled for a database type which hasn't already
been initialized before, as determined by this variable. In that case the keyword representing the database type is
pushed onto the list stored in *INITIALIZED-DATABASE-TY PES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :nysql)
=> :nysql

(initialize-database-type)

=> t

initialized-database-types

=> (:MYSQ)

Affected By

initialize-database-type

See Also

intitialize-database-type

Notes

Direct accessto thisvariable is primarily provided because of compatibility with Harlequin's Common SQL.

18

Name

CONNECT -- create a connection to a database.

Function CONNECT

Syntax
Syntax

connect connection-spec &key if-exists database-type pool nake-default => database

Arguments and Values

connecti on- spec
if-exists

dat abase-type
pool

nmake- def aul t

database

Description

A vendor specific connection specification supplied as alist or as a string.

This indicates the action to take if a connection to the same database exists aready.
See below for the legal values and actions. It defaults to the value of
connect-if-exists.

A database type specifier, i.e. a keyword. This defaults to the vaue of
* default-database-ty pe*

A boolean flag. If T, acquire connection from a pool of open connections. If the pool
is empty, anew connection is created. The default is NIL.

A boolean flag. If T, *default-database* is set to the new connection, otherwise
default-database is not changed. The default is T.

The database object representing the connection.

This function takes a connection specification and a database type and creates a connection to the database specified
by those. The type and structure of the connection specification depend on the database type.

The parameter i f - exi sts specifies what to do if a connection to the database specified exists already, which is
checked by calling f i nd- dat abase on the database name returned by dat abase- nane- f r om spec when called
with theconnect i on- spec and dat abase- t ype parameters. The possible valuesof i f - exi st s are:

:new Go ahead and create a new connection.

‘warn-new Thisisjust like :new, but also signals a warning of type clsql-exists-warning, indicating the
old and newly created databases.

.error Thiswill cause connect to signal a correctable error of type clsgl-exists-error. The user may
choose to proceed, either by indicating that a new connection shall be created, via the restart
create-new, or by indicating that the existing connection shall be used, viathe restart use-old.

:old Thiswill cause connect to use an old connection if one exists.

‘warn-old Thisisjust like :old, but also signals awarning of type clsgl-exists-warning, indicating the old

19

CONNECT

database used, viathe dots old-db and new-db

The database name of the returned database object will be the same under st ri ng= as that which would be returned
by acall to dat abase- name- f r om spec with the given connect i on- spec and dat abase- t ype parameters.

Examples

(dat abase- nanme-from spec ' ("dent" "newesin' "dent" "dent") :nysql)
=> "dent/ newesi nf dent "

(connect ' ("dent" "newesint "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48036F6D} >

(dat abase- nane *)

=> "dent/newesi nl dent"

(connect ' ("dent" "newesint "dent" "dent") :database-type :nysql)

>> |n call to CONNECT:

>> There is an existing connection #<CLSQ.- MYSQL: MYSQL- DATABASE {48036F6D} > t o dat abase dent/ newes
>>

>> Restarts:

>> 0: [CREATE-NEW Create a new connecti on.

>> 1: [USE-OLD] Use the existing connection.
>> 2: [ABORT] Return to Top-Level.

>>

>> Debug (type H for help)

>>

>> (CONNECT ("dent" "newesini "dent" "dent") :1F-EXI STS NIL : DATABASE- TYPE .. .)
>> Sour ce:

>> ; File: /[prj/CLSQ/sql/sql.cl

>> (RESTART- CASE (ERROR ' CLSQL- EXI STS- ERROR : OLD- DB OLD- DB)

>> (CREATE-NEW NI L : REPORT "Create a new connection.”
>> (SETQ RESULT #))

>> (USE-OLD NI L : REPORT "Use the existing connection."
>> (SETQ RESULT OLD-DB)))

>> 0] O

=> #<CLSQL- MYSQL: MYSQL- DATABASE {480451F5} >

Side Effects

A database connection is established, and the resultant database object is registered, so as to appear in the list re-
turned by connect ed- dat abases. * default-database* may be rebound to the created object.

Affected by

* default-database-ty pe*
* connect-if-exists*

Exceptional Situations

If the connection specification is not syntactically or semantically correct for the given database type, an error of
type sgl-user-error is signaled. If during the connection attempt an error is detected (e.g. because of permission
problems, network trouble or any other cause), an error of type sgl-database-error is signalled.

If a connection to the database specified by connect i on- spec exists already, conditions are signalled according to
thei f - exi st s parameter, as described above.

20

CONNECT

See Also

connect ed- dat abases
di sconnect
reconnect
connect -i f - exi st s
find- dat abase

st atus

Notes

Thepool and nake- def aul t keyword argumentsto connect are CLSQL extensions.

21

Name

CONNECTED-DATABASES -- Return the list of active database objects.

Function CONNECTED-DATABASES

Syntax

connect ed- dat abases => dat abases

Arguments and Values

databases Thelist of active database objects.

Description

This function returns the list of active database objects, i.e. all those database objects created by calls to connect ,
which have not been closed by calling di sconnect onthem.

Caution

The consequences of modifying the list returned by connect ed- dat abases are undefined.
Examples

(connect ed- dat abases)
=> NI L
(connect '(nil "tenplatel” "dent" nil) :database-type :postgresql)
=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 4830BC65} >
(connect '("dent" "newesinm "dent" "dent") :database-type :nysql)
=> #<CLSQL- MYSQL: MYSQL- DATABASE { 4830C5AD} >
(connect ed- dat abases)
=> (#<CLSQL- MYSQL: MYSQL- DATABASE { 4830C5AD} >
#<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {4830BC65} >)
(di sconnect)
= T
(connect ed- dat abases)
=> (#<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 4830BC65} >)
(di sconnect)
== T
(connect ed- dat abases)
= NL

Side Effects

None.

Affected By

22

CONNECTED-DATABASES

connect
di sconnect

Exceptional Situations

None.

See Also

di sconnect
connect

st atus

fi nd- dat abase

Notes

None.

23

Name

DATABASE-NAME -- Get the name of a database object

Generic Function DATABASE-NAME

Syntax

dat abase- nane dat abase => nane

Arguments and Values

dat abase A database object, either of type database or of type closed-database.
name A string describing the identity of the database to which this database object is connected to.
Description

This function returns the database name of the given database. The database name is a string which somehow de-
scribes the identity of the database to which this database object is or has been connected. The database name of a
database object is determined at connect time, when a call to dat abase- name- f r om spec derives the database
name from the connection specification passed to connect intheconnecti on- spec parameter.

The database name is used viaf i nd- dat abase in connect to determine whether database connections to the spe-
cified database exist already.

Usually the database name string will include indications of the host, database name, user, or port that where used
during the connection attempt. The only important thing is that this string shall try to identify the database at the oth-
er end of the connection. Connection specifications parts like passwords and credentials shall not be used as part of
the database name.

Examples

(dat abase- name-from spec ' ("dent" "newesin' "dent" "dent") :nysql)
=> "dent/ newesi nf dent "

(connect ' ("dent" "newesint "dent" "dent") :database-type :nysql)
=> #<CLSQL- MYSQL: MYSQL- DATABASE { 48391DCD} >

(dat abase- name *def aul t - dat abase*)

=> "dent/ newesi nf dent "

(dat abase-nanme-fromspec '(nil "tenplatel” "dent" nil) :postgresql)
=> "/tenpl atel/dent"

(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)
=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 48392D2D} >

(dat abase- name *def aul t - dat abase*)

=> "/tenpl atel/ dent”

(dat abase- nanme-from spec ' ("wwv. pnsf.de" "tenplatel" "dent" nil) :postgresql)
=> "ww. pnsf. de/tenpl atel/ dent"

Side Effects

24

DATABASE-NAME

None.

Affected By

dat abase- nanme-from spec

Exceptional Situations

Will signal an error if the object passed as the dat abase parameter is neither of type database nor of type closed-
database.

See Also

connect

fi nd- dat abase
connect ed- dat abases
di sconnect

st at us

Notes

None.

25

Name

DATABASE-NAME-FROM-SPEC -- Return the database hame string corresponding to the given connection spe-
cification.

Generic Function DATABASE-NAME-FROM-SPEC

Syntax

dat abase- nane- from spec connecti on-spec dat abase-type => nane

Arguments and Values

connecti on- spec A connection specification, whose structure and interpretation are dependent on the
dat abase-t ype.

dat abase-type A database type specifier, i.e. akeyword.

name A string denoting a database name.

Description

This generic function takes a connection specification and a database type and returns the database name of the data-
base object that would be created had connect been called with the given connection specification and database

types.

This function is useful in determining a database name from the connection specification, since the way the connec-
tion specification is converted into a database name is dependent on the database type.

Examples

(dat abase- nanme-from spec ' ("dent" "newesin' "dent" "dent") :nysql)
=> "dent/ newesi nf dent "

(connect '("dent" "newesint "dent" "dent") :database-type :nysql)
=> #<CLSQL- MYSQL: MYSQL- DATABASE {48391DCD} >

(dat abase- name *def aul t - dat abase*)

=> "dent/ newesi nf dent "

(dat abase-nane-fromspec '(nil "tenplatel"” "dent" nil) :postgresql)
=> "/tenpl atel/ dent"
(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase- name *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- name-from spec ' ("wwv. pnsf.de" "tenplatel” "dent" nil) :postgresql)
=> "www. pnsf. de/tenpl at el/ dent”

(find-database "dent/newesinident")

=> #<CLSQL- MYSQL: MYSQL- DATABASE { 484E91C5} >
(find-database "/tenpl atel/ dent")

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 48392D2D} >
(find-database "ww. pnsf. de/tenpl atel/dent” nil)

=> NI L

(find-database **)

26

DATABASE-NAME-FROM-SPEC

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {48392D20} >

Side Effects

None.

Affected by

None.

Exceptional Situations

If the value of connecti on- spec is not a valid connection specification for the given database type, an error of
type clsgl-invalid-spec-error might be signalled.

See Also

connect

Notes

dat abase- name- f r om spec isaCLSQL extension.

27

Name

DATABASE-TY PE -- Get the type of a database object.

Generic Function DATABASE-TY PE

Syntax

dat abase-type DATABASE => type

Arguments and Values

dat abase A database object, either of type database or of type closed-database.
type A keyword symbol denoting a known database back-end.
Description

Returns the type of dat abase.

Examples

(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase-type *default-dat abase*)
=> :postgresq

Side Effects

None.

Affected by

None.

Exceptional Situations

Will signal an error if the object passed as the dat abase parameter is neither of type database nor of type closed-
database.

See Also

connect
find-dat abase
connect ed- dat abases

28

DATABASE-TYPE

di sconnect
st at us

Notes

dat abase-t ype isa CLSQL extension.

29

Name

DISCONNECT -- close a database connection

Function DISCONNECT

Syntax

di sconnect &key database error => result

Arguments and Values

error A boolean flag indicating whether to signal an error if dat abase is non-NIL but cannot be
found.

dat abase The database to disconnect, which defaults to the database indicated by * default-database* .

result A Boolean indicating whether a connection was successfully disconnected.

Description

This function takes a database object as returned by connect , and closes the connection. If no matching database is
found and er r or and dat abase are both non-NIL an error is signaled, otherwise NIL is returned. If the databaseis
from a pool it will be released to this pool.

The status of the object passed is changed to closed after the disconnection succeeds, thereby preventing further use

of the object as an argument to CLSQL functions, with the exception of dat abase- nane and dat abase-t ype. If
the user does pass a closed database to any other CLSQL function, an error of type sgl-fatal-error is signalled.

Examples

(di sconnect :database (find-database "dent/newesinident"))
= T

Side Effects

The database connection is closed, and the database object is removed from the list of connected databases as re-
turned by connect ed- dat abases.

The state of the database object is changed to closed.

If the database object passed is the same under eq as the value of *default-database*, then * default-database* is set
to the first remaining database from connect ed- dat abases or to NIL if no further active database exists.

Affected by

* default-database*

30

DISCONNECT

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other cause), an error
of type sql-error might be signalled.

See Also

connect
di sconnect - pool ed

Notes

None.

31

Name
DISCONNECT-POOLED -- closes al pooled database connections

Function DISCONNECT-POOLED

Syntax

di sconnect - pooled =>t

Description

This function disconnects all database connections that have been placed into the pool by calling connect with
:pool T.

Examples

(di sconnect - pool)
= T

Side Effects

Database connections will be closed and entries in the pool are removed.

Affected by

di sconnect

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other cause), an error
of type clsgl-error might be signalled.

See Also

connect
di sconnect

Notes

di sconnect - pool ed isaCLSQL extension.

32

Name

FIND-DATABASE -- >L ocate a database object through it's name.

Function FIND-DATABASE

Syntax

find-dat abase database &optional errorp => result

Arguments and Values

dat abase A database object or a string, denoting a database name.
errorp A generalized boolean. Defaultsto t.

db-t ype A keyword symbol denoting a known database back-end.
result Either adatabase object, or, if er r or p isNIL, possibly NIL.
Description

find- dat abase locates an active database object given the specification in dat abase. If dat abase isan object of
type database, f i nd- dat abase returns this. Otherwise it will search the active databases as indicated by the list re-
turned by connect ed- dat abases for a database of type db-t ype whose name (as returned by dat abase- nanme
isegual asper st ri ng=to the string passed asdat abase. If it succeeds, it returns the first database found.

If db-t ype is NIL al databases matching the string dat abase are considered. If no matching databases are found
and error p isNIL then NIL isreturned. If er r or p is NIL and one or more matching databases are found, then the
most recently connected database is returned as a first value and the number of matching databases is returned as a
second value. If no, or more than one, matching databases are found and er r or p istrue, an error is signalled.

Examples

(dat abase- name-from spec ' ("dent" "newesin "dent" "dent") :nysql)
=> "dent/ newesi nf dent ™"

(connect '("dent" "newesinm "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE { 48391DCD} >

(dat abase- nanme *def aul t - dat abase*)

=> "dent/newesi nif dent"

(dat abase-nanme-fromspec '(nil "tenplatel"” "dent" nil) :postgresql)
=> "/tenpl atel/ dent"
(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 48392D2D} >
(dat abase- name *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- nanme-from spec ' ("ww. pnsf.de" "tenplatel” "dent" nil) :postgresql)
=> "www. pnsf. de/tenpl atel/ dent”

(find-database "dent/newesi nident")

=> #<CLSQL- MYSQL: MYSQL- DATABASE {484E91C5} >
(find-database "/tenpl atel/ dent")

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >

33

FIND-DATABASE

(find-database "www. pnsf. de/tenpl atel/dent” nil)

=> NI L

(find-database **)

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 48392D2D} >

Side Effects

None.

Affected By

connect ed- dat abases

Exceptional Situations

Will signa an error of type clsgl-error if no matching database can be found, and er r or p is true. Will signal an er-
ror if the value of dat abase is neither an object of type database nor a string.

See Also

dat abase- nane

dat abase- nane-from spec
di sconnect

connect

status
connect ed- dat abases

Notes

Thedb- t ype keyword argument to f i nd- dat abase isa CLSQL extension.

Name

INITIALIZE-DATABASE-TY PE -- Initializes a database type

Function INITIALIZE-DATABASE-TYPE

Syntax

initialize-database-type &ey database-type => result

Arguments and Values

dat abase-type The database type to initialize, i.e. a keyword symbol denoting a known database
back-end. Defaults to the value of * default-database-type*.

result Either NIL if the initialization attempt fails, or t otherwise.

Description

If the back-end specified by database-type has not aready been initidized, as seen from
initialized-database-types, an attempt is made to initialize the database. If this attempt succeeds, or the back-end
has already been initialized, the function returns t, and places the keyword denoting the database type onto the list
stored in *initialized-database-types*, if not already present.

If initidlization fails, the function returns NIL, and/or signals an error of type clsgl-error. The kind of action taken
depends on the back-end and the cause of the problem.

Examples

initialized-database-types

=> NI L

(setf *default-database-type* :nysql)
=> : MYSQL

(initialize-database-type)

>> Conpi |l i ng LAVBDA (#: GB97 #: GB98 #: (01 #: (D02):
>> Conpi ling Top-Level Form

>>

== T

initialized-database-types

=> (1 MYSQL)
(initialize-database-type)

== T

initialized-database-types

=> (:MYSQ)

Side Effects

The database back-end corresponding to the database type specified is initialized, unless it has already been initial-
ized. This can involve any number of other side effects, as determined by the back-end implementation (like e.g.
loading of foreign code, calling of foreign code, networking operations, etc.). If initialization is attempted and suc-
ceeds, the dat abase- t ype ispushed onto the list stored in *initialized-database-types*.

35

INITIALIZE-DATABASE-TYPE

Affected by

* default-database-type*
initialized-database-types

Exceptional Situations

If an error is encountered during the initialization attempt, the back-end may signal errors of kind clsgl-error.

See Also

initialized-database-types
def aul t - dat abase-t ype

Notes

None.

36

Name

RECONNECT -- Re-establishes the connection between a database object and its RDBMS.

Function RECONNECT

Syntax

reconnect &key database error force => result

Arguments and Values

dat abase The database to reconnect, which defaults to the database indicated by * default-database* .

error A boolean flag indicating whether to signal an error if dat abase isnon-nil but cannot be found.
The default valueis NIL.

force A Boolean indicating whether to signal an error if the database connection has been lost. The de-
fault valueisT.

resul t A Boolean indicating whether the database was successfully reconnected.

