
CLSQL Users' Guide

by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Develop-
ment, Inc.

CLSQL Users' Guide
by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Development, Inc.

• CLSQL is Copyright © 2002-2004 by Kevin M. Rosenberg, Copyright © 1999-2001 by Pierre R. Mai, and Copyright © 1999-2003 onShore
Development, Inc.

• Allegro CL® is a registered trademark of Franz Inc.

• Common SQL, LispWorks and Xanalys are trademarks or registered trademarks of Xanalys Inc.

• Oracle® is a registered trademark of Oracle Inc.

• Microsoft Windows® is a registered trademark of Microsoft Inc.

• Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents
Preface ...
1. Introduction ...

Purpose ... 1
History .. 1
Prerequisites .. 1

ASDF ... 1
UFFI .. 1
MD5 ... 1
Supported Common Lisp Implementation .. 2
Supported SQL Implementation ... 2

Installation ... 2
Ensure ASDF is loaded .. 2
Build C helper libraries .. 2
Add UFFI path ... 3
Add MD5 path ... 3
Add CLSQL path and load module ... 3
Run test suite (optional) .. 3

2. CommonSQL Tutorial ...
Introduction ... 4
Data Modeling with CLSQL ... 4
Class Relations ... 6
Object Creation .. 8
Finding Objects .. 9
Deleting Objects ... 10
Conclusion .. 11

I. Connection and Initialisation ...
DATABASE .. 13
CONNECT-IF-EXISTS .. 14
DEFAULT-DATABASE .. 15
DEFAULT-DATABASE-TYPE ... 17
INITIALIZED-DATABASE-TYPES .. 18
CONNECT .. 19
CONNECTED-DATABASES ... 22
DATABASE-NAME ... 24
DATABASE-NAME-FROM-SPEC ... 26
DATABASE-TYPE .. 28
DISCONNECT ... 30
DISCONNECT-POOLED .. 32
FIND-DATABASE ... 33
INITIALIZE-DATABASE-TYPE .. 35
RECONNECT .. 37
STATUS ... 39
CREATE-DATABASE .. 41
DESTROY-DATABASE ... 43
PROBE-DATABASE .. 45
LIST-DATABASES .. 47
WITH-DATABASE .. 49
WITH-DEFAULT-DATABASE .. 51

II. The Symbolic SQL Syntax ...
ENABLE-SQL-READER-SYNTAX .. 54
DISABLE-SQL-READER-SYNTAX ... 55
LOCALLY-ENABLE-SQL-READER-SYNTAX ... 56
LOCALLY-DISABLE-SQL-READER-SYNTAX .. 58

iv

RESTORE-SQL-READER-SYNTAX-STATE ... 60
SQL ... 61
SQL-EXPRESSION .. 63
SQL-OPERATION ... 65
SQL-OPERATOR ... 67

III. Functional Data Definition Language (FDDL) ..
CREATE-TABLE ... 70
DROP-TABLE ... 72
LIST-TABLES ... 74
TABLE-EXISTS-P .. 76
CREATE-VIEW ... 78
DROP-VIEW ... 80
LIST-VIEWS ... 82
VIEW-EXISTS-P .. 84
CREATE-INDEX ... 86
DROP-INDEX ... 88
LIST-INDEXES ... 90
INDEX-EXISTS-P .. 92
ATTRIBUTE-TYPE .. 94
LIST-ATTRIBUTE-TYPES .. 96
LIST-ATTRIBUTES ... 98
CREATE-SEQUENCE .. 100
DROP-SEQUENCE .. 102
LIST-SEQUENCES .. 104
SEQUENCE-EXISTS-P ... 106
SEQUENCE-LAST ... 108
SEQUENCE-NEXT .. 110
SET-SEQUENCE-POSITION ... 112
TRUNCATE-DATABASE ... 114

IV. Functional Data Manipulation Language (FDML) ...
CACHE-TABLE-QUERIES-DEFAULT .. 117
CACHE-TABLE-QUERIES ... 118
INSERT-RECORDS .. 120
UPDATE-RECORDS .. 122
DELETE-RECORDS ... 124
EXECUTE-COMMAND .. 126
QUERY .. 128
PRINT-QUERY ... 131
SELECT ... 133
DO-QUERY .. 137
FOR-EACH-ROW .. 139
LOOP ... 140
MAP-QUERY .. 142
PREPARE-SQL .. 145
RUN-PREPARED-SQL ... 146
FREE-PREPARED-SQL .. 147
BIND-PARAMETER .. 148