Description

Reconnects dat abase which defaults to * default-database* to the underlying database management system. On
success, T isreturned and the variable * default-database* is set to the newly reconnected database. If dat abase isa
database instance, this object is closed. If dat abase is a string, then a connected database whose name matches
dat abase is sought in the list of connected databases. If no matching database is found and er r or and dat abase
are both non-NIL an error is signaled, otherwise NIL is returned.

When the current database connection has been logt, if f or ce isnon-NIL asit is by default, the connection is closed
and errors are suppressed. If f or ce is NIL and the database connection cannot be closed, an error is signalled.

Examples

def aul t - dat abase

=> #<CLSQL- SQLI TE: SQLI TE- DATABASE : menory: OPEN { 48CFBEAS5} >
(reconnect)

=> #<CLSQL- SQLI TE: SQLI TE- DATABASE : menory: OPEN {48D64105} >

Side Effects

A database connection is re-established and * default-database* may be rebound to the supplied database object.

Affected by

* default-database*

37

RECONNECT

Exceptional Situations

An error may be signalled if the specified database cannot be located or if the database cannot be closed.

See Also

connect
di sconnect
di sconnect - pool ed

Notes

None.

38

Name

STATUS -- Print information about connected databases.

Function STATUS

Syntax

status &optional full =>

Arguments and Values

full A boolean indicating whether to print additional table information. The default valueis NIL.

Description

Prints information about the currently connected databases to *STANDARD-OUTPUT*. The argument ful | is
NIL by default and a value of t means that more detailed information about each database is printed.

Examples

(status)
CLSQ. STATUS: 2004-06-13 15:07:39
DATABASE TYPE RECORDI NG
| ocal host/test/petrov nysql nil
| ocal host/test/petrov post gresql nil
| ocal host/test/petrov post gresql -socket nil
test/ petrov odbc nil
* Inmenory: sglite nil
(status t)
CLSQ. STATUS: 2004-06-13 15:08:08
DATABASE TYPE RECORDI NG POCLED TABLES VIEWS
| ocal host/test/petrov nysql nil nil 7 0
| ocal host/test/petrov post gresql nil nil 7 0
| ocal host/test/petrov post gresql - socket nil nil 7 0
test/ petrov odbc nil nil 7 0
* Imenory: sqlite nil nil 0 0

Side Effects

None.

Affected by

39

STATUS

None.

Exceptional Situations

None.

See Also

connect ed- dat abases
connect

di sconnect
connect -i f - exi st s
fi nd- dat abase

Notes

None.

40

Name

CREATE-DATABASE -- create a database

Function CREATE-DATABASE

Syntax

creat e-dat abase connection-spec &key database-type => success

Arguments and Values

connect i on- spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the vaue of
* default-database-ty pe*

success A boolean flag. If T, anew database was successfully created.

Description

This function creates a database in the database system specified by dat abase-t ype.

Examples

(create-database ' ("l ocal host" "new' "dent" "dent") :database-type :nysql)
= T
(create-database ' ("l ocal host" "new' "dent" "badpasswd") :database-type :nysql)
=>
Error: Wiile trying to access database | ocal host/ new dent
usi ng dat abase-type MYSQL:
Error database-create failed: nysqgladm n: connect to server at 'local host' failed
error: 'Access denied for user: 'root@ocal host' (Using password: YES)'
has occurred.
[condition type: CLSQL- ACCESS- ERROR]

Side Effects

A database will be created on the filesystem of the host.

Exceptional Situations

An exception will be thrown if the database system does not allow new databases to be created or if database cre-
ation fails.

See Also

41

CREATE-DATABASE

dest r oy- dat abase
pr obe- dat abase
i st-dat abases

Notes

This function may invoke the operating systems functions. Thus, some database systems may require the administra-
tion functions to be available in the current PATH. At this time, the :mysgl backend requires mysql admi n and the
‘postgresgl backend requirescr eat edb.

cr eat e- dat abase isa CLIQL extension.

42

Name
DESTROY-DATABASE -- destroys a database

Function DESTROY-DATABASE

Syntax

destroy-dat abase connection-spec &Key database-type => success

Arguments and Values

connect i on- spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the vaue of
* default-database-ty pe*

success A boolean flag. If T, the database was successfully destroyed.

Description

This function destroys a database in the database system specified by dat abase-t ype.

Examples

(destroy-database ' ("l ocal host" "new' "dent" "dent") :database-type :postgresql)
= T
(destroy-database ' ("l ocal host" "new' "dent" "dent") :database-type :postgresql)
=>
Error: Wiile trying to access database | ocal host/test2/root
usi ng dat abase-type POSTGRESQL:
Error database-destory failed: dropdb: database renoval failed: ERROR database "test2" does not

has occurred.
[condition type: CLSQL- ACCESS- ERROR]

Side Effects

A database will be removed from the filesystem of the host.

Exceptional Situations

An exception will be thrown if the database system does not allow databases to be removed, the database does not
exist, or if database removal fails.

See Also

cr eat e- dat abase

43

DESTROY-DATABASE

pr obe- dat abase
i st-databases

Notes

This function may invoke the operating systems functions. Thus, some database systems may require the administra-
tion functions to be available in the current PATH. At this time, the :mysgl backend requires mysql admi n and the
:postgresgl backend requires dr opdb.

dest r oy- dat abase isa CLSQL extension.

Name

PROBE-DATABASE -- tests for existence of a database

Function PROBE-DATABASE

Syntax

pr obe- dat abase connection-spec &key database-type => success

Arguments and Values

connect i on- spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the vaue of
* default-database-ty pe*

success A boolean flag. If T, the database exists in the database system.

Description

This function tests for the existence of a database in the database system specified by dat abase-t ype.
Examples

(probe-database ' ("l ocal host" "new' "dent" "dent") :database-type :postgresql)
= T

Side Effects

None

Exceptional Situations

An exception maybe thrown if the database system does not receive administrator-level authentication since func-
tion may need to read the administrative database of the database system.

See Also

cr eat e- dat abase
dest r oy- dat abase
|i st-dat abases

Notes

45

PROBE-DATABASE

pr obe- dat abase isa CLSQL extension.

46

Name

LIST-DATABASES -- List databases matching the supplied connection spec and database type.

Function L1ST-DATABASES

Syntax

|'i st-databases connection-spec &key database-type => result

Arguments and Values

connect i on- spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the value of
* default-database-ty pe*

result A list of matching databases.

Description

Thisfunction returns alist of databases existing in the database system specified by dat abase- t ype.
Examples

(list-databases ' ("local host" "new' "dent" "dent") :database-type :postgresql)
=> ("address-book" "sqgl-test" "tenplatel" "tenplateQ0" "testl" "dent" "test")

Side Effects

None.

Affected by

None.

Exceptional Situations

An exception maybe thrown if the database system does not receive administrator-level authentication since func-
tion may need to read the administrative database of the database system.

See Also

cr eat e- dat abase

47

LIST-DATABASES

dest r oy- dat abase
pr obe- dat abase

Notes

|'i st-databases isaCLSQL extension.

48

Name

WITH-DATABASE -- Execute a body of code with a variable bound to a specified database object.

Macro WITH-DATABASE

Syntax

Wi t h- dat abase db-var connection-spec & est connect-args &body body => result

Arguments and Values

db- var A variable to which the specified database is bound.

connecti on- spec A vendor specific connection specification supplied asalist or asastring.
connect - ar gs Other optional argumentsto connect .

body A Lisp code body.

result Determined by the result of executing the last expression in body.
Description

Evaluate body in an environment, where db- var is bound to the database connection given by connect i on- spec
and connect - ar gs. The connection is automatically closed or released to the pool on exit from the body.

Examples

(connect ed- dat abases)
=> N L
(with-database (db ' (":nenory:") :database-type :sqlite
:make-default nil)
(dat abase- nanme db))
= ":menory:"
(connect ed- dat abases)
=> N L

Side Effects

Seeconnect and di sconnect.

Affected by

Seeconnect and di sconnect .

Exceptional Situations

49

WITH-DATABASE

Seeconnect and di sconnect.

See Also

connect

di sconnect

di sconnect - pool ed

wi t h-def aul t - dat abase

Notes

Wi t h- dat abase isa CLSQL extension.

50

Name

WITH-DEFAULT-DATABASE -- Execute a body of code with * default-database* bound to a specified database.
Macro WITH-DEFAULT-DATABASE

Syntax

wi t h- def aul t - dat abase dat abase & est body => result

Arguments and Values

dat abase An active database object.
body A Lisp code body.

result Determined by the result of executing the last expression in body.

Description

Perform body with DATABASE bound as * default-database* .

Examples

def aul t - dat abase
=> #<CLSQ.- ODBC: ODBC- DATABASE new dent OPEN {49095CAD} >

(let ((database (clsql:find-database ":nmenory:")))
(wi t h-def aul t - dat abase (dat abase)
(dat abase- nane *def aul t - dat abase*)))
= "Imenory:"

Side Effects

None.

Affected by

None.

Exceptional Situations

Callsto CLSQL functionsin body may signal errorsif dat abase isnot an active database object.

See Also

51

WITH-DEFAULT-DATABASE

wi t h- dat abase
* default-database*

Notes

wi t h- def aul t - dat abase isa CLSQL extension.

52

The Symbolic SQL Syntax

CLSQL provides a symbolic syntax allowing the construction of SQL expressions as lists delimited by square brack-
ets. The syntax is turned off by default. This section describes utilities for enabling and disabling the square bracket
reader syntax and for constructing symbolic SQL expressions.

53

Name

ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.
Macro ENABLE-SQL-READER-SYNTAX

Syntax

enabl e-sql - reader-syntax =>

Arguments and Values

None.

Description

Turns on the SQL reader syntax setting the syntax state such that if the syntax is subsequently disabled, r est or e-
sql - r eader - synt ax- st at e will enableit again.

Examples

None.

Side Effects

Setsthe internal syntax state to enabled.

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

di sabl e-sql -reader - synt ax

| ocal | y- enabl e-sql - r eader - synt ax
| ocal | y-di sabl e-sql -reader - synt ax
restore-sql -reader-syntax-state

Notes

The symbolic SQL syntax is disabled by default.

Name

DISABLE-SQL-READER-SYNTAX -- Globally disable square bracket reader syntax.
Macro DISABLE-SQL-READER-SYNTAX

Syntax

di sabl e-sql -reader-syntax =>

Arguments and Values

None.

Description

Turns off the SQL reader syntax setting the syntax state such that if the syntax is subsequently enabled, r est or e-
sql - r eader - synt ax- st at e will disableit again.

Examples

None.

Side Effects

Setsthe internal syntax state to disabled.
Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sql - r eader - synt ax

| ocal | y- enabl e-sql - r eader - synt ax
| ocal | y-di sabl e-sql -reader - synt ax
restore-sql -reader-syntax-state

Notes

The symbolic SQL syntax is disabled by default.

55

Name
LOCALLY-ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.
Macro LOCALLY-ENABLE-SQL-READER-SYNTAX

Syntax

| ocal | y- enabl e-sql -reader - syntax =>

Arguments and Values

None.

Description

Tuns on the SQL reader syntax without changing the syntax state such that restore-
sql - r eader - synt ax- st at e will re-establish the current syntax state.

Examples

Intended to be used in afile for code which uses the square bracket syntax without changing the global state.

#. (1 ocal | y- enabl e- sqgl - r eader - synt ax)
CODE USI NG SYMBOLI C SQL SYNTAX . ..

#. (restore-sql -reader-synt ax-state)

Side Effects

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sql - reader - synt ax

di sabl e-sql - reader - synt ax

| ocal | y-di sabl e-sql -reader - synt ax
restore-sql -reader-syntax-state

56

LOCALLY-ENABLE-SQL-READER-SYNTAX

Notes

The symbolic SQL syntax is disabled by default.

57

Name
LOCALLY-DISABLE-SQL-READER-SYNTAX -- Locally disable square bracket reader syntax.
Macro LOCALLY-DISABLE-SQL-READER-SYNTAX

Syntax

| ocal | y-di sabl e-sqgl -reader-syntax =>

Arguments and Values

None.

Description

Turns off the SQL reader syntax without changing the syntax state such that restore-
sql - r eader - synt ax- st at e will re-establish the current syntax state.

Examples

Intended to be used in afile for code in which the square bracket syntax should be disabled without changing the
global state.

#. (1 ocal | y-di sabl e-sql - r eader - synt ax)
CODE NOT USI NG SYMBOLI C SQL SYNTAX ...

#. (restore-sql -reader-synt ax-state)

Side Effects

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sqgl - r eader - synt ax

di sabl e-sql -reader - synt ax

| ocal | y- enabl e-sql - reader - synt ax
restore-sql -reader-syntax-state

58

LOCALLY-DISABLE-SQL-READER-SYNTAX

Notes

The symbolic SQL syntax is disabled by default.

59

Name

RESTORE-SQL-READER-SYNTAX-STATE -- Restore square bracket reader syntax to its previous state.

Macro RESTORE-SQL-READER-SYNTAX-STATE

Syntax

restore-sql -reader-syntax-state =>

Arguments and Values

None.

Description

Enables the SQL reader syntax if enabl e-sql - r eader - synt ax has been called more recently than di sabl e-
sql - r eader - synt ax and otherwise disables the SQL reader syntax. By default, the SQL reader syntax is disabled.

Examples

Seel ocal | y- enabl e- sql - reader - synt ax and | ocal | y- di sabl e- sql - r eader - synt ax.

Side Effects

Reverts the internal syntax state.

Modifies the default readtable.

Affected by

The current internal syntax state.

Exceptional Situations

None.

See Also

enabl e- sql - r eader - synt ax

di sabl e-sql -reader - synt ax

| ocal | y- enabl e-sql - reader - synt ax
| ocal | y-di sabl e- sql -reader - synt ax

Notes

The symbolic SQL syntax is disabled by default.

60

Name

SQL -- Construct an SQL string from supplied expressions.

Function SQL

Syntax

sql &rest args => sql - expression

Arguments and Values

args A set of expressions.
sgl-expression A string representing an SQL expression.
Description

Returns an SQL string generated from the expressions ar gs. The expressions are transated into SQL strings and
then concatenated with a single space delimiting each expression.

Examples

(sql nil)
=> "NULL"

(sql 'foo)
=> "FOO'

(sql "bar")
=> "' bar' "

(sql 10)

> " 10"

(sql "(nil foo "bar" 10))
=> "(NULL, FOO, ' bar', 10) "

(sgl #(nil foo "bar" 10))
=> "NULL, FQQ, ' bar', 10"

(sql [select [foo] [bar] :from[baz]] 'having [= [foo id] [bar id]]
"and [foo val] '< 5)
=> "SELECT FOO, BAR FROM BAZ HAVI NG (FOO. I D = BAR I D) AND FOO. VAL < 5"

Side Effects

None.

Affected by

61

None.

Exceptional Situations

An error of type sql -user-error issignaled if any element in args is not of the supported types (a symbol,
string, number or symbolic SQL expression) or alist or vector containing only these supported types.

See Also

sql - expressi on
sql - operation
sql - oper at or

Notes

None.

62

Name

SQL-EXPRESSION -- Constructs an SQL expression from supplied keyword arguments.

Function SQL-EXPRESSION

Syntax

sql -expression &ey string table alias attribute type => result

Arguments and Values

string A string.

tabl e A symbol representing a database table identifier.
alias A tablealias.

attribute A symbol representing an attribute identifier.
type A type specifier.

result A object of type sgl-expression.
Description

Returns an SQL expression constructed from the supplied arguments which may be combined as follows:

e attributeandtype;

e attribute;

e aliasortableandattribute andtype;
e aliasortableandattribute;

e table,attributeandtype;

e tableandattribute;

e tableandalias;

e table;

e string.

Examples

(sql -expression :table 'foo :attribute 'bar)
=> #<CLSQL- SYS: SQL- | DENT- ATTRI BUTE FOO. BAR>

63

SQL-EXPRESSION

(sql -expression :attribute 'baz)
=> #<CLSQL- SYS: SQL- | DENT- ATTRI BUTE BAZ>

Side Effects

None.

Affected by

None.

Exceptional Situations

An error of typesql - user - error issignaled if an unsupported combination of keyword arguments is specified.

See Also

sql
sql - operation
sql - oper at or

Notes

None.

Name

SQL-OPERATION -- Constructs an SQL expression from a supplied operator and arguments.

Function SQL-OPERATION

Syntax

sql -operation operator & est args => result

sqgl -operation 'function func &est args => result

Arguments and Values

oper at or A symbol denoting an SQL operator.

func A string denoting an SQL function.

args A set of arguments for the specified SQL operator or function.
result A object of typesql - expr essi on.
Description

Returns an SQL expression constructed from the supplied SQL operator or function oper at or and its arguments
args. If operat or is passed the symbol ‘function then the first value in ar gs is taken to be avalid SQL function
and the remaining valuesin ar gs its arguments.

Examples

(sql -operation 'sel ect
(sql -expression :table 'foo :attribute 'bar)
(sql -operation 'sum (sql-expression :table 'foo :attribute 'baz))
cfrom
(sql -expression :table 'foo)
s where
(sqgl -operation '> (sql-expression :attribute 'bar) 12)
:order-by (sql-operation 'sum (sql-expression :attribute 'baz)))
=> #<SQ.- QUERY SELECT FOO. BAR, SUM FOO. BAZ) FROM FOO WHERE (BAR > 12) ORDER BY SUM BAZ) >

(sql -operation 'function "strpos" "CLSQ" "SQ")
=> #<CLSQ.- SYS: SQL- FUNCTI ON- EXP STRPOS(' CLSQL', "' SQ.') >

Side Effects

None.

Affected by

65

SQL-OPERATION

None.

Exceptional Situations

An error of typesql -user-error issignalled if oper at or isnot a symbol representing a supported SQL operat-
or.

See Also

sql
sql - expression
sql - oper at or

Notes

None.

66

Name

SQL-OPERATOR -- Returns the symbol for the supplied SQL operator.

Function SQL-OPERATOR

Syntax

sql -operator operator => result

Arguments and Values

oper at or A symbol denoting an SQL operator.
result The Lisp symbol used by CLSQL to represent the specified operator.
Description

Returns the Lisp symbol corresponding to the SQL operator represented by the symbol oper at or . If oper at or
does not represent a supported SQL operator or is not a symbol, nil is returned.

Examples
(sql -operator 'like)
=> SQ.- LI KE

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

See Also

sql
sql - expressi on
sql - operation

67

SQL-OPERATOR

Notes

CLSQL's symbolic SQL syntax currently has support for the following SQL operators:

any
some

al

not

uni on

i ntersect
m nus
except

or der - by

nul
*

+
/

like
and

<>
count

max

mn

avg

sum
function
bet ween
di stinct
nvl

sl ot - val ue
userenv
concat
substring
limt

gr oup- by
havi ng
not - nul |
exi sts
upl i ke

is

t he
coal esce
vi ew cl ass

aswell as the pseudo-operator f unct i on. Note that some of these operators are not supported by all of the RDBMS
supported by CLSQL.

68

Functional Data Definition Language
(FDDL)

CLSQL provides a functional DDL which supports the creation and destruction of a variety of database objects in-
cluding tables, views, indexes and sequences. Functions which return information about currently defined database
objects are also provided. In addition, the FDDL includes functionality for examining table attributes and attribute

types.

69

Name

CREATE-TABLE -- Create a database table.

Function CREATE-TABLE

Syntax

create-table name description &ey database constraints transactions =>

Arguments and Values

nane The name of the table as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .
descri ption Alist.

constraints A string, alist of stringsor NIL.

transactions A Boolean. The default valueisT.
Description

Creates a table called name, which may be a string, symbol or SQL table identifier, in dat abase which defaults to
default-database. descri pti on isalist whose elements are lists containing the attribute names, types, and other
constraints such as not-null or primary-key for each column in the table.

const r ai nt s isastring representing an SQL table constraint expression or alist of such strings.

With MySQL databases, if t ransact i ons isT an InnoDB table is created which supports transactions.
Examples

(create-table [foo]

"(([1d] integer)

([height] float)
([nane] (string 24))

([comments] | ongchar)))
=>

(tabl e-exists-p [foo0])

== T

Side Effects

A tableiscreated in dat abase.

Affected by

70

CREATE-TABLE

* default-database*

Exceptional Situations

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if arelation called name aready exists.

See Also

drop-table
list-tables
t abl e-exi sts-p

Notes

The constraints and transacti ons keyword arguments to create-tabl e are CLSQL extensions. The
transacti ons keyword argument is for compatibility with MySQL databases.

71

Name

DROP-TABLE -- Drop a database table.

Function DROP-TABLE

Syntax

drop-tabl e name &key if-does-not-exist database =>

Arguments and Values

nane The name of the table as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

i f-does-not - exi st A symbol. Meaningful values are :ignore or :error (the default).
Description

Drops the table called nane from dat abase which defaults to *default-database* . If the table does not exist and
i f-does-not-exist is :ignore then drop-table returns NIL whereas an eror is signaled if if-
does- not - exi st is:error.

Examples

(tabl e-exists-p [foo0])
= T

(drop-table [foo] :if-does-not-exist :ignore)
=>

(tabl e-exists-p [foo0])
=> N L

Side Effects

A table isdropped dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

72

DROP-TABLE

See Also

create-table
list-tables
t abl e-exi sts-p

Notes

Thei f - does- not - exi st keyword argument to dr op- t abl e isa CLSQL extension.

73

Name

LIST-TABLES -- Returns alist of database tables.

Function LIST-TABLES

Syntax

list-tables &ey owner database => result

Arguments and Values

owner A string, NIL or :all.

dat abase A database object which defaults to * default-database* .
result A list of strings.

Description

Returns a list of strings representing table names in dat abase which defaults to *default-database*. owner is NIL
by default which means that only tables owned by users are listed. If owner is a string denoting a user name, only
tables owned by owner arelisted. If owner is:all then al tables are listed.

Examples

(list-tables :owner "fred")
=> ("type_table" "type_bigint" "enployee" "conpany" "addr" "ea_join" "big")

(list-tables :owner :all)

=> ("pg_description" "pg_group" "pg_proc" "pg_rewite" "pg_type" "pg_attribute"
"pg_cl ass" "pg_inherits" "pg_I ndex" "pg_operator" "pg_opclass" "pg_ant
"pg_anop" "pg_anproc" "pg_l anguage" "pg_| argeobject” "pg_aggregate”
"pg_trigger” "pg_listener" "pg_cast" "pg_nanmespace" "pg_shadow'
"pg_conversi on" "pg_depend" "pg_attrdef" "pg_constraint" "pg_database"
"type_table" "type_bigint" "enployee" "conpany" "pg_statistic" "addr"
" ea_i Oi r.]II " bi gIl)

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

74

LIST-TABLES

None.

See Also

create-table
drop-table
t abl e-exi sts-p

Notes

None.

75

Name

TABLE-EXISTS-P -- Tests for the existence of a database table.

Function TABLE-EXISTS-P

Syntax

tabl e- exi sts-p nane &key owner database => result

Arguments and Values

nane The name of the table as a string, symbol or SQL expression.
owner A string, NIL or :al.

dat abase A database object which defaults to * default-database* .
result A Boolean.

Description

Tests for the existence of an SQL table called nane in dat abase which defaults to *default-database*. owner is
NIL by default which means that only tables owned by users are examined. If owner is a string denoting a user
name, only tables owned by owner are examined. If owner is:all then all tables are examined.

Examples

(tabl e-exists-p [foo0])
= T

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

76

TABLE-EXISTS-P

create-table
drop-table
list-tabl es

Notes

None.

77

Name

CREATE-VIEW -- Create a database view.

Function CREATE-VIEW

Syntax

create-view nane &ey as colum-1list with-check-option database =>

Arguments and Values

nane The name of the view as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

as A symbolic SQL query expression.

col um-1i st A list.

W t h- check- opti on A Boolean.

Description

Creates aview called nane in dat abase which defaults to *default-database*. The view is created using the query
as and the columns of the view may be specified using the col uim- | i st parameter. Thewi t h- check- opti on is
NIL by default but if it has a non-NIL value, then all insert/update commands on the view are checked to ensure that
the new data satisfy the query as.

Examples

(create-view [| enins-group]
:as [select [first-nane] [last-nane] [enrmil]

from [enpl oyee]

:where [= [managerid] 1]])

=>

(select [*] :from [l enins-group])
=> (("Josef" "Stalin" "stalin@oviet.org")

("Leon" "Trotsky" "trotsky@oviet.org")

("N kita" "Kruschev" "kruschev@oviet.org")

("Leonid" "Brezhnev" "brezhnev@oviet.org")

("Yuri"™ "Andropov" "andropov@oviet.org")

(" Konstantin" "Chernenko" "chernenko@oviet.org")

("M khai l" "CGorbachev" "gorbachev@oviet.org")

("Boris" "Yeltsin" "yeltsi n@oviet.org")

("Vladam r" "Putin" "putin@oviet.org")),
("first_nane" "last_name" "email"

Side Effects

78

CREATE-VIEW

A view iscreated in dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if arelation called name aready exists.

See Also

dr op- vi ew
list-views
Vi ew exi sts-p

Notes

None.

79

Name

DROP-VIEW -- Drops a database view.

Function DROP-VIEW

Syntax

drop-vi ew name &key if-does-not-exist database =>

Arguments and Values

nane The name of the view as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

i f-does-not - exi st A symbol. Meaningful values are :ignore or :error (the default).
Description

Drops the view called nane from dat abase which defaults to *default-database* . If the view does not exist and
i f-does-not-exist is :ignore then drop-view returns NIL whereas an error is signaled if if-
does- not - exi st is:error.

Examples

(viewexists-p [foo])
= T

(drop-view [foo] :if-does-not-exist :ignore)
=>

(viewexists-p [foo])
=> N L

Side Effects

A view isdropped dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

80

DROP-VIEW

See Also

create-view
list-views
Vi ew exi sts-p

Notes

Thei f - does- not - exi st keyword argument to dr op- vi ewisa CLSQL extension.

81

Name

LIST-VIEWS -- Returns alist of database views.

Function LIST-VIEWS

Syntax

list-views &ey owner database => result

Arguments and Values

owner A string, NIL or :all.

dat abase A database object which defaults to * default-database* .
result A list of strings.

Description

Returns a list of strings representing view names in dat abase which defaults to *default-database*. owner is NIL
by default which means that only views owned by users are listed. If owner is a string denoting a user name, only
views owned by owner arelisted. If owner is:al then all viewsarelisted.

Examples

(list-views :owner "fred")
=> ("l eni ns_group")

(list-views :owner :all)

=> ("pg_user" "pg_rules" "
"pg_stat_all _tables
"pg_statio_all _tables
"pg_stat_all _i ndexes" "
"pg_statio_all _indexes

pg_i ndexes pg_stats"
pg_stat _user_tabl es”

" "pg_statio_user_tabl es"
pg_stat _sys_I ndexes" "pg_stat_user_indexes"

" "pg_statio_sys_indexes" "pg_statio_user_indexes"
"pg_statio_all _sequences" "pg_statio_sys_sequences"
"pg_statio_user_sequences" "pg_stat_activity" "pg_stat_database"

"pg_l ocks" "pg_settings" "l enins_group")

pg_vi ews
pg_stat _sys_tables
" "pg_statio_sys_tables

pg_t abl es

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

82

LIST-VIEWS

None.

See Also

Create-view
dr op-vi ew
Vi ew exi sts-p

Notes

l'i st-views isaCLSQL extension.

83

Name

VIEW-EXISTS-P -- Tests for the existence of a database view.

Function VIEW-EXISTS-P

Syntax

vi ew exi sts-p name &key owner database => result

Arguments and Values

nane The name of the view as a string, symbol or SQL expression.
owner A string, NIL or :al.

dat abase A database object which defaults to * default-database* .
result A Boolean.

Description

Tests for the existence of an SQL view called nane in dat abase which defaults to *default-database*. owner is
NIL by default which means that only views owned by users are examined. If owner is a string denoting a user
name, only views owned by owner are examined. If owner is:all then all views are examined.

Examples

(viewexists-p [l enins-group])
= T

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

VIEW-EXISTS-P

create-view
dr op- vi ew
list-views

Notes

vi ew exi st s- p isaCLSQL extension.

85

Name
CREATE-INDEX -- Create a database index.

Function CREATE-INDEX

Syntax

create-index name &Key on unique attributes database =>

Arguments and Values

nane The name of the index as a string, symbol or SQL expression.
on The name of atable as astring, symbol or SQL expression.
uni que A Boolean.

attributes A list of attribute names.

dat abase A database object which defaults to * default-database* .
Description

Creates an index called nare on the table specified by on in dat abase which default to * default-database*. The ta-
ble attributes to use in constructing the index name are specified by at t ri but es. The uni que argument is NIL by
default but if it has anon-NIL value then the indexed attributes must have unique values.

Examples

yee]

(create-index [bar] :on [enplo
"([first-nane] [last-nane] [enmil])

cattributes
junique t)
=>

(i ndex-exists-p [bar])
== T

Side Effects

Anindex iscreated in dat abase.

Affected by

* default-database*

Exceptional Situations

86

CREATE-INDEX

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if arelation called name aready exists.

See Also

dr op-i ndex
l'ist-indexes
i ndex-exi sts-p

Notes

None.

87

Name

DROP-INDEX -- Drop a database index.

Function DROP-INDEX

Syntax

drop-index nanme &key if-does-not-exist on database =>

Arguments and Values

nane The name of the index as a string, symbol or SQL expression.
on The name of atable as a string, symbol or SQL expression.

dat abase A database object which defaults to * default-database* .

i f-does-not - exi st A symbol. Meaningful values are :ignore or :error (the default).
Description

Drops the index called nanme in dat abase which defaults to * default-database* . If the index does not exist and i f -
does- not - exi st is:ignore then dr op- i ndex returns NIL whereas an error is signalled if i f - does- not - exi st
is:error.

The argument on allows the optional specification of atable to drop the index from. Thisis required for compatabil-
ity with MySQL.

Examples

(i ndex-exists-p [foo0])

== T

(drop-index [foo] :if-does-not-exist :ignore)
=>

(i ndex-exists-p [foo0])

=> N L

Side Effects

Anindex isdropped in dat abase.

Affected by

* default-database*

Exceptional Situations

88

DROP-INDEX

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

See Also

creat e-i ndex
l'i st-indexes
i ndex-exi sts-p

Notes

Thei f - does- not - exi st and on keyword arguments to dr op- i ndex are CLSQL extensions. The keyword argu-
ment on is provided for compatibility with MySQL.

89

Name

LIST-INDEXES -- Returns allist of database indexes.

Function L1ST-INDEXES

Syntax

list-indexes &Kkey onowner database => result

Arguments and Values

owner A string, NIL or :all.

dat abase A database object which defaults to * default-database* .

on The name of atable asastring, symbol or SQL expression, alist of such namesor NIL.
result A list of strings.

Description

Returns alist of strings representing index names in dat abase which defaults to * default-database*. owner isNIL
by default which means that only indexes owned by users are listed. If owner isastring denoting a user name, only
indexes owned by owner arelisted. If owner is:all then al indexes are listed.

The keyword argument on limits the results to indexes on the specified tables. Meaningful values for on are NIL

(the default) which means that all tables are considered, a string, symbol or SQL expression representing a table
namein dat abase or alist of such table identifiers.

Examples

(l'ist-indexes)
=> ("enpl oyeepk" "conpanypk" "addrpk" "bar")

(list-indexes :on '([addr] [conpany]))
=> ("addrpk" "conmpanypk")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

90

LIST-INDEXES

None.

See Also

creat e-i ndex
dr op-i ndex
i ndex-exists-p

Notes

l'i st-indexes isaCLSQL extension.

91

Name

INDEX-EXISTS-P -- Tests for the existence of a database index.

Function INDEX-EXISTS-P

Syntax

i ndex- exi sts-p name &key owner database => result

Arguments and Values

nane The name of the index as a string, symbol or SQL expression.
owner A string, NIL or :al.

dat abase A database object which defaults to * default-database* .
result A Boolean.

Description

Tests for the existence of an SQL index called nane in dat abase which defaults to * default-database*. owner is
NIL by default which means that only indexes owned by users are examined. If owner is a string denoting a user
name, only indexes owned by owner are examined. If owner is:all then all indexes are examined.

Examples

(i ndex-exists-p [bar])
= T

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

92

INDEX-EXISTS-P

creat e-i ndex

dr op- i ndex
l'i st-indexes
Notes

i ndex- exi sts-pisaCLSQL extension.

93

Name

ATTRIBUTE-TY PE -- Returns the type of the supplied attribute.

Function ATTRIBUTE-TYPE

Syntax

attribute-type attribute table &ey owner database => type, precision, scale, nulls-accepted

Arguments and Values

attribute The name of the index as a string, symbol or SQL expression.
tabl e The name of atable asastring, symbol or SQL expression.
owner A string, NIL or :all.

dat abase A database object which defaults to * default-database* .

type A keyword symbol denoting a vendor-specific SQL type.

pr eci si on An integer denoting the precision of the attribute type or NIL.
scal e An integer denoting the scale of the attribute type or NIL.

nul | s-accept ed Oor 1l

Description

Returns a keyword symbol representing the vendor-specific field type of the supplied attribute at t r i but e intheta-
ble specified by t abl e in dat abase which defaults to * default-database*. owner is NIL by default which means
that the attribute specified by at t ri but e, if it exists, must be user owned else NIL isreturned. If owner isastring
denoting a user name, the attribute, if it exists, must be owned by owner else NIL is returned, whereas if owner is
:all then the attribute, if it exists, will be returned regardless of its owner.

Other information is aso returned. The second value is the type precision, the third is the scale and the fourth repres-
ents whether or not the attribute accepts null values (avalue of 0) or not (avalue of 1).

Examples

(attrlbute type [eerlld] [enpl oyee])
=> :INT4, 4, NL,

Side Effects

None.

94

ATTRIBUTE-TYPE

Affected by

* default-database*

Exceptional Situations

None.

See Also

list-attributes
list-attribute-types

Notes

None.

95

Name

LIST-ATTRIBUTE-TY PES -- Returns information about the attribute types of atable.

Function LIST-ATTRIBUTE-TYPES

Syntax

list-attribute-types table &ey owner database => result

Arguments and Values

tabl e The name of atable asastring, symbol or SQL expression.
owner A string, NIL or :al.

dat abase A database object which defaults to * default-database* .
result A list.