V. Transaction Handling ..
START-TRANSACTION .. 150
COMMIT .. 152
ROLLBACK .. 154
IN-TRANSACTION-P ... 156
ADD-TRANSACTION-COMMIT-HOOK .. 158
ADD-TRANSACTION-ROLLBACK-HOOK .. 160
SET-AUTOCOMMIT .. 162
WITH-TRANSACTION .. 164

VI. Object Oriented Data Definition Language (OODDL) ..
STANDARD-DB-OBJECT .. 167

CLSQL Users' Guide

v

DEFAULT-VARCHAR-LENGTH ... 168
CREATE-VIEW-FROM-CLASS ... 169
DEF-VIEW-CLASS .. 170
DROP-VIEW-FROM-CLASS ... 172
LIST-CLASSES ... 173

VII. Object Oriented Data Manipulation Language (OODML) ..
DB-AUTO-SYNC ... 175
DEFAULT-UPDATE-OBJECTS-MAX-LEN ... 176
DELETE-INSTANCE-RECORDS ... 177
INSTANCE-REFRESHED ... 178
UPDATE-INSTANCE-FROM-RECORDS .. 179
UPDATE-OBJECTS-JOINS ... 180
UPDATE-RECORD-FROM-SLOT .. 181
UPDATE-RECORD-FROM-SLOTS .. 182
UPDATE-RECORDS-FROM-INSTANCE .. 183
UPDATE-SLOT-FROM-RECORD .. 184

VIII. SQL I/O Recording ...
ADD-SQL-STREAM .. 186
DELETE-SQL-STREAM ... 187
LIST-SQL-STREAMS ... 188
SQL-RECORDING-P .. 189
SQL-STREAM ... 190
START-SQL-RECORDING ... 191
STOP-SQL-RECORDING .. 192

IX. CLSQL Condition System ..
BACKEND-WARNING-BEHAVIOR ... 194
SQL-CONDITION .. 195
SQL-ERROR ... 196
SQL-WARNING .. 197
SQL-DATABASE-WARNING ... 198
SQL-USER-ERROR .. 199
SQL-DATABASE-ERROR .. 200
SQL-CONNECTION-ERROR .. 201
SQL-DATABASE-DATA-ERROR .. 202
SQL-TEMPORARY-ERROR ... 203
SQL-TIMEOUT-ERROR ... 204
SQL-FATAL-ERROR ... 205

X. Large Object Support ..
CREATE-LARGE-OBJECT ... 207
DELETE-LARGE-OBJECT .. 208
READ-LARGE-OBJECT ... 209
WRITE-LARGE-OBJECT .. 210

XI. CLSQL-SYS ..
DATABASE-INITIALIZE-DATABASE-TYPE ... 212

XII. Index ...
Alphabetical Index for package CLSQL .. 215

A. Database Back-ends ...
PostgreSQL ... 217

Libraries .. 217
Initialization ... 217
Connection Specification .. 217

PostgreSQL Socket ... 217
Libraries .. 218
Initialization ... 218
Connection Specification .. 218

MySQL ... 218
Libraries .. 218
Initialization ... 219

CLSQL Users' Guide

vi

Connection Specification .. 219
ODBC .. 219

Libraries .. 219
Initialization ... 219
Connection Specification .. 220

AODBC .. 220
Libraries .. 220
Initialization ... 220
Connection Specification .. 220

SQLite .. 220
Libraries .. 221
Initialization ... 221
Connection Specification .. 221

Oracle ... 221
Libraries .. 221
Initialization ... 221
Connection Specification .. 221

Glossary ...

CLSQL Users' Guide

vii

Preface
This guide provides reference to the features of CLSQL. The first chapter provides an introduction to CLSQL and in-
stallation instructions. The reference sections document all user accessible symbols with examples of usage. There is
a glossary of commonly used terms with their definitions.

viii

Chapter 1. Introduction
Purpose

CLSQL is a Common Lisp interface to SQL databases. A number of Common Lisp implementations and SQL data-
bases are supported. The general structure of CLSQL is based on the CommonSQL package by Xanalys.