Description

Returns alist containing information about the SQL types of each of the attributes in the table specified by t abl e in
dat abase which has a default value of *default-database*. owner is NIL by default which means that only attrib-
utes owned by users are listed. If owner isastring denoting a user name, only attributes owned by owner are listed.
If owner is:all then all attributes are listed. The elements of the returned list are lists where the first element is the
name of the attribute, the second element isits SQL type, the third is the type precision, the fourth is the scale of the
attribute and the fifth is 1 if the attribute accepts null values and otherwise 0.

Examples

(list-attribute-types [enployee])
=> (("enplid" :INT4 4 NIL 0) ("groupid" :INT4 4 NIL 0)

("first_nanme" :VARCHAR 30 NIL 1) ("last_nane" :VARCHAR 30 NIL 1)
("email" :VARCHAR 100 NIL 1) ("econpanyid" :INT4 4 NIL 1)
("managerid" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1)
("married" :BOOL 1 NIL 1) ("birthday" :TIMESTAMP 8 NIL 1)
("bd_utinme" :INT8 8 NIL 1))

Side Effects

None.

Affected by

* default-database*

96

LIST-ATTRIBUTE-TYPES

Exceptional Situations

None.

See Also

attribute-type
list-attribute-types

Notes

None.

97

Name

LIST-ATTRIBUTES -- Returns the attributes of atable asalist.

Function LIST-ATTRIBUTES

Syntax

list-attributes name &key owner database => result

Arguments and Values

nane The name of atable asastring, symbol or SQL expression.
owner A string, NIL or :al.

dat abase A database object which defaults to * default-database* .
result A list.

Description

Returns a list of strings representing the attributes of table name in dat abase which defaults to * default-database* .
owner isNIL by default which means that only attributes owned by users are listed. If owner is astring denoting a
user name, only attributes owned by owner arelisted. If owner is:all then all attributes are listed.

Examples

(list-attributes [enpl oyee])
=> ("enplid" "groupid" "first_name" "last_name" "emmil" "econpanyid" "nmanagerid"
"height" "married" "birthday" "bd_utinme")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

98

LIST-ATTRIBUTES

attribute-type
list-attribute-types

Notes

None.

99

Name

CREATE-SEQUENCE -- Create a database sequence.

Function CREATE-SEQUENCE

Syntax

creat e-sequence name &Kkey database =>

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.

dat abase A database object which defaults to * default-database* .

Description

Creates a sequence called nane in dat abase which defaults to * default-database* .

Examples

(create-sequence [fo0])
=>

(sequence-exi sts-p [foo0])
== T

Side Effects

A sequenceiscreated in dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if arelation called name aready exists.

See Also

dr op- sequence
list-sequences
sequence- exi sts-p
sequence- | ast

100

CREATE-SEQUENCE

sequence- next
set - sequence-posi tion

Notes

cr eat e- sequence isaCLSQL extension.

101

Name

DROP-SEQUENCE -- Drop a database sequence.

Function DROP-SEQUENCE

Syntax

drop-sequence nane &key if-does-not-exist database =>

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

i f-does-not - exi st A symbol. Meaningful values are :ignore or :error (the default).
Description

Drops the sequence called narme from dat abase which defaults to * default-database* . If the sequence does not ex-
ist and i f - does- not - exi st is :ignore then dr op- sequence returns NIL whereas an error is signalled if i f -
does- not - exi st is:error.

Examples

(sequence-exi sts-p [foo0])
= T

(drop-sequence [foo] :if-does-not-exist :ignore)
=>

(sequence-exi sts-p [foo0])
=> N L

Side Effects

A sequenceis dropped from dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if nane is not a string, symbol or SQL expression. An error of type sgl-database-data-error is
signalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

102

DROP-SEQUENCE

See Also

creat e- sequence
list-sequences
sequence-exi sts-p
sequence- | ast
sequence- next

set - sequence- posi tion

Notes

dr op- sequence isa CLSQL extension.

103

Name
LIST-SEQUENCES -- Returns alist of database sequences.

Function L1ST-SEQUENCES

Syntax

| i st-sequences &key owner database => result

Arguments and Values

owner A string, NIL or :all.

dat abase A database object which defaults to * default-database* .
result A list of strings.

Description

Returns a list of strings representing sequence names in dat abase which defaults to *default-database*. owner is
NIL by default which means that only sequences owned by users are listed. If owner is a string denoting a user
name, only sequences owned by owner arelisted. If owner is:all then all sequences are listed.

Examples

(list-sequences)
=> ("foo")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

creat e- sequence
dr op- sequence

104

LIST-SEQUENCES

sequence-exi sts-p
sequence- | ast
sequence- next

set - sequence- posi tion

Notes

|i st-sequences isaCLSQL extension.

105

Name

SEQUENCE-EXISTS-P -- Tests for the existence of a database sequence.

Function SEQUENCE-EXISTS-P

Syntax

sequence- exi sts-p nane &key owner database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
owner A string, NIL or :al.

dat abase A database object which defaults to * default-database* .

result A Boolean.

Description

Tests for the existence of an SQL sequence called nane in dat abase which defaults to * default-database* . owner
is NIL by default which means that only sequences owned by users are examined. If owner is a string denoting a
user name, only sequences owned by owner are examined. If owner is:all then all sequences are examined.

Examples

(sequence-exi sts-p [foo0])
=> NL

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

106

SEQUENCE-EXISTS-P

creat e- sequence

dr op- sequence
list-sequences
sequence- | ast
sequence- next

set - sequence-posi tion

Notes

sequence- exi st s- p isaCLSQL extension.

107

Name

SEQUENCE-LAST -- Return the last element in a database sequence.

Function SEQUENCE-LAST

Syntax

sequence- | ast nane &key database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

result An integer.

Description

Return the last value allocated in the sequence called nane in dat abase which defaults to * default-database* .

Examples

(sequence-l ast [foo0])
== 1

Side Effects

None.

Affected by

The current value stored in database sequence nane.

* default-database*

Exceptional Situations

Will signal an error of type sgl-database-data-error if a sequence called name does not exist in dat abase.

See Also

creat e- sequence
dr op- sequence

108

SEQUENCE-LAST

i st-sequences
sequence-exi sts-p
sequence- next

set - sequence- posi tion

Notes

sequence- | ast isaCLSQL extension.

109

Name

SEQUENCE-NEXT -- Increment the value of a database sequence.

Function SEQUENCE-NEXT

Syntax

sequence- next nane &key database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

result An integer.

Description

Increment and return the value of the sequence called nane in dat abase which defaults to * default-database* .
Examples

(sequence-l ast [foo0])
=> 3
(sequence-next [foo])
=> 4
(sequence- next [foo])
=> 5
(sequence- next [foo])
= 6

Side Effects

Modifies the value of the sequence narre in dat abase.

Affected by

The current value stored in database sequence nane.

* default-database*

Exceptional Situations

Will signal an error of type sgl-database-data-error if a sequence called nane does not exist in dat abase.

110

SEQUENCE-NEXT

See Also

creat e- sequence

dr op- sequence
list-sequences
sequence- exi sts-p
sequence- | ast

set - sequence- posi tion

Notes

sequence- next isaCLSQL extension.

111

Name
SET-SEQUENCE-POSITION -- Sets the position of a database sequence.

Function SET-SEQUENCE-POSITION

Syntax

set - sequence- posi tion name position &ey database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
position Aninteger.

dat abase A database object which defaults to * default-database* .

result Aninteger.

Description

Explicitly set the position of the sequence called nane in dat abase, which defaults to * default-database*, to posi -
ti on whichisreturned.

Examples

(sequence-l ast [foo0])
=> 4

(set-sequence-position [foo] 50)
=> 50

(sequence- next [foo])

=> 51

Side Effects

Modifies the value of the sequence name in dat abase.

Affected by

* default-database*

Exceptional Situations

Will signal an error of type sgl-database-data-error if a sequence called nane does not exist in dat abase.

112

SET-SEQUENCE-POSITION

See Also

creat e- sequence
dr op- sequence
list-sequences
sequence- exi sts-p
sequence- | ast
sequence- next

Notes

set - sequence- posi ti on isaCLSQL extension.

113

Name

TRUNCATE-DATABASE -- Drop dl tables, views, indexes and sequences in a database.

Function TRUNCATE-DATABASE

Syntax

truncat e- dat abase &key database =>

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Drop all tables, views, indexes and sequencesin dat abase which defaults to * default-database* .
Examples

(list-tables)

=> ("type_table" "type_bigint" "enployee" "conpany" "addr" "ea_join" "big")
(l'ist-indexes)

=> ("enpl oyeepk" "conpanypk" "addrpk")
(list-views)

=> ("l eni ns_group")

(list-sequences)

=> ("foo" "bar")

(truncat e- dat abase)

=>

(list-tables)

= N L

(l'ist-indexes)

=> N L

(list-views)

=> N L

(list-sequences)

= NL

Side Effects

M odifications are made to the underlying database.

Affected by

None.

Exceptional Situations

114

TRUNCATE-DATABASE

Signals an error of type sgl-database-error if dat abase isnot a database object.

See Also

drop-table
dr op- vi ew
dr op-i ndex
dr op- sequence

Notes

t runcat e- dat abase isa CLSQL extension.

115

Functional Data Manipulation
Language (FDML)

116

Name

CACHE-TABLE-QUERIES-DEFAULT -- Specifies the default behaviour for caching of attribute types.
Variable*CACHE-TABLE-QUERIES-DEFAULT*

Value Type

A valid argument to the act i on parameter of cache-t abl e- queri es, i.e. oneof T, NIL, :flush.
Initial Value

nil

Description

Specifies the default behaivour for caching of attribute types. Meaningful values are T, NIL and :flush as described
for theact i on argument to cache- t abl e- queri es.

Examples

None.

Affected By

None.

See Also

cache-tabl e- queri es

Notes

None.

117

Name

CACHE-TABLE-QUERIES -- Controls the caching of attribute type information for a database table.

Function CACHE-TABLE-QUERIES

Syntax

cache-tabl e-queries table &ey action database) =>

Arguments and Values

tabl e A string representing a database table, T or :default.

action T, NIL or :flush.

dat abase A database object. Thiswill default to the value of * default-database*.
Description

Controls the caching of attribute type information on the table specified by t abl e in dat abase which defaults to
default-database . act i on specifies the caching behaviour to adopt. If itsvalueis T then attribute type information
is cached whereas if its value is NIL then attribute type information is not cached. If acti on is:flush then all exist-
ing type information in the cache for t abl e is removed, but caching is still enabled. t abl e may be a string repres-
enting a table for which the caching action is to be taken while the caching action is applied to al tablesif t abl e is
T. Alternatively, when t abl e is :default, the default caching action specified by * cache-table-queries-default* is ap-
plied to al tables for which a caching action has not been explicitly set.

Examples

(setf *cache-tabl e-queries-default* t)
== T
(create-table [foo
"(([id] integer)
([height] float)
([nane] (string 24))
([comments] varchar)))
=>
(cache-tabl e-queries "foo")
=>
(list-attribute-types "foo")
=> (("id" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1) ("nane" :BPCHAR 24 NI L 1)
("coments" : VARCHAR 255 NIL 1))
(drop-table "foo")
=>
(create-table [foo0]
"(([1d] integer)
([height] float)
([nane] (string 36))
([comments] (string 100))))
=>
(cache-tabl e-queries "foo" :action :flush)
=>
(list-attribute-types "foo")
=> (("id" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1) ("nane" :BPCHAR 36 NIL 1)

118

CACHE-TABLE-QUERIES

("coments" :BPCHAR 100 NIL 1))

Side Effects

The interna attribute cache for dat abase is modified.

Affected by

* cache-table-queries-default*

Exceptional Situations

None.

See Also

* cache-table-queries-default*

Notes

None.

119

Name

INSERT-RECORDS -- Insert tuples of datainto a database table.

Function INSERT-RECORDS

Syntax

insert-records &key into attributes values av-pairs query database =>

Arguments and Values

into A string, symbol or symbolic SQL expression representing the name of a table existing in
dat abase.

attributes A list of attribute identifiers or NIL.

val ues A list of attribute valuesor NIL.

av-pairs A list of attribute identifier/value pairs or NIL.

query A query expression or NIL.

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Inserts records into the table specified by i nt o in dat abase which defaults to * default-database*.

There are five ways of specifying the values inserted into each row. In the first val ues contains a list of values to
insert and att ri but es, av- pai rs and quer y are NIL. This can be used when values are supplied for al attributes
ininto. Inthe second, attri but es isalist of column names, val ues is a corresponding list of values and av-
pairs and query are NIL. In the third, attri but es, val ues and query are NIL and av- pairs is an aist of
(attribute value) pairs. In the fourth, val ues, av- pai rs and attri but es are NIL and query is a symbolic SQL
guery expression in which the selected columns also exist ini nt o. In the fifth method, val ues and av- pai rs are
nil and at t ri but es isalist of column names and quer y isasymbolic SQL query expression which returns values
for the specified columns.

Examples

(select [first-nane] [last-nane] [email]
:from[enpl oyee]
:where [= [enplid] 11]
:field-names nil)
=> N L
(insert-records :into [enpl oyee]
cattributes "(enplid groupid first_name | ast_nane email
econpanyi d manageri d)
:values '(11 1 "Yuri" "Gagarin" "gagari n@oviet.org"
11
-))
(select [first-name] [last-name] [enmail]
:from [enpl oyee]

120

INSERT-RECORDS

where [= [enplid] 11]
:field-nanmes nil)
=> (("Yuri"™ "Gagarin" "gagari n@oviet.org"))

Side Effects

M odifications are made to the underlying database.

Affected by

None.

Exceptional Situations

An error of type sgl-database-data-error is signalled if t abl e isnot an existing tablein dat abase or if the specified
attributes are not found.

See Also

updat e-r ecords
del et e-records

Notes

None.

121

Name

UPDATE-RECORDS -- Updates the values of existing records.

Function UPDATE-RECORDS

Syntax

updat e-records table &ey attributes values av-pairs where database =>

Arguments and Values

tabl e A string, symbol or symbolic SQL expression representing the name of a table existing in
dat abase.

attributes A list of attribute identifiers or NIL.

val ues A list of attribute valuesor NIL.

av-pairs A list of attribute identifier/value pairs or NIL.

wher e A symbolic SQL expression.

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Updates the attribute values of existing records satsifying the SQL expression wher e in the table specified by t a-
bl e indat abase which defaults to * default-database* .

There are three ways of specifying the values to update for each row. In the first, val ues containsalist of valuesto
useintheupdateand at t ri but es and av- pai r s are NIL. This can be used when values are supplied for al attrib-
utesint abl e. In the second, at t ri but es isalist of column names, val ues is a corresponding list of values and
av-pai rs is NIL. In the third, attri but es and val ues are NIL and av- pai rs is an alist of (attribute value)
pairs.

Examples

(select [first-nanme] [last-nanme] [email]
:from [enpl oyee]
:where [= [enplid] 1]
:field-nanmes nil)
=> (("Vladamr" "Lenin" "lenin@oviet.org"))
(updat e-records [enpl oyee]
rav-pairs' ((first_name "Yuri")
(last_nane "Gagarin")
(emai | "gagari n@oviet.org"))
where [= [enplid] 1])
=>
(select [first-nane] [last-nane] [email]
:from [enpl oyee]
:where [= [enplid] 1]
:field-names nil)
=> (("Yuri" "Gagarin" "gagarin@oviet.org"))

122

UPDATE-RECORDS

Side Effects

M odifications are made to the underlying database.

Affected by

None.

Exceptional Situations

An error of type sgl-database-data-error is signalled if t abl e is not an existing table in dat abase, if the specified
attributes are not found or if the SQL statement resulting from the symbolic expression wher e does not return a
Boolean value.

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

See Also

insert-records
del et e-records

Notes

None.

123

Name

DELETE-RECORDS -- Delete records from a database table.

Function DELETE-RECORDS

Syntax

del ete-records &ey from where database =>

Arguments and Values

from A string, symbol or symbolic SQL expression representing the name of a table existing in
dat abase.

wher e A symbolic SQL expression.

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Deletes records satisfying the SQL expression wher e from the table specified by fromin dat abase specifies a
database which defaults to * default-database*.

Examples

(select [first-nane] [last-nane] [email]
:from[enpl oyee]
:where [= [enplid] 11]
:field-names nil)
=> (("Yuri" "Gagarin" "gagarin@oviet.org"))
(del ete-records :from[enpl oyee] :where [= [enplid] 11])
=>
(select [first-nane] [last-nanme] [email]
:from [enpl oyee]
:where [= [enplid] 11]
:field-names nil)
=> NIL

Side Effects

Modifications are made to the underlying database.

Affected by

None.

Exceptional Situations

124

DELETE-RECORDS

An error of type sgl-database-data-error is signalled if fromis not an existing table in dat abase or if the SQL
statement resulting from the symbolic expression wher e does not return a Boolean value.

See Also

insert-records
updat e-r ecords

Notes

None.

125

Name

EXECUTE-COMMAND -- Execute an SQL command which returns no values.

Generic Function EXECUTE-COMMAND

Syntax

execut e- command sql - expressi on &ey dat abase =>

Arguments and Values

sql - expr essi on An sgl expression that represents an SQL statement which will return no values.
dat abase A database object. Thiswill default to the value of * default-database*.
Description

Executes the SQL command sql - expr essi on, which may be a symbolic SQL expression or a string representing
any SQL statement apart from a query, on the supplied dat abase which defaults to * default-database* .

Examples

(execut e-command "create table eventlog (time char(30), event char(70))")
=>

(execut e-command “"create table eventlog (time char(30), event char(70))")

>>

>> Wi |l e accessi ng dat abase #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {480B2B6D} >
>> with expression "create table eventlog (time char(30), event char(70))":
>> Error NIL: ERROR antreate: eventlog relation already exists

>> has occurred.

>>

>> Restarts:

>> 0: [ABORT] Return to Top-Level.

>> Debug (type H for help)

>> (CLSQL- POSTGRESQL: : | (PCL: : FAST- METHOD DATABASE- EXECUTE- COMVAND (T POSTGRESQL- DATABASE)) |
>> #<unused-ar g>

>> #<unused- ar g>

>> #<unavai |l abl e-arg>

>> #<unavai | abl e-arg>)

>> Si)ur ce: (ERROR ' SQ.- DATABASE- ERROR : DATABASE DATABASE : EXPRESSION . ..)

>> 0] O

(execut e-conmand "drop table eventl og")
=>

Side Effects

Whatever effects the execution of the SQL statement has on the underlying database, if any.

126

EXECUTE-COMMAND

Affected by

None.

Exceptional Situations

If the execution of the SQL statement leads to any errors, an error of type sqgl-database-error is signalled.

See Also

query

Notes

None.

127

Name

QUERY -- Execute an SQL query and return the tuples as alist.

Generic Function QUERY

Syntax

query query-expression &ey database result-types flatp field-names => result

Arguments and Values

quer y- expr essi on

dat abase
flatp

resul t-types

fiel d-nanes

result

Description

An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set.

A database object. Thiswill default to the value of * default-database*.
A Boolean whose default valueis NIL.
A field type specifier. The default isNIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields into nu-
meric Lisp objects rather than strings. This reduces the cost of allocating a temporary
string and the CLSQL users' inconvenience of converting number strings into number
objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a numeric
format where applicable. The default value of NIL causes all fields to be returned as
strings regardless of the SQL type. Otherwise a list is expected which has a element
for each field that specifies the conversion. Valid type identifiers are:

;int Field is imported as a signed integer, from 8-bits to 64-bits depending upon the
field type.

:double Field isimported as a double-float number.

t Field isimported as a string.

If the list is shorter than the number of fields, the avalue of t is assumed for the field.
If thelist islonger than the number of fields, the extra elements are ignored.

A boolean with a default value of T. When T, this function returns a second value of a
list of field names. When NIL, this function only returns one value - the list of rows.

A list representing the result set obtained. For each tuple in the result set, there is an
element in thislist, which isitself alist of al the attribute valuesin the tuple.

Executes the SQL query expression quer y- expr essi on, which may be an SQL expression or a string, on the sup-
plied dat abase which defaults to *default-database*. r esul t - t ypes is alist of symbols which specifies the lisp
type for each field returned by quer y- expr essi on.

If resul t-types is NIL al results are returned as strings whereas the default value of :auto means that the lisp
types are automatically computed for each field.

128

QUERY

fiel d-names is T by default which means that the second value returned is a list of strings representing the
columns selected by quer y- expr essi on. If fi el d- names is NIL, the list of column names is not returned as a
second value.

f1 at p has a default value of NIL which means that the results are returned as alist of lists.If FLATPis T and only
one result is returned for each record selected by quer y- expr essi on, the results are returned as elements of alist.

Examples

(query "select enplid,first_nane, | ast_nane, hei ght from enpl oyee where enplid = 1")
=> ((1 "Mladam r" "Lenin" 1.5564661d0)),

("enplid" "first_name" "last_name" "height")
(query "select enplid,first_nane,|ast_nane, hei ght from enpl oyee where enplid = 1"

:field-nanmes nil)
=> ((1 "Vladanm r" "Lenin" 1.5564661d0))

(query "select enplid,first_nane,|ast_nane, hei ght from enpl oyee where enplid = 1"
:field-nanes ni
sresult-types nil)

=> (("1" "Vladam r" "Lenin" "1.5564661"))

I
=

(query "select enplid,first_nane,|ast_nane, hei ght from enpl oyee where enplid
:field-nanmes nil
iresult-types '(:int t t :double))

=> ((1 "Vladam r" "Lenin" 1.5564661))

(query "sel ect |ast_name from enpl oyee where enplid > 5" :flatp t)
=> (" Andropov" "Chernenko" "Gorbachev" "Yeltsin" "Putin"),
("l ast _nane")
(query "sel ect last_nane from enpl oyee where enplid > 10"
cflatp t

:field-nanes nil)
= N L

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

See Also

execut e- command
print-query

do- query

map- query

| oop

129

QUERY

sel ect

Notes

Thefi el d- names andresul t -t ypes keyword arguments are a CLSQL extension.

130

Name

PRINT-QUERY -- Prints atabular report of query results.

Function PRINT-QUERY

Syntax

print-query query-expression &ey titles formats sizes stream database =>

Arguments and Values

quer y- expr essi on An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set.

dat abase A database object. Thiswill default to the value of * default-database*.

titles A list of strings or NIL which isthe default value.

format s A list of strings, NIL or T which is the default value.

si zes A list of numbers, NIL or T which is the default value.

stream An output stream or T which is the default value.

Description

Prints a tabular report of the results returned by the SQL query quer y- expr essi on, which may be a symbolic
SQL expression or a string, in dat abase which defaults to * default-database*. The report is printed onto st r eam
which has a default value of T which means that * standard-output* isused. Theti t | e argument, which defaults to
NIL, alows the specification of alist of strings to use as column titles in the tabular output. si zes accepts a list of
column sizes, one for each column selected by quer y- expr essi on, to use in formatting the tabular report. The de-
fault value of T means that minimum sizes are computed. f or mat s isalist of format strings to be used for printing
each column selected by quer y- expr essi on. The default value of for mats is T meaning that ~A is used to
format al columns or ~VA if column sizes are used.

Examples
(print-query [select [e I id] [first-nane] [last-name] [enail]

m [enpl oyee]

re [< [enplld] ﬂ]
‘titles ' (I D' "FORENAME" " SURNAME" "EMAIL"))

| D FORENAME SURNAME EMAI L
1 Viadamr Lenin | eni n@oviet.org
2 Josef Stalin stalin@oviet.org
3 Leon Trotsky trotsky@oviet.org
4 N kita Kruschev kruschev@oviet.org

=>

(print-query "sel ect enpl id, f| rst_nane, | ast _nane, emai|l from enpl oyee where enplid >= 5"
ctitles ' ("1 D' "FORENAME" "SURNAMVE" "EMAIL"))

| D FORENAME SURNANVE EVAI L

5 Leonid Brezhnev brezhnev@oviet.org

6 Yuri Andr opov andr opov@ovi et . org

131

PRINT-QUERY

7 Konstantin Chernenko chernenko@oviet.org

8 M khail Gor bachev gor bachev@ovi et . org
9 Boris Yel tsin yel tsi n@oviet.org
10 VI adamir Putin puti n@oviet.org

=>

Side Effects

None.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

See Also

query
do- query
map- query
| oop

sel ect

Notes

None.

132

Name

SELECT -- Executes a query given the supplied constraints.

Function SELECT

Syntax

select &rest identifiers &ey al

Arguments and Values

identifiers
al |

di stinct
from

gr oup- by
havi ng

or der - by
set-operation
wher e

dat abase
flatp

resul t-types

fiel d-nanes

A set of sgl expressions each of which indicates a column to query.

A Boolean.

A Boolean.

One or more SQL expression representing tables.

An SQL expression.

An SQL expression.

An SQL expression.

An SQL expression.

An SQL expression.

A database object. Thiswill default to the value of * default-database*.

A Boolean whose default valueis NIL.

A field type specifier. The default isNIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields into nu-
meric Lisp objects rather than strings. This reduces the cost of allocating a temporary
string and the CLSQL users' inconvenience of converting number strings into number
objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a numeric
format where applicable. The default value of NIL causes all fields to be returned as
strings regardless of the SQL type. Otherwise a list is expected which has a element
for each field that specifies the conversion. Valid type identifiers are:

;int Field is imported as a signed integer, from 8-bits to 64-bits depending upon the
field type.

:double Field isimported as a double-float number.

t Field isimported as a string.

If the list is shorter than the number of fields, the avalue of t is assumed for the field.

If thelist islonger than the number of fields, the extra elements are ignored.

A boolean with adefault value of T. When T, this function returns a second value of a
list of field names. When NIL, this function only returns one value - the list of rows.

133

di stinct from group-by having order-by set-operation where result-ty

SELECT

resul t A list representing the result set obtained. For each tuple in the result set, there is an
element in thislist, which isitself alist of al the attribute valuesin the tuple.

Description

Executes a query on dat abase, which has a default value of *default-database*, specified by the SQL expressions
supplied using the remaining argumentsin ar gs. The sel ect function can be used to generate queries in both func-
tional and object oriented contexts.

In the functional case, the required arguments specify the columns selected by the query and may be symbolic SQL
expressions or strings representing attribute identifiers. Type modified identifiers indicate that the values selected
from the specified column are converted to the specified lisp type. The keyword arguments al | , di sti nct, from
gr oup- by, havi ng, or der - by, set - oper ati on and wher e are used to specify, using the symbolic SQL syntax,
the corresponding components of the SQL query generated by the call to sel ect .

resul t-types isalist of symbols which specifies the lisp type for each field returned by the query. If resul t -

t ypes isNIL all results are returned as strings whereas the default value of :auto means that the lisp types are auto-
matically computed for each field. fi el d- nanmes is T by default which means that the second value returned is a
list of strings representing the columns selected by the query. If fi el d- names is NIL, the list of column names is
not returned as a second value.

In the object oriented case, the required argumentsto sel ect are symbols denoting View Classes which specify the
database tables to query. In this case, sel ect returns alist of View Class instances whose slots are set from the at-
tribute values of the records in the specified table. Slot-value is a legal operator which can be employed as part of
the symbolic SQL syntax used in the wher e keyword argument to sel ect. refresh is NIL by default which
means that the View Class instances returned are retrieved from a cache if an equivaent call to sel ect has previ-
ously been issued. If r ef r esh istrue, the View Class instances returned are updated as necessary from the database
and the generic function i nst ance-r ef reshed is called to perform any necessary operations on the updated in-
stances.

In both object oriented and functional contexts, f | at p has a default value of NIL which means that the results are
returned as alist of lists. If f1 at p ist and only one result is returned for each record selected in the query, the res-
ults are returned as elements of alist.

Examples

(select [first-nanme] :from [enployee] :flatp t :distinct t
:field-names nil
sresult-types nil
corder-by [first-name])
=> ("Boris" "Josef" "Konstantin" "Leon" "Leonid" "MKkhail" "N kita" "Vl adam r"
"Yuri")

(select [first-nanme] [count [*]] :from [enpl oyee]
:result-types nil
:group-by [first-nanme]
:order-by [first-nanme]
:field-nanes nil)
=> (("Boris" "1") ("Josef" "1") ("Konstantin" "1") ("Leon" "1") ("Leonid" "1")
("Mkhail" "1") ("Nikita" "1") ("M adamr" "2") ("Yuri" "1"))

(select [last-nane] :from|[enpl oyee]
where [li1ke [email] "%org"]
:order-by [|ast-nane]
:field-nanmes nil
:result-types nil
cflatp t)
=> (" Andropov" "Brezhnev" "Chernenko" "Gorbachev" "Kruschev" "Lenin" "Putin"
"Stalin" "Trotsky" "Yeltsin")

134

SELECT

(select [max [enplid]] :from[enpl oyee]
cflatp t
:field-nanmes nil
‘result-types :auto)
=> (10)

(clsql:select [avg [height]] :from[enployee] :flatp t :field-nanes nil)
=> (1.58999584d0)

(select [enplid] [last-nane] :from[enpl oyee] :where [= [enplid] 1])
= ((1 "Lenin")),
("enplid" "last_nanme")

(select [enplid :string] :fr

=> ("1")

(select [enplid] :from[enployee] :order-by [enplid]
:where [not [between [* [enplid] 10] [* 5 10] [* 10 10]]]
:field-nanmes nil
cflatp t)

=> (12 3 4)

(clsqgl:select [enplid] :from|[enployee]
:where [in [enplid] '(1 2 3 4)]
cflatp t
:order-by [enplid]
:field-nanmes nil)

=> (12 3 4

(select [first-nane] [last-nanme] :from [enpl oyee]
:field-names nil
corder-by ' (([first-name] :asc) ([last-nanme] :desc)))
=> (("Boris" "Yeltsin") ("Josef" "Stalin") ("Konstantin" "Chernenko")
("Leon" "Trotsky") ("Leonid" "Brezhnev") ("M khail" "Gorbachev")
("N kita" "Kruschev") ("Vladamr" "Putin") ("Vliadamr" "Lenin")
("Yuri™ "Andropov"))

(select [last-nane] :from [enpl oyee]
:set-operation [union [select [first-nane] :from [enpl oyee]
:order-by [last-nane]]]
cflatp t
:resul t-types nil
:field-nanes nil)
=> ("Andropov" "Boris" "Brezhnev" "Chernenko" "GCGorbachev" "Josef" "Konstantin"
"Kruschev" "Lenin" "Leon" "Leonid" "Mkhail" "N kita" "Putin" "Stalin"
"Trotsky" "Ml adamir" "Yeltsin" "Yuri")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

135

SELECT

See Also

query
print-query

do- query

map- query

| oop

i nstance-refreshed

Notes

Thefi el d- names andresul t -t ypes keyword arguments are a CLSQL extension.

sel ect iscommon across the functional and object-oriented data manipulation languages.

136

Name

DO-QUERY -- Iterate over all the tuples of aquery.

Macro DO-QUERY

Syntax

do-query ((&rest args) query-expression &ey database result-types &ody body => result

Arguments and Values

args A list of variable names.

query- expressi on An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as f unct i on takes argu-
ments.

dat abase A database object. Thiswill default to * default-database* .

resul t-types A field type specifier. The default is NIL. See query for the semantics of this argu-
ment.

body A body of Lisp code, likeinadest ruct uri ng- bi nd form.

result Theresult of executing body.

Description

Repeatedly executes body within a binding of ar gs on the fields of each row selected by the SQL query query-
expression, which may be a string or a symbolic SQL expression, in database which defaults to
* default-database*.

The body of code is executed in a block named nil which may be returned from prematurely viareturn or re-
turn-from In this case the result of evaluating the do- query form will be the one supplied to ret urn or re-
t ur n- f r om Otherwise the result will be nil.

The body of code appears also is if wrapped in a dest r uct uri ng- bi nd form, thus allowing declarations at the
start of the body, especialy those pertaining to the bindings of the variables named in ar gs.

resul t-types isalist of symbols which specifies the lisp type for each field returned by quer y- expr essi on. If
resul t-types isNIL al results are returned as strings whereas the default value of :auto means that the lisp types
are automatically computed for each field.

quer y- expr essi on may be an object query (i.e., the selection arguments refer to View Classes), in which case
ar gs are bound to the tuples of View Class instances returned by the object oriented query.

Examples

(do-query ((salary name) "sel ect sal ary, name from sinple")
(format t "~30A gets $~2,5%~% nane (read-fromstring salary)))

137

DO-QUERY

>> Mai, Pierre gets $10000. 00
>> Hacker, Random J. gets $08000. 50
=> N L

(do-query ((salary name) "select salary, name from sinple")
(return (cons salary nane)))
=> ("10000.00" . "Mai, Pierre")

(let ((result "()))
(do-query ((name) [select [last-nane] :from[enpl oyee]
:order-by [l ast-nane]])
(push nane result))
result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"
" Cher nenko" "Brezhnev" "Andropov")

(let ((result "()))
(do-query ((e) [select 'enployee :order-by [last-nane]])

(push (slot-value e 'last-nane) result))
result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"
"Cher nenko" "Brezhnev" "Andropov")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

If the number of variable names in ar gs and the number of attributes in the tuples in the result set don't match up,
an error issignalled.

See Also

query
map- query
print-query
| oop

sel ect

Notes

Theresul t -t ypes keyword argument isa CLSQL extension.

do- query is common across the functional and object-oriented data manipulation languages.

138

Name

FOR-EACH-ROW --

Function FOR-EACH-ROW
Syntax

for-each-row &EY FROM ORDER- BY WHERE DI STI NCT LIM T &REST Fl ELDS &body body =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also

query
print-query
do- query
map- query

| oop

sel ect

Notes

139

Name
LOOP -- Iterate over al the tuples of a query viaaloop clause.

Additional clause for LOOP

Syntax

{as | for} var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} query [frc

Arguments and Values

var A d- var - spec, as defined in the grammar for | oop-clauses in the ANSI Standard for Com-
mon Lisp. This allows for the usual |oop-style destructuring.

t ype- spec An optiona t ype- spec either simple or destructured, as defined in the grammar for | oop-
clausesin the ANSI Standard for Common Lisp.

query An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes asf unct i on takes arguments.

dat abase An optional database object. Thiswill default to the value of * default-database*.

Description

This clause is an iteration driver for | oop, that binds the given variable (possibly destructured) to the consecutive
tuples (which are represented as lists of attribute values) in the result set returned by executing the SQL query ex-
pression on the dat abase specified.

query may be an object query (i.e., the selection arguments refer to View Classes), in which case the supplied vari-
ableis bound to the tuples of View Class instances returned by the object oriented query.