History
The CLSQL project was started by Kevin M. Rosenberg in 2001 to support SQL access on multiple Common Lisp
implementations using the UFFI library. The initial code was based substantially on Pierre R. Mai's excellent
MaiSQL package. In late 2003, the UncommonSQL library was orphaned by its author, onShore Development, Inc.
In April 2004, Marcus Pearce ported the UncommonSQL library to CLSQL. The UncommonSQL library provides a
CommonSQL-compatible API for CLSQL.

The main changes from MaiSQL and UncommonSQL are:

• Port from the CMUCL FFI to UFFI which provide compatibility with the major Common Lisp implementations.

• Optimized loading of integer and floating-point fields.

• Additional database backends: ODBC, AODBC, and SQLite.

• A compatibility layer for CMUCL specific code.

• Much improved robustness for the MySQL back-end along with version 4 client library support.

• Improved library loading and installation documentation.

• Improved packages and symbol export.

• Pooled connections.

• Integrated transaction support for the classic MaiSQL iteration macros.

Prerequisites
ASDF

CLSQL uses ASDF to compile and load its components. ASDF is included in the CCLAN
[http://cclan.sourceforge.net] collection.

UFFI
CLSQL uses UFFI [http://uffi.b9.com/] as a Foreign Function Interface (FFI) to support multiple ANSI Common
Lisp implementations.

MD5
CLSQL's postgresql-socket interface uses Pierre Mai's md5 [ftp://clsql.b9.com/] module.

1

http://cclan.sourceforge.net
http://uffi.b9.com/
ftp://clsql.b9.com/

Supported Common Lisp Implementation
The implementations that support CLSQL is governed by the supported implementations of UFFI. The following
implementations are supported:

• AllegroCL v6.2 and 7.0b on Debian Linux x86 & x86_64 & PowerPC, FreeBSD 4.5, and Microsoft Windows
XP.

• Lispworks v4.3 on Debian Linux and Microsoft Windows XP.

• CMUCL 18e on Debian Linux, FreeBSD 4.5, and Solaris 2.8.

• SBCL 0.8.5 on Debian Linux.

• SCL 1.1.1 on Debian Linux.

• OpenMCL 0.14 on Debian Linux PowerPC.

Supported SQL Implementation
Currently, CLSQL supports the following databases:

• MySQL v3.23.51 and v4.0.18.

• PostgreSQL v7.4 with both direct API and TCP socket connections.

• SQLite.

• Direct ODBC interface.

• Oracle OCI.

• Allegro's DB interface (AODBC).

Installation
Ensure ASDF is loaded

Simply load the file asdf.lisp.

(load "asdf.lisp")

Build C helper libraries
CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL implement-
ations do not support 64-bit integers. Thus, C helper libraries are required to break these 64-bit integers into two
compatible 32-bit integers. The helper libraries reside in the directories uffi and db-mysql.

Microsoft Windows

Introduction

2

Files named Makefile.msvc are supplied for building the libraries under Microsoft Windows. Since Microsoft
Windows does not come with that compiler, compiled DLL and LIB library files are supplied with CLSQL.

UNIX

Files named Makefile are supplied for building the libraries under UNIX. Loading the .asd files automatically in-
vokes make when necessary. So, manual building of the helper libraries is not necessary on most UNIX systems.
However, the location of the MySQL library files and include files may need to adjusted in db-mysql/Makefile
on non-Debian systems.

Add UFFI path
Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to ASDF's
asdf:*central-registry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the UFFI files reside in the /usr/share/lisp/uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)

Add MD5 path
If you plan to use the clsql-postgresql-socket interface, you must load the md5 module. Unzip or untar the cl-md5
distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf:*central-registry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the cl-md5 files reside in the /usr/share/lisp/cl-md5/ directory.

(push #P"/usr/share/lisp/cl-md5/" asdf:*central-registry*)

Add CLSQL path and load module
Unzip or untar the CLSQL distribution which creates a directory for the CLSQL files. Add that directory to ASDF's
asdf:*central-registry*. You can do that by pushing the pathname of the directory onto this variable. The
following example code assumes the CLSQL files reside in the /usr/share/lisp/clsql/ directory. You need to
load the clsql system.