Examples

(defvar *ny-db* (connect '("dent" "newesint "dent" "dent"))

"My dat abase”

=> *W_ m*

(loop with tine-graph = (make-hash-table :test # equal)
w th event-graph = (make-hash-table :test # equal)
for (time event) being the tuples of "select tine,event fromlog"
from *nmy-db*

(
N
fin
(

ly
flet ((showgraph (k v) (format t "~40A => ~5D~% k v)))
(format t "~&Ti nme- G aph: ~YF==========~0f)
(maphash #' show graph tine-graph)
(format t "~&-%Event - G aph: ~¥F===========~0f)

(maphash #' show graph event-graph))
(return (values tinme-graph event-graph)))
>> Ti me- Graph:

>> S —m——
>> D => 53000
>> X => 3

140

LOOP

>> test-nme => 3000
>>

>> Event - G aph:

>> o=

>> CLCS Benchmark entry. => 9000
>> Denp Text. .. => 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000

=> #<EQUAL hash table, 3 entries {48350A1D}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

(l oop for (forenane surnane)
being each tuple in
[select [first-nane] [|ast-nanme] :from [enpl oyee]
:order-by [l ast-nane]]
collect (concatenate 'string forenane " " surnane))
=> ("Yuri Andropov" "Leonid Brezhnev" "Konstantin Chernenko" "M khail Gorbachev"
"N kita Kruschev" "Vl adanmir Lenin" "Vladanmir Putin" "Josef Stalin"
"Leon Trotsky" "Boris Yeltsin")
(loop for (e) being the records in
[sel ect 'enployee :where [< [enplid] 4] :order-by [enplid]]
collect (slot-value e 'last-nane))
=> ("Lenin" "Stalin" "Trotsky")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

Otherwise, any of the exceptional situations of | oop applies.

See Also

query
map- query
do- query
print-query
sel ect

Notes

The dat abase loop keyword is a CLSQL extension.

The extended | oop syntax is common across the functional and object-oriented data manipulation languages.

141

Name

MAP-QUERY -- Map afunction over al the tuples from a query

Function MAP-QUERY

Syntax

map- query out put-type-spec function query-expression &ey database result-types => result

Arguments and Values

out put - t ype- spec A sequence type specifier or nil.

function A function designator. f unct i on takes a single argument which is the atom value for
aquery singlewith asingle column or is alist of values for a multi-column query.

quer y- expr essi on An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set.

dat abase A database object. Thiswill default to the value of * default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of this argu-
ment.

result If out put -t ype- spec isatype specifier other than nil, then a sequence of the type it

denotes. Otherwise nil is returned.

Description

Appliesf uncti on to the successive tuples in the result set returned by executing the SQL quer y- expr essi on. If
the out put - t ype- spec is nil, then the result of each application of f uncti on is discarded, and map- query re-
turns nil. Otherwise the result of each successive application of f uncti on is collected in a sequence of type out -
put - t ype- spec, where the jths element is the result of applying f unct i on to the attributes of the jths tuple in the
result set. The collected sequence is the result of the call to map- query.

If theout put - t ype- spec isasubtype of list, the result will be alist.

If theresul t - type isasubtype of vector, then if the implementation can determine the element type specified for
theresul t - t ype, the element type of the resulting array is the result of upgrading that element type; or, if the im-
plementation can determine that the element type is unspecified (or *), the element type of the resulting array isft;
otherwise, an error is signaled.

If resul t-types is NIL al results are returned as strings whereas the default value of :auto means that the lisp
types are automatically computed for each field.

quer y- expr essi on may be an object query (i.e., the selection arguments refer to View Classes), in which case the
supplied function is applied to the tuples of View Class instances returned by the object oriented query.

Examples

(map-query 'list # (lanbda (tuple)

142

MAP-QUERY

(rmul tipl e-val ue-bind (salary nane) tuple
(decl are (ignorable nane))
(read-fromstring salary)))
"sel ect salary,nanme from sinple where salary > 8000")
=> (10000. 0 8000. 5)

(map-query ' (vector double-float)
#' (1 ambda (tuple)
(rmul tipl e-val ue-bind (salary nane) tuple
(decl are (ignorable nane))
(let ((*read-default-float-format* 'double-float))
(coerce (read-fromstring salary) 'double-float))
"sel ect salary,nanme fromsinple where salary > 8000")))
=> #(10000. 0d0 8000. 5d0)
(type-of *)
=>" (S| MPLE- ARRAY DOUBLE- FLOAT (2))

(let (list)
(val ues (map-query nil # (lanbda (tuple)
(rmul tiple-val ue-bind (salary nane) tuple

(push (cons nane (read-fromstring salary)) list))
"sel ect salary,name from sinple where salary > 8000"))
list))
=> N L
=> (("Hacker, RandomJ." . 8000.5) ("Mai, Pierre" . 10000.0))

(map-query 'vector #' identity
[select [last-name] :from [enployee] :flatp t
:order-by [l ast-nane]])
=> #(" Andropov" "Brezhnev" "Chernenko" "Corbachev" "Kruschev" "Lenin" "Putin"
"Stalin" "Trotsky" "Yeltsin")

(map-query 'list # identity
[select [first-nane] [last-nanme] :from [enpl oyee]
:order-by [l ast-nane]])
=> (("Yuri" "Andropov") ("Leonid" "Brezhnev") ("Konstantin" "Chernenko")
("M khail" "CGorbachev") ("N kita" "Kruschev") ("Vladanmir" "Lenin")
("Vladam r" "Putin") ("Josef"™ "Stalin") ("Leon" "Trotsky")
("Boris" "Yeltsin"))
(map-query 'list # |ast-name [select 'enployee :order-by [enplid]])
=> ("Lenin" "Stalin" "Trotsky” "Kruschev" "Brezhnev" "Andropov" "Chernenko"
" Cor bachev" "Yeltsin" "Putin")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

An error of type type-error must be signaled if the out put - t ype- spec is not a recognizable subtype of list, not a
recognizable subtype of vector, and not nil.

An error of type type-error should be signaled if out put - t ype- spec specifies the number of elements and the size
of the result set is different from that number.

143

MAP-QUERY

See Also

query
do- query
print-query
| oop

sel ect

Notes

Theresul t -t ypes keyword argument isa CLSQL extension.

map- quer y is.common across the functional and object-oriented data manipulation languages.

144

Name

PREPARE-SQL -- Create a prepared statement.

Function PREPARE-SQL

Syntax

prepare-sql sql-stnt types &ey database result-types field-nanes => result

Arguments and Values

Description

Prepares a SQL statement sql - st nt for execution. t ypes contains a list of types corresponding to the input para-
meters. Returns a prepared-statement object. A type can be :int :double :null (:string n)

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

145

Name

RUN-PREPARED-SQL -- Execute a prepared statement.

Function RUN-PREPARED-SQL

Syntax

run- prepar ed-sql prepared-stnt =>

Arguments and Values
Description

Execute the prepared sgl statment. All input parameters must be bound.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

146

Name

FREE-PREPARED-SQL -- Delete a prepared statement object.

Function FREE-PREPARED-SQL

Syntax

free-prepared-sql prepared-stnt =>

Arguments and Values
Description

Delete the objects associated with a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

147

Name

BIND-PARAMETER -- Bind a parameter in a prepared statement.

Function BIND-PARAMETER

Syntax

bi nd- paraneter prepared-stnt position value =>

Arguments and Values
Description

Setsthe value of a parameter in a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

148

Transaction Handling

This section describes the interface provided by CLSQL for handling database transactions. The interface allows for
opening transaction blocks, committing or rolling back changes made and controlling autocommit behaviour.

149

Name

START-TRANSACTION -- Open atransaction block.
Function START-TRANSACTION

Syntax

start-transacti on &ey database => NI L

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Starts a transaction block on dat abase which defaults to * default-database* and which continues until r ol | back
orconmit arecalled.

Examples

(in-transaction-p)

=> N L

(select [*] :from[foo] :field-nanmes nil)
= N L

(start-transaction)

= N L

(in-transaction-p)

= T

(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>

(select [*] :from[foo] :field-names nil)
=> ((1 "one"))

(rol | back)

=> N L

(in-transaction-p)

=> N L

(select [*] :from[foo] :field-names nil)
=> N L

Side Effects

Autocommit mode is disabled and if dat abase is currently within the scope of a transaction, all commit and roll-
back hooks are removed and the transaction level associated with dat abase is modified.

Affected by

None.

150

START-TRANSACTION

Exceptional Situations

Signals an error of type sql-database-error if dat abase isnot a database object.

See Also

commi t

rol | back
in-transaction-p
set - aut oconmi t

w th-transaction

Notes

start-transacti onisaCLSQL extension.

151

Name

COMMIT -- Commit modifications made in the current transaction.

Function COMMIT

Syntax

commit &key database => NI L

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

If dat abase, which defaults to * default-database*, is currently within the scope of a transaction, commits changes
made since the transaction began.

Examples

(in-transaction-p)

=> N L

(select [*] :from[foo] :field-nanmes nil)
= N L

(start-transaction)

= N L

(in-transaction-p)

= T

(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>

(select [*] :from[foo] :field-names nil)
=> ((1 "one"))

(commit)

=> N L

(in-transaction-p)

=> N L

(select [*] :from[foo] :field-names nil)
=> ((1 "one"))

Side Effects

Changes made within the scope of the current transaction are committed in the underlying database and the transac-
tion level of dat abase isreset.

Affected by

The transaction level of dat abase which indicates whether a transaction has been initiated by a call to start -
transaction sincethelastcall torol | back or commi t.

152

COMMIT

Exceptional Situations

Signals an error of type sgl-database-error if dat abase is not a database object. A warning of type sgl-warning is
signalled if there is no transaction in progress.

See Also

start-transaction

rol | back

in-transaction-p
add-transacti on-conm t - hook
set - aut ocomm t

w th-transaction

Notes

None.

153

Name
ROLLBACK -- Roll back modifications made in the current transaction.

Function ROLLBACK
Syntax

rol | back &ey database => NI L

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

If dat abase, which defaults to * default-database*, is currently within the scope of atransaction, rolls back changes
made since the transaction began.

Examples

(in-transaction-p)

=> N L

(select [*] :from[foo] :field-nanmes nil)
= N L

(start-transaction)

= N L

(in-transaction-p)

= T

(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>

(select [*] :from[foo] :field-names nil)
=> ((1 "one"))

(rol | back)

=> N L

(in-transaction-p)

=> N L

(select [*] :from[foo] :field-names nil)
=> N L

Side Effects

Changes made within the scope of the current transaction are reverted in the underlying database and the transaction
level of dat abase isreset.

Affected by

The transaction level of dat abase which indicates whether a transaction has been initiated by a call to start -
transaction sincethelastcall torol | back or commi t.

154

ROLLBACK

Exceptional Situations

Signals an error of type sgl-database-error if dat abase is not a database object. A warning of type sgl-warning is
signalled if there is no transaction in progress.

See Also

start-transaction

comm t

in-transaction-p
add-transacti on-rol | back- hook
set - aut ocomm t

w th-transaction

Notes

None.

155

Name

IN-TRANSACTION-P -- A predicate for testing whether atransaction is currently in progress.

Function IN-TRANSACTION-P

Syntax

in-transaction-p &ey database => result

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.
result A Boolean.
Description

A predicate to test whether dat abase, which defaults to * default-database*, is currently within the scope of atrans-
action.

Examples

(in-transaction-p)
=> N L
(start-transacti on)
=> N L
(in-transacti on-p)
== T

(commit)

=> N L

(i n-transacti on-p)
=> N L

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

See Also

156

IN-TRANSACTION-P

start-transaction
comni t

rol | back

set -aut ocomm t

Notes

i n-transaction-pisaCLSQL extension.

157

Name

ADD-TRANSACTION-COMMIT-HOOK -- Specify hooks to be run when committing changes.
Function ADD-TRANSACTION-COMMIT-HOOK

Syntax

add-transaction-conmmit-hook comnit-hook &ey database => result

Arguments and Values

conmi t - hook A designator for afunction with no required arguments.

dat abase A database object. Thiswill default to the value of * default-database*.
result Thelist of currently defined commit hooks for dat abase.
Description

Adds commi t - hook, which should a designator for a function with no required arguments, to the list of hooks run
when conmi t iscalled on dat abase which defaults to * default-database* .

Examples

(start-transaction)

= NL

(add-transaction-commt-hook #' (lanbda () (print "Successfully committed.")))
=> (#<Interpreted Function (LAVMBDA # #) {48E2E689}>)

(commit)

"Successfully committed. "

=> N L

Side Effects

conmi t - hook is added to the list of commit hooks for dat abase.

Affected by

None.

Exceptional Situations

If conmi t - hook has one or more required arguments, an error will be signalled when conmi t iscalled.

See Also

158

ADD-TRANSACTION-COMMIT-HOOK

comm t

rol | back

add-transacti on-rol | back- hook
w th-transaction

Notes

add-transacti on-comni t - hook isa CLSQL extension.

159

Name

ADD-TRANSACTION-ROLLBACK-HOOK -- Specify hooks to be run when rolling back changes.
Function ADD-TRANSACTION-ROLLBACK-HOOK

Syntax

add-transaction-rol | back- hook roll back-hook &key database => result

Arguments and Values

rol | back- hook A designator for afunction with no required arguments.

dat abase A database object. Thiswill default to the value of * default-database*.
result Thelist of currently defined rollback hooks for dat abase.
Description

Adds r ol | back- hook, which should a designator for a function with no required arguments, to the list of hooks
run whenr ol | back iscalled on dat abase which defaults to * default-database* .

Examples

(start-transaction)

= NL

(add-transaction-rol | back-hook # (lanbda () (print "Successfully rolled back.")))
=> (#<Interpreted Function (LAVMBDA # #) {48E37C31}>)

(roll back)

"Successfully rolled back."

=> N L

Side Effects

rol | back- hook is added to the list of rollback hooks for dat abase.

Affected by

None.

Exceptional Situations

If r ol I back- hook has one or more required arguments, an error will be signalled whenr ol | back is called.

See Also

160

ADD-TRANSACTION-ROLLBACK-HOOK

comm t
rol | back
add-transacti on- conm t - hook

Notes

add-transaction-rol | back- hook isaCLSQL extension.

161

Name

SET-AUTOCOMMIT -- Turn on or off autocommit for a database.

Function SET-AUTOCOMMIT

Syntax

set-autocommit val ue &key database => result

Arguments and Values

val ue A Boolean specifying the desired autocommit behaviour for dat abase.
dat abase A database object. Thiswill default to the value of * default-database*.
result The previous autocommit value for dat abase.
Description

Turns autocommit off for dat abase if val ue is NIL, and otherwise turns it on. Returns the old value of autocom-
mit flag.

For RDBMS (such as Oracle) which don't automatically commit changes, turning autocommit on has the effect of
explicitly committing changes made whenever SQL statements are executed.

Autocommit isturned on by default.

Examples

Side Effects

dat abase is associated with the specified autocommit mode.

Affected by

None.

Exceptional Situations

None.

See Also

162

SET-AUTOCOMMIT

start-transaction

comm t

add-transacti on- conm t - hook
w th-transaction

Notes

set - aut oconmmi t isaCLSQL extension.

163

Name

WITH-TRANSACTION -- Execute a body of code within atransaction.

Macro WITH-TRANSACTION

Syntax

wi th-transaction &ey database & est body => result

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Starts a transaction in the database specified by dat abase, which is *default-database* by default, and executes
body within that transaction. If body aborts or throws, dat abase is rolled back and otherwise the transaction is
committed.

Examples

(in-transaction-p)

=> N L

(select [email] :from[enployee] :where [= [enplid] 1] :flatp t :field-names nil)

=> ("lenin@oviet.org")

(with-transaction ()

(updat e-records [enpl oyee]

cav-pairs ' ((email "l
:where [= [enplid] 1]

i n-nospam@oviet.org"))

=> NIL

(select [email] :from[enployee] :where
=> ("l eni n-nospam@ovi et.org")

(i n-transaction-p)

=> NIL

en
))
[=[enmplid] 1] :flatp t :field-names nil)

Side Effects

Changes specified in body may be made to the underlying database if body completes successfully.

Affected by

None.

Exceptional Situations

Signals an error of type sgl-database-error if dat abase isnot a database object.

164

WITH-TRANSACTION

See Also

start-transaction

comm t

rol | back
add-transacti on- conm t - hook
add-transacti on-rol | back- hook

Notes

None.

165

Object Oriented Data Definition
Language (OODDL)

166

Name

STANDARD-DB-OBJECT -- Superclassfor all CLSQL View Classes.
STANDARD-DB-OBJECT

Class Precedence List

standard-db-object, standard-object, t

Description

Thisclass is the superclass of all CLSQL View Classes.

Class detalls

(defcl ass STANDARD- DB- OBJECT () (...))

Slots

167

Name

DEFAULT-VARCHAR-LENGTH --
DEFAULT-VARCHAR-LENGTH

Value Type

Initial Value
nil
Description
Examples

Affected By

None.

See Also

None.

Notes

None.