(push #P"/usr/share/lisp/clsql/" asdf:*central-registry*)
(asdf:operate 'asdf:load-op 'clsql) ; main CLSQL package

Run test suite (optional)
The test suite can be executed using the ASDF test-op operator. If CLSQL has not been loaded with asdf:load-op, the
asdf:test-op operator will automatically load CLSQL. A configuration file named .clsql-test.config must be
created in your home directory. There are instructures on the format of that file in the tests/README. After creat-
ing .clsql-test.config, you can run the test suite with ASDF:

(asdf:operate 'asdf:test-op 'clsql)

Introduction

3

1 Philip Greenspun's "SQL For Web Nerds" - Data Modeling [http://www.arsdigita.com/books/sql/data-modeling.html]

Chapter 2. CommonSQL Tutorial
Based on the UncommonSQL Tutorial

Introduction
The goal of this tutorial is to guide a new developer thru the process of creating a set of CLSQL classes providing a
Object-Oriented interface to persistent data stored in an SQL database. We will assume that the reader is familiar
with how SQL works, how relations (tables) should be structured, and has created at least one SQL application pre-
viously. We will also assume a minor level of experience with Common Lisp.

CLSQL provides two different interfaces to SQL databases, a Functional interface, and an Object-Oriented interface.
The Functional interface consists of a special syntax for embedded SQL expressions in Lisp, and provides lisp func-
tions for SQL operations like SELECT and UPDATE. The object-oriented interface provides a way for mapping
Common Lisp Objects System (CLOS) objects into databases and includes functions for inserting new objects,
querying objects, and removing objects. Most applications will use a combination of the two.

CLSQL is based on the CommonSQL package from Xanalys, so the documentation that Xanalys makes available
online is useful for CLSQL as well. It is suggested that developers new to CLSQL read their documentation as well,
as any differences between CommonSQL and CLSQL are minor. Xanalys makes the following documents available:

• Xanalys Lispworks User Guide - The CommonSQL Package
[http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm]

• Xanalys Lispworks Reference Manual - The SQL Package
[http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm]

• CommonSQL Tutorial by Nick Levine [http://www.ravenbrook.com/doc/2002/09/13/common-sql/]

Data Modeling with CLSQL
Before we can create, query and manipulate CLSQL objects, we need to define our data model as noted by Philip
Greenspun 1

When data modeling, you are telling the relational database management system (RDBMS) the following:

• What elements of the data you will store.

• How large each element can be.

• What kind of information each element can contain.

• What elements may be left blank.

• Which elements are constrained to a fixed range.

• Whether and how various tables are to be linked.

With SQL database one would do this by defining a set of relations, or tables, followed by a set of queries for join-
ing the tables together in order to construct complex records. However, with CLSQL we do this by defining a set of
CLOS classes, specifying how they will be turned into tables, and how they can be joined to one another via rela-

4

http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm
http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm
http://www.ravenbrook.com/doc/2002/09/13/common-sql/
http://www.arsdigita.com/books/sql/data-modeling.html

tions between their attributes. The SQL tables, as well as the queries for joining them together are created for us
automatically, saving us from dealing with some of the tedium of SQL.

Let us start with a simple example of two SQL tables, and the relations between them.

CREATE TABLE EMPLOYEE (emplid NOT NULL number(38),
first_name NOT NULL varchar2(30),
last_name NOT NULL varchar2(30),
email varchar2(100),
companyid NOT NULL number(38),
managerid number(38))

CREATE TABLE COMPANY (companyid NOT NULL number(38),
name NOT NULL varchar2(100),
presidentid NOT NULL number(38))

This is of course the canonical SQL tutorial example, "The Org Chart".

In CLSQL, we would have two "view classes" (a fancy word for a class mapped into a database). They would be
defined as follows:

(clsql:def-view-class employee ()
((emplid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :emplid)

(first-name
:accessor first-name
:type (string 30)
:initarg :first-name)

(last-name
:accessor last-name
:type (string 30)
:initarg :last-name)

(email
:accessor employee-email
:type (string 100)
:nulls-ok t
:initarg :email)

(companyid
:type integer
:initarg :companyid)

(managerid
:type integer
:nulls-ok t
:initarg :managerid))

(:base-table employee))

(clsql:def-view-class company ()
((companyid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :companyid)

(name
:type (string 100)
:initarg :name)

(presidentid
:type integer
:initarg :presidentid))

(:base-table company))

The DEF-VIEW-CLASS macro is just like the normal CLOS DEFCLASS macro, except that it handles several slot op-
tions that DEFCLASS doesn't. These slot options have to do with the mapping of the slot into the database. We only
use a few of the slot options in the above example, but there are several others.