168

Name

CREATE-VIEW-FROM-CLASS --
CREATE-VIEW-FROM-CLASS

Syntax

(CREATE- VI EW FROM CLASS VI EW CLASS- NAVE &KEY (DATABASE * DEFAULT- DATABASE*) (TRANSACTIONS T)) [function]

Arguments and Values

Description

Creates a table as defined by the View Class VIEW-CLASS-NAME in DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

169

Name
DEF-VIEW-CLASS --

DEF-VIEW-CLASS
Syntax

(DEF- VI EW CLASS CLASS SUPERS SLOTS &REST CL- OPTIONS) [nmacro] =>

Arguments and Values

Description

Creates a View Class called CLASS whose slots SLOTS can map onto the attributes of atable in a database. If SU-
PERS is nil then the superclass of CLASS will be STANDARD-DB-OBJECT, otherwise SUPERS isalist of super-
classes for CLASS which must include STANDARD-DB-OBJECT or a descendent of this class. The syntax of DE-
FCLASS is extended through the addition of a class option :base-table which defines the database table onto which
the View Class maps and which defaultsto CLASS. The DEFCLASS syntax is also extended through additional slot
options. The :db-kind slot option specifies the kind of DB mapping which is performed for this slot and defaults to
:base which indicates that the slot maps to an ordinary column of the database table. A :db-kind value of :key indic-
ates that this slot is a special kind of :base slot which maps onto a column which is one of the unique keys for the
database table, the value :join indicates this slot represents a join onto another View Class which contains View
Class objects, and the value :virtual indicates a standard CLOS slot which does not map onto columns of the data-
base table. If a slot is specified with :db-kind :join, the slot option :db-info contains a list which specifies the nature
of the join. For slots of :db-kind :base or :key, the :type slot option has a specia interpretation such that Lisp types,
such as string, integer and float are automatically converted into appropriate SQL types for the column onto which
the dlot maps. This behaviour may be over-ridden using the :db-type slot option which is a string specifying the
vendor-specific database type for this slot's column definition in the database. The :column slot option specifies the
name of the SQL column which the slot maps onto, if :db-kind is not :virtual, and defaults to the slot name. The
:void-value slot option specifies the value to store if the SQL value is NULL and defaults to NIL. The
.db-constraints slot option is a string representing an SQL table constraint expression or alist of such strings.

Examples

Side Effects

Affected by

Exceptional Situations

170

DEF-VIEW-CLASS

See Also

Notes

171

Name
DROP-VIEW-FROM-CLASS --
DROP-VIEW-FROM-CLASS

Syntax

(DROP- VI EW FROM CLASS VI EW CLASS- NAME &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Removes a table defined by the View Class VIEW-CLASS-NAME from DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

172

Name
LIST-CLASSES --

LIST-CLASSES

Syntax

(LI ST- CLASSES &KEY (TEST #' | DENTI TY) (ROOT-CLASS (FI ND- CLASS ' STANDARD- DB- OBJECT)) (DATABASE * DEFAULT- Dy

Arguments and Values

Description

Returns a list of al the View Classes which are connected to DATABASE, which defaults to
DEFAULT-DATABASE, and which descend from the class ROOT-CLASS and which satisfy the function TEST.
By default ROOT-CLASSis STANDARD-DB-OBJECT and TEST isIDENTITY.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

173

Object Oriented Data Manipulation
Language (OODML)

174

Name

DB-AUTO-SYNC --
DB-AUTO-SYNC

Value Type

Initial Value
nil
Description
Examples

Affected By

None.

See Also

None.

Notes

None.

175

Name

DEFAULT-UPDATE-OBJECTS-MAX-LEN --
DEFAULT-UPDATE-OBJECTS-MAX-LEN

Value Type

Initial Value
nil
Description
Examples

Affected By

None.

See Also

None.

Notes

None.

176

Name
DELETE-INSTANCE-RECORDS --
DELETE-INSTANCE-RECORDS

Syntax

(DELETE- | NSTANCE- RECORDS OBJECT) [generic] =>

Arguments and Values

Description

Deletes the records represented by OBJECT in the appropriate table of the database associated with OBJECT. If
OBJECT is not yet associated with a database, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

177

Name

INSTANCE-REFRESHED --
INSTANCE-REFRESHED

Syntax

(1 NSTANCE- REFRESHED OBJECT) [generic] =>

Arguments and Values

Description

Provides a hook which is called within an object oriented call to SELECT with a non-nil value of REFRESH when
the View Class instance OBJECT has been updated from the database. A method specialised on STANDARD-
DB-OBJECT is provided which has no effects. Methods specialised on particular View Classes can be used to spe-
cify any operations that need to be made on View Classes instances which have been updated in callsto SELECT.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

178

Name
UPDATE-INSTANCE-FROM-RECORDS --

UPDATE-INSTANCE-FROM-RECORDS
Syntax

(UPDATE- | NSTANCE- FROM RECORDS OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the slot values of the View Class instance OBJECT using the attribute values of the appropriate table of
DATABASE which defaults to the database associated with OBJECT or, if OBJECT is not associated with a data-
base, *DEFAULT-DATABASE*. Join dots are updated but instances of the class on which the join is made are not
updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

179

Name
UPDATE-OBJECTS-JOINS --

UPDATE-OBJECTS-JOINS
Syntax

(UPDATE- OBJECTS- JO NS OBJECTS &KEY (SLOTS T) (FORCE-P T) CLASS- NAME (MAX- LEN * DEFAULT- UPDATE- OBJECTS- MA

Arguments and Values

Description

Updates from the records of the appropriate database tables the join slots specified by SLOTS in the supplied list of
View Classinstances OBJECTS. SLOTS st by default which meansthat all join slots with :retrieval :immediate are
updated. CLASS-NAME is used to specify the View Class of all instance in OBJECTS and default to nil which
means that the class of the first instance in OBJECTS is used. FORCE-P is t by default which means that al join
dlots are updated whereas a value of nil means that only unbound join slots are updated. MAX-LEN defaults to
DEFAULT-UPDATE-OBJECTS-MAX-LEN and when non-nil specifies that UPDATE-OBJECT-JOINS may is-
sue multiple database queries with a maximum of MAX-LEN instances updated in each query.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

180

Name

UPDATE-RECORD-FROM-SLOT --

UPDATE-RECORD-FROM-SLOT

Syntax

(UPDATE- RECORD- FROM SLOT OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the value stored in the column represented by the dot, specified by the CLOS slot name SLOT, of View
Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and specifies the database in which
the update is made only if OBJECT is not associated with a database. In this case, a record is created in DATA-
BASE and the attribute represented by SLOT isinitialised from the value of the supplied slots with other attributes
having default values. Furthermore, OBJECT becomes associated with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

181

Name
UPDATE-RECORD-FROM-SLOTS --

UPDATE-RECORD-FROM-SLOTS
Syntax

(UPDATE- RECORD- FROM SLOTS OBJECT SLOTS &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the values stored in the columns represented by the slots, specified by the CLOS slot names SLOTS, of
View Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and specifies the database in
which the update is made only if OBJECT is not associated with a database. In this case, a record is created in the
appropriate table of DATABASE and the attributes represented by SLOTS are initialised from the values of the sup-
plied dots with other attributes having default values. Furthermore, OBJECT becomes associated with DATA-
BASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

182

Name
UPDATE-RECORDS-FROM-INSTANCE --

UPDATE-RECORDS-FROM-INSTANCE
Syntax

(UPDATE- RECORDS- FROM | NSTANCE OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Using an instance of a View Class, OBJECT, update the table that stores its instance data. DATABASE defaults to
DEFAULT-DATABASE and specifies the database in which the update is made only if OBJECT is not associ-
ated with a database. In this case, arecord is created in the appropriate table of DATABASE using values from the
slot values of OBJECT, and OBJECT becomes associated with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

183

Name
UPDATE-SLOT-FROM-RECORD --
UPDATE-SLOT-FROM-RECORD

Syntax

(UPDATE- SLOT- FROM RECORD OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description

Updates the slot value, specified by the CLOS slot name SLOT, of the View Class instance OBJECT using the at-
tribute values of the appropriate table of DATABASE which defaults to the database associated with OBJECT or, if
OBJECT is not associated with a database, *DEFAULT-DATABASE*. Join slots are updated but instances of the
class on which the join is made are not updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

184

SQL 1/0O Recording

185

Name
ADD-SQL-STREAM --
ADD-SQL-STREAM

Syntax

(ADD- SQL- STREAM STREAM &KEY (TYPE : COVMMANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Adds the supplied stream STREAM (or T for * standard-output*) as a component of the recording broadcast stream
for the SQL recording type specified by TYPE on DATABASE which defaults to *DEFAULT-DATABASE*.
TY PE must be one of :commands, :results, or :both, defaulting to :commands, depending on whether the stream isto
be added for recording SQL commands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

186

Name

DELETE-SQL-STREAM --
DELETE-SQL-STREAM

Syntax

(DELETE- SQL- STREAM STREAM &KEY (TYPE : COVMANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Removes the supplied stream STREAM from the recording broadcast stream for the SQL recording type specified
by TYPE on DATABASE which defaults to *DEFAULT-DATABASE*. TYPE must be one of :commands,
‘results, or :both, defaulting to :commands, depending on whether the stream is to be added for recording SQL com-
mands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

187

Name

LIST-SQL-STREAMS --
LIST-SQL-STREAMS

Syntax

(LI ST- SQL- STREAMS &KEY (TYPE : COMVANDS) (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns the list of component streams for the broadcast stream recording SQL commands sent to and/or results re-
turned from DATABASE which defaults to * DEFAULT-DATABASE*. TY PE must be one of :commands, :resullts,
or :both, defaulting to :commands, and determines whether the listed streams contain those recording SQL com-
mands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

188

Name

SQL-RECORDING-P --
SQL-RECORDING-P

Syntax

(SQL- RECORDI NG P &KEY (TYPE : COWRNDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Predicate to test whether the SQL recording specified by TY PE is currently enabled for DATABASE which defaults
to *DEFAULT-DATABASE*. TY PE may be one of :commands, :results, :both or :either, defaulting to :commands,
otherwise nil is returned.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

189

Name
SQL-STREAM --
SQL-STREAM

Syntax

(SQL- STREAM &KEY (TYPE : COWRNDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Returns the broadcast stream used for recording SQL commands sent to or results returned from DATABASE which
defaultsto *DEFAULT-DATABASE*. TYPE must be one of :commands or :results, defaulting to :commands, and
determines whether the stream returned is that used for recording SQL commands or results.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

190

Name

START-SQL-RECORDING --
START-SQL-RECORDING

Syntax

(START- SQL- RECORDI NG &KEY (TYPE : COWANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Starts recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The SQL is output on one or more broadcast streams, initialy just
STANDARD-OUTPUT, and the functions ADD-SQL-STREAM and DELETE-SQL-STREAM may be used to
add or delete command or result recording streams. The default value of TY PE is :commands which means that SQL
commands sent to DATABASE are recorded. If TYPE is :results then SQL results returned from DATABASE are
recorded. Both commands and results may be recorded by passing TY PE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

191

Name

STOP-SQL-RECORDING --
STOP-SQL-RECORDING

Syntax

(STOP- SQL- RECORDI NG &KEY (TYPE : COMMANDS) (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values

Description

Stops recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The default value of TYPE is :commands which means that SQL commands sent to
DATABASE will no longer be recorded. If TYPE is :results then SQL results returned from DATABASE will no
longer be recorded. Recording may be stopped for both commands and results by passing TY PE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

192

CLSQL Condition System

193

Name
BACKEND-WARNING-BEHAVIOR --

BACKEND-WARNING-BEHAVIOR

Value Type

Initial Value
nil

Description

Action to perform on warning messages from backend. Default is to :warn. May also be set to :error to signal an er-
ror or :ignore/nil to silently ignore the warning.

Examples

Affected By

None.

See Also

None.

Notes

None.

194

Name
SQL-CONDITION -- the super-type of all CLSQL-specific conditions
SQL-CONDITION

Class Precedence List

sqgl-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specific inter-
faces. There are no defined initialization arguments nor any accessors.

195

Name

SQL-ERROR -- the super-type of all CLSQL-specific errors
SQL-ERROR

Class Precedence List

sql-error, error, serious-condition, sgl-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or any of it's
database-specific interfaces. There are no defined initialization arguments nor any accessors.

196

Name
SQL-WARNING -- the super-type of all CLSQL-specific warnings
SQL-WARNING

Class Precedence List

sgl-warning, warning, sql-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL, or any of it's
database-specific interfaces. There are no defined initialization arguments nor any accessors.

197

Name

SQL-DATABASE-WARNING -- Used to warn while accessing a CLSQL database.
SQL-DATABASE-WARNING

Class Precedence List

sgl-database-warning, sql-warning, warning, sgl-condition, condition, t

Description

This condition represents warnings signalled while accessing a database. The following initialization arguments and
accessors exist:

Initarg: :database

Accessor: sql - war ni ng- dat abase

Description: The database object that was involved in the incident.

198

Name

SQL-USER-ERROR -- condition representing errors because of invalid parameters from the library user.

SQL-USER-ERROR

Class Precedence List

sql-user-error, sql-error, sgl-condition, condition, t

Description

This condition represents errors that occur because the user supplies invalid data to CLSQL. This includes errors
such as an invalid format connection specification or an error in the syntax for the LOOP macro extensions. The fol-
lowing initialization arguments and accessors exist:

Initarg: :message

Accessor: sql - user-error-nessage

Description: The error message.

199

Name

SQL-DATABASE-ERROR -- condition representing errors during query or command execution
SQL-DATABASE-ERROR

Class Precedence List

sgl-database-error, sql-error, error, serious-condition, sgl-condition, condition, t

Description

This condition represents errors that occur while executing SQL statements, either as part of query operations or
command execution, either explicitly or implicitly, as caused e.g. by wi t h-t r ansact i on. The following initializa-
tion arguments and accessors exist:

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sqgl -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

Initarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

200

Name

SQL-CONNECTION-ERROR -- condition representing errors during connection
SQL-CONNECTION-ERROR

Class Precedence List

sgl-connection-error, sql-database-error, sgl-error, sgl-condition, condition, t

Description

This condition represents errors that occur while trying to connect to a database. The following initialization argu-
ments and accessors exist:

I nitarg: :database-type

Accessor: sql - connecti on-error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - connecti on-error-connection-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :message

Accessor: sgl - dat abase-error-error

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

201

Name

SQL-DATABASE-DATA-ERROR -- Used to signal an error with the SQL data passed to a database.
SQL-DATABASE-DATA-ERROR

Class Precedence List

sgl-database-data-error, sql-database-error, sgl-error, error, serious-condition, sgl-condition, condition, t

Description

This condition represents errors that occur while executing SQL statements, specifically as a result of malformed
SQL expressions. The following initialization arguments and accessors exist:

Initarg: :expression

Accessor: sql - dat abase- error - expr essi on

Description: The SQL expression whose execution caused the error.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sqgl -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

202

Name

SQL-TEMPORARY -ERROR -- Used to signal atemporary error in the database backend.
SQL-TEMPORARY -ERROR

Class Precedence List

sgl-database-error, sql-error, error, serious-condition, sgl-condition, condition, t

Description

This condition represents errors occurring when the database cannot currently process a valid interaction because,
for example, it is still executing another command possibly issued by another user. The following initialization argu-
ments and accessors exist:

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sqgl -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

Initarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

203

Name

SQL-TIMEOUT-ERROR -- condition representing errors when a connection times out.

SQL-TIMEOUT-ERROR

Class Precedence List

sgl-connection-error, sql-database-error, sgl-error, sgl-condition, condition, t

Description

This condition represents errors that occur when the database times out while processing some operation. The fol-
lowing initialization arguments and accessors exist:

I nitarg: :database-type

Accessor: sql - connecti on-error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - connecti on-error-connection-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :message

Accessor: sql - error-dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

204

Name

SQL-FATAL-ERROR -- condition representing afatal error in a database connection

SQL-FATAL-ERROR

Class Precedence List

sgl-connection-error, sql-database-error, sgl-error, sgl-condition, condition, t

Description

This condition represents errors occurring when the database connection is no longer usable. The following initializ-
ation arguments and accessors exist:

I nitarg: :database-type

Accessor: sql - connecti on-error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - connecti on-error-connection-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - dat abase- error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :message

Accessor: sql - error-dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-end.

205

Large Object Support

206

Name
CREATE-LARGE-OBJECT --

CREATE-LARGE-OBJECT
Syntax

(CREATE- LARGE- OBJECT &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Creates anew large object in the database and returns the object identifier

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

207

Name

DELETE-LARGE-OBJECT --

DELETE-LARGE-OBJECT

Syntax

(DELETE- LARGE- OBJECT OBJECT- | D &KEY (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Deletes the large object in the database

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

208

Name

READ-LARGE-OBJECT --
READ-LARGE-OBJECT

Syntax

(READ- LARGE- OBJECT OBJECT- | D &KEY (DATABASE * DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Reads the large object content

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

209

Name
WRITE-LARGE-OBJECT --

WRITE-LARGE-OBJECT

Syntax

(VRI TE- LARGE- OBJECT OBJECT-| D DATA &KEY (DATABASE *DEFAULT- DATABASE*)) [function] =>

Arguments and Values
Description

Writes data to the large object

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

210

CLSQL-SYS

This part gives a reference to the symbols exported from the package CLSQL-SY S, which are not exported from
CLSQL package.. These symbols are part of the interface for database back-ends, but not part of the normal user-
interface of CLSQL.

211

Name

DATABASE-INITIALIZE-DATABASE-TYPE -- Back-end part of i ni ti al i ze- dat abase-t ype.
DATABASE-INITIALIZE-DATABASE-TY PE

Syntax

dat abase-initial i ze-dat abase-type database-type => result

Arguments and Values

dat abase-type A keyword indicating the database type to initialize.
result Either t if theinitialization succeeds or nil if it fails.
Description

This generic function implements the main part of the database type initiaization performed by i ni ti al i ze- dat a-
base-type. Afterini ti al i ze- dat abase-t ype has checked that the given database type has not been initialized
before, as indicated by *initialized-database-types*, it will call this function with the database type as it's sole para-
meter. Database back-ends are required to define a method on this generic function which is specialized via an eql-
specializer to the keyword representing their database type.

Database back-ends shall indicate successful initialization by returning t from their method, and nil otherwise. Meth-
ods for this generic function are allowed to signal errors of type clsgl-error or subtypes thereof. They may also sig-
nal other types of conditions, if appropriate, but have to document this.

Examples

Side Effects

All necessary side effects to initialize the database instance.

Affected By

None.

Exceptional Situations

Conditions of type clsgl-error or other conditions may be signalled, depending on the database back-end.

See Also

initialize-database-type
initialized-database-types

212

DATABASE-INITIALIZE-DATABASE-TYPE

Notes

None.

213

Index

214

Name

Alphabetical Index for package CLSQL -- Clickableindex of all symbols

Alphabetical Index for package CLSQL

BACKEND-WARNING-BEHAVIOR
* CACHE-TABLE-QUERIES-DEFAULT*
* CONNECT-IF-EXISTS*
DB-AUTO-SYNC
DEFAULT-DATABASE
DEFAULT-DATABASE-TY PE
DEFAULT-UPDATE-OBJECTS-MAX-LEN
DEFAULT-VARCHAR-LENGTH
INITIALIZED-DATABASE-TY PES
ADD-SQL-STREAM
ADD-TRANSACTION-COMMIT-HOOK
ADD-TRANSACTION-ROLLBACK-HOOK
ATTRIBUTE-TYPE
BIND-PARAMETER
CACHE-TABLE-QUERIES

COMMIT

CONNECT
CONNECTED-DATABASES
CREATE-DATABASE
CREATE-INDEX
CREATE-LARGE-OBJECT
CREATE-SEQUENCE
CREATE-TABLE

CREATE-VIEW
CREATE-VIEW-FROM-CLASS
DATABASE

DATABASE-NAME
DATABASE-NAME-FROM-SPEC
DATABASE-TYPE
DEF-VIEW-CLASS
DELETE-INSTANCE-RECORDS
DELETE-LARGE-OBJECT
DELETE-RECORDS
DELETE-SQL-STREAM
DESTROY-DATABASE
DISABLE-SQL-READER-SYNTAX
DISCONNECT
DISCONNECT-POOLED
DO-QUERY

DROP-INDEX

DROP-SEQUENCE

DROP-TABLE

DROP-VIEW
DROP-VIEW-FROM-CLASS
ENABLE-SQL-READER-SYNTAX
EXECUTE-COMMAND
FIND-DATABASE
FOR-EACH-ROW
FREE-PREPARED-SQL
IN-TRANSACTION-P
INDEX-EXISTS-P
INITIALIZE-DATABASE-TYPE

INSTANCE-REFRESHED
LIST-ATTRIBUTE-TYPES
LIST-ATTRIBUTES
LIST-CLASSES
LIST-DATABASES
LIST-INDEXES
LIST-SEQUENCES
LIST-SQL-STREAMS
LIST-TABLES

LIST-VIEWS
LOCALLY-DISABLE-SQL-READER-SYNTAX
LOCALLY-ENABLE-SQL-READER-SYNTAX
LOOP-FOR-AS-TUPLES
MAP-QUERY

PREPARE-SQL
PROBE-DATABASE

QUERY

READ-LARGE-OBJECT
RECONNECT
RESTORE-SQL-READER-SYNTAX-STATE
ROLLBACK
RUN-PREPARED-SQL

SELECT

SEQUENCE-EXISTS-P
SEQUENCE-LAST
SEQUENCE-NEXT
SET-AUTOCOMMIT
SET-SEQUENCE-POSITION

SQL

SQL-EXPRESSION
SQL-OPERATION
SQL-OPERATOR
SQL-RECORDING-P
SQL-STREAM
START-SQL-RECORDING
START-TRANSACTION

STATUS
STOP-SQL-RECORDING
TABLE-EXISTS-P
TRUNCATE-DATABASE
UPDATE-INSTANCE-FROM-RECORDS
UPDATE-OBJECTS-JOINS
UPDATE-RECORD-FROM-SLOT
UPDATE-RECORD-FROM-SLOTS
UPDATE-RECORDS
UPDATE-RECORDS-FROM-INSTANCE
UPDATE-SLOT-FROM-RECORD
VIEW-EXISTS-P
WITH-DATABASE
WITH-DEFAULT-DATABASE
WITH-TRANSACTION
WRITE-LARGE-OBJECT

215

Alphabetical Index for package CLSQL

INSERT-RECORDS

216

Appendix A. Database Back-ends
PostgreSQL

Libraries

The PostgreSQL back-end requires the PostgreSQL C client library (I i bpg. so). The location of thislibrary is spe-
cified via *postgresgl-so-load-path*, which defaults to / usr/1i b/ 1i bpg. so. Additional flags to Id needed for
linking are specified via* postgresgl-so-libraries*, which defaults to ("-lcrypt” "-Ic").

Initialization

Use
(asdf: operate 'asdf:|oad-op 'clsql-postgresql)
to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresql.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment variables (see
PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the C client library are

used.

host String representing the hostname or 1P address the PostgreSQL server resides on. Use the empty
string to indicate a connection to localhost via Unix-Domain sockets instead of TCF/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

passwor d String representing the unencrypted password to use for authentication.

port String representing the port to use for communication with the PostgreSQL server.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL server.

PostgreSQL Socket

217

Database Back-ends

Libraries

The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it communicates directly
with the PostgreSQL server using the published frontend/backend protocol, version 2.0. This eases installation and
makes it possible to dump CMU CL images containing CLSQL and this backend, contrary to backends which re-

quire FFI code.

Initialization

Use

(asdf: operate 'asdf:|oad-op 'clsql-postgresqgl-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is

:postgresgl-socket.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host

db
user

password
port

options

tty

MySQL

Libraries

If thisis a string, it represents the hostname or |P address the PostgreSQL server resides on. In
this case communication with the server proceeds via a TCP connection to the given host and
port.

If this is a pathname, then it is assumed to name the directory that contains the server's Unix-
Domain sockets. The full name to the socket is then constructed from this and the port number
passed, and communication will proceed via a connection to this unix-domain socket.

String representing the name of the database on the server to connect to.

String representing the user name to use for authentication.

String representing the unencrypted password to use for authentication. This can be the empty
string if no password is required for authentication.

Integer representing the port to use for communication with the PostgreSQL server. This de-
faults to 5432.

String representing further runtime options for the PostgreSQL server.

String representing the tty or file to use for debugging messages from the PostgreSQL server.

218

Database Back-ends

The MySQL back-end requires the MySQL C client library (Ii brysqgl cl i ent . so). The location of this library is
specified via * mysqgl-so-load-path*, which defaults to /usr/1i b/ 1ibmysgl client.so. Additiona flags to Id
needed for linking are specified via * mysgl-so-libraries*, which defaults to ("-Ic").

Initialization

Use

(asdf: operate 'asdf:load-op 'clsqgl-nysql)

to load the MySQL back-end. The database type for the MySQL back-end is :mysql.
Connection Specification

Syntax of connection-spec

(host db user password)

Description of connection-spec

host String representing the hostname or |P address the MySQL server resides on, or nil to indicate
the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix user
ID.

passwor d String representing the unencrypted password to use for authentication, or nil if the authentica-

tion record has an empty password field.

ODBC

Libraries

The ODBC back-end requires access to an ODBC driver manager as well as ODBC drivers for the underlying data-
base server. CLSQL has been tested with unixODBC ODBC Driver Manager as well as Microsoft's ODBC manager.
These driver managers have been tested with the psqlODBC [http://odbc.postgresql.org] driver for PostgreSQL and
the MyODBC [http://www.mysqgl.com/products/connector/odbc/] driver for MySQL.

Initialization

Use
(asdf: operate 'asdf:|oad-op 'clsql-odbc)

to load the ODBC back-end. The database type for the ODBC back-end is :odbc.

219

http://odbc.postgresql.org
http://www.mysql.com/products/connector/odbc/

Database Back-ends

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.
user String representing the user name to use for authentication.
passwor d String representing the unencrypted password to use for authentication.

AODBC

Libraries

The AODBC back-end requires access to the ODBC interface of AllegroCL named DBI. This interface is not avail-
ablein thetrial version of AllegroCL

Initialization

Use

(require 'aodbc-v2)
(asdf: operate 'asdf:|oad-op 'clsql-aodbc)

to load the AODBC back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.
user String representing the user name to use for authentication.
passwor d String representing the unencrypted password to use for authentication.

SQLite

220

Database Back-ends

Libraries

The SQL ite back-end requires the SQL ite shared library file. Its default file nameis/usr/1ib/1ibsqglite. so.

Initialization

Use

(asdf:operate 'asdf:load-op 'clsql-sqglite)

to load the SQL ite back-end. The database type for the SQL ite back-end is :sqlite.
Connection Specification

Syntax of connection-spec

(fil enane)

Description of connection-spec

fil enane String representing the filename of the SQL ite databasefile.

Oracle

Libraries

The Oracle back-end requires the Oracle OCI client library. (1 i bcl nt sh. so). The location of this library is spe-
cified relative to the ORACLE_HOME value in the operating system environment. CLSQL has tested sucessfully
using the client library from Oracle 9i and Oracle 10g server installations as well as Oracle's 10g Instant Client lib-
rary.

Initialization

Use
(asdf : operate 'asdf:load-op 'clsqgl-oracle)

to load the Oracle back-end. The database type for the Oracle back-end is :oracle.

Connection Specification

Syntax of connection-spec

(gl obal - nane user password)

Description of connection-spec

221

Database Back-ends

gl obal - name String representing the global name of the Orace database. Thisis looked up through the
tnsnames.orafile.

user String representing the user name to use for authentication.

passwor d String representing the password to use for authentication..

222

Glossary

Note

This glossary is till very thinly populated, and not all referencesin the main text have been properly linked
and coordinated with this glossary. Thiswill hopefully change in future revisions.

Attribute

Active database
Connection
Column

Data Definition
(DDL)

Language

Data Manipulation Language
(DML)

database

Database Object

Field

Field Types Specifier

Interface

Foreign Function

(FFI)

Query

RDBMS

Record

Row

Structured Query Language
(SQL)

A property of objects stored in a database table. Attributes are represented as
columns (or fields) in atable.

See Database ObjectAn object of type database..

See Database ObjectAn object of type database..

See Attribute A property of objects stored in a database table. Attributes are rep-
resented as columns (or fields) in atable. .

The subset of SQL used for defining and examining the structure of a database.
The subset of SQL used for inserting, deleting, updating and fetching datain a
database.

See Database ObjectAn object of type database..

An object of type database.

See Attribute A property of objects stored in a database table. Attributes are rep-
resented as columns (or fields) in atable. .

A value that specifies the type of each field in aquery.

An interface from Common Lisp to a external library which contains compiled
functions written in other programming languages, typically C.

An SQL statement which returns a set of results.

A Relational DataBase Management System (RDBMYS) is a software package
for managing a database in which the data is defined, organised and accessed as
rows and columns of atable.

A sequence of attribute values stored in a database table.

See Record A seguence of attribute values stored in a database table. .

An ANSI standard language for storing and retrieving data in a relational data
base.

223

Glossary

SQL Expression

Table

Transaction

Tuple

View

Either a string containing a valid SQL statement, or an object of type sql-
expression.

A collection of data which is defined, stored and accessed as tuples of attribute
values (i.e., rows and columns).

An atomic unit of one or more SQL statements of which al or none are success-
fully executed.

See Record A sequence of attribute values stored in a database table. .

A table display whose structure and content are derived from an existing table
viaaquery.

224

	CLSQL Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	History
	Prerequisites
	ASDF
	UFFI
	MD5
	Supported Common Lisp Implementation
	Supported SQL Implementation

	Installation
	Ensure ASDF is loaded
	Build C helper libraries
	Microsoft Windows
	UNIX

	Add UFFI path
	Add MD5 path
	Add CLSQL path and load module
	Run test suite (optional)

	Chapter 2. CommonSQL Tutorial
	Introduction
	Data Modeling with CLSQL
	Class Relations
	Object Creation
	Finding Objects
	Deleting Objects
	Conclusion

	Connection and Initialisation
	DATABASE
	CONNECT-IF-EXISTS
	DEFAULT-DATABASE
	DEFAULT-DATABASE-TYPE
	INITIALIZED-DATABASE-TYPES
	CONNECT
	CONNECTED-DATABASES
	DATABASE-NAME
	DATABASE-NAME-FROM-SPEC
	DATABASE-TYPE
	DISCONNECT
	DISCONNECT-POOLED
	FIND-DATABASE
	INITIALIZE-DATABASE-TYPE
	RECONNECT
	STATUS
	CREATE-DATABASE
	DESTROY-DATABASE
	PROBE-DATABASE
	LIST-DATABASES
	WITH-DATABASE
	WITH-DEFAULT-DATABASE

	The Symbolic SQL Syntax
	ENABLE-SQL-READER-SYNTAX
	DISABLE-SQL-READER-SYNTAX
	LOCALLY-ENABLE-SQL-READER-SYNTAX
	LOCALLY-DISABLE-SQL-READER-SYNTAX
	RESTORE-SQL-READER-SYNTAX-STATE
	SQL
	SQL-EXPRESSION
	SQL-OPERATION
	SQL-OPERATOR

	Functional Data Definition Language (FDDL)
	CREATE-TABLE
	DROP-TABLE
	LIST-TABLES
	TABLE-EXISTS-P
	CREATE-VIEW
	DROP-VIEW
	LIST-VIEWS
	VIEW-EXISTS-P
	CREATE-INDEX
	DROP-INDEX
	LIST-INDEXES
	INDEX-EXISTS-P
	ATTRIBUTE-TYPE
	LIST-ATTRIBUTE-TYPES
	LIST-ATTRIBUTES
	CREATE-SEQUENCE
	DROP-SEQUENCE
	LIST-SEQUENCES
	SEQUENCE-EXISTS-P
	SEQUENCE-LAST
	SEQUENCE-NEXT
	SET-SEQUENCE-POSITION
	TRUNCATE-DATABASE

	Functional Data Manipulation Language (FDML)
	CACHE-TABLE-QUERIES-DEFAULT
	CACHE-TABLE-QUERIES
	INSERT-RECORDS
	UPDATE-RECORDS
	DELETE-RECORDS
	EXECUTE-COMMAND
	QUERY
	PRINT-QUERY
	SELECT
	DO-QUERY
	FOR-EACH-ROW
	LOOP
	MAP-QUERY
	PREPARE-SQL
	RUN-PREPARED-SQL
	FREE-PREPARED-SQL
	BIND-PARAMETER

	Transaction Handling
	START-TRANSACTION
	COMMIT
	ROLLBACK
	IN-TRANSACTION-P
	ADD-TRANSACTION-COMMIT-HOOK
	ADD-TRANSACTION-ROLLBACK-HOOK
	SET-AUTOCOMMIT
	WITH-TRANSACTION

	Object Oriented Data Definition Language (OODDL)
	STANDARD-DB-OBJECT
	DEFAULT-VARCHAR-LENGTH
	CREATE-VIEW-FROM-CLASS
	DEF-VIEW-CLASS
	DROP-VIEW-FROM-CLASS
	LIST-CLASSES

	Object Oriented Data Manipulation Language (OODML)
	DB-AUTO-SYNC
	DEFAULT-UPDATE-OBJECTS-MAX-LEN
	DELETE-INSTANCE-RECORDS
	INSTANCE-REFRESHED
	UPDATE-INSTANCE-FROM-RECORDS
	UPDATE-OBJECTS-JOINS
	UPDATE-RECORD-FROM-SLOT
	UPDATE-RECORD-FROM-SLOTS
	UPDATE-RECORDS-FROM-INSTANCE
	UPDATE-SLOT-FROM-RECORD

	SQL I/O Recording
	ADD-SQL-STREAM
	DELETE-SQL-STREAM
	LIST-SQL-STREAMS
	SQL-RECORDING-P
	SQL-STREAM
	START-SQL-RECORDING
	STOP-SQL-RECORDING

	CLSQL Condition System
	BACKEND-WARNING-BEHAVIOR
	SQL-CONDITION
	SQL-ERROR
	SQL-WARNING
	SQL-DATABASE-WARNING
	SQL-USER-ERROR
	SQL-DATABASE-ERROR
	SQL-CONNECTION-ERROR
	SQL-DATABASE-DATA-ERROR
	SQL-TEMPORARY-ERROR
	SQL-TIMEOUT-ERROR
	SQL-FATAL-ERROR

	Large Object Support
	CREATE-LARGE-OBJECT
	DELETE-LARGE-OBJECT
	READ-LARGE-OBJECT
	WRITE-LARGE-OBJECT

	CLSQL-SYS
	DATABASE-INITIALIZE-DATABASE-TYPE

	Index
	Alphabetical Index for package CLSQL

	Appendix A. Database Back-ends
	PostgreSQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	PostgreSQL Socket
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	MySQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	ODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	AODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	SQLite
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Oracle
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Glossary