CommonSQL Tutorial

5

• :column - The name of the SQL column this slot is stored in. Defaults to the slot name. If the slot name is not a
valid SQL identifier, it is escaped, so foo-bar becomes foo_bar.

• :db-kind - The kind of database mapping which is performed for this slot. :base indicates the slot maps to an or-
dinary column of the database view. :key indicates that this slot corresponds to part of the unique keys for this
view, :join indicates a join slot representing a relation to another view and :virtual indicates that this slot is an or-
dinary CLOS slot. Defaults to :base.

• :db-reader - If a string, then when reading values from the database, the string will be used for a format string,
with the only value being the value from the database. The resulting string will be used as the slot value. If a
function then it will take one argument, the value from the database, and return the value that should be put into
the slot.

• :db-writer - If a string, then when reading values from the slot for the database, the string will be used for a
format string, with the only value being the value of the slot. The resulting string will be used as the column
value in the database. If a function then it will take one argument, the value of the slot, and return the value that
should be put into the database.

• :column- - A string which will be used as the type specifier for this slots column definition in the database.

• :void-value - The Lisp value to return if the field is NULL. The default is NIL.

• :db-info - A join specification.

In our example each table as a primary key attribute, which is required to be unique. We indicate that a slot is part of
the primary key (CLSQL supports multi-field primary keys) by specifying the :db-kind key slot option.

The SQL type of a slot when it is mapped into the database is determined by the :type slot option. The argument for
the :type option is a Common Lisp datatype. The CLSQL framework will determine the appropriate mapping de-
pending on the database system the table is being created in. If we really wanted to determine what SQL type was
used for a slot, we could specify a :db-type option like "NUMBER(38)" and we would be guaranteed that the slot
would be stored in the database as a NUMBER(38). This is not recomended because it could makes your view class
unportable across database systems.

DEF-VIEW-CLASS also supports some class options, like :base-table. The :base-table option specifies what the table
name for the view class will be when it is mapped into the database.

Class Relations
In an SQL only application, the EMPLOYEE and COMPANY tables can be queried to determine things like, "Who
is Vladamir's manager?", "What company does Josef work for?", and "What employees work for Widgets Inc.".
This is done by joining tables with an SQL query.

Who works for Widgets Inc.?

SELECT first_name, last_name FROM employee, company
WHERE employee.companyid = company.companyid

AND company.company_name = "Widgets Inc."

Who is Vladamir's manager?

SELECT managerid FROM employee
WHERE employee.first_name = "Vladamir"

AND employee.last_name = "Lenin"

CommonSQL Tutorial

6

What company does Josef work for?

SELECT company_name FROM company, employee
WHERE employee.first_name = "Josef"

AND employee.last-name = "Stalin"
AND employee.companyid = company.companyid

With CLSQL however we do not need to write out such queries because our view classes can maintain the relations
between employees and companies, and employees to their managers for us. We can then access these relations like
we would any other attribute of an employee or company object. In order to do this we define some join slots for our
view classes.

What company does an employee work for? If we add the following slot definition to the employee class we can
then ask for it's COMPANY slot and get the appropriate result.

;; In the employee slot list
(company

:accessor employee-company
:db-kind :join
:db-info (:join-class company

:home-key companyid
:foreign-key companyid
:set nil))

Who are the employees of a given company? And who is the president of it? We add the following slot definition to
the company view class and we can then ask for it's EMPLOYEES slot and get the right result.

;; In the company slot list
(employees
:reader company-employees
:db-kind :join
:db-info (:join-class employee

:home-key companyid
:foreign-key companyid
:set t))

(president
:reader president
:db-kind :join
:db-info (:join-class employee

:home-key presidentid
:foreign-key emplid
:set nil))

And lastly, to define the relation between an employee and their manager:

;; In the employee slot list
(manager
:accessor employee-manager
:db-kind :join
:db-info (:join-class employee

:home-key managerid
:foreign-key emplid
:set nil))

CLSQL join slots can represent one-to-one, one-to-many, and many-to-many relations. Above we only have one-
to-one and one-to-many relations, later we will explain how to model many-to-many relations. First, let's go over the
slot definitions and the available options.

CommonSQL Tutorial

7

In order for a slot to be a join, we must specify that it's :db-kind :join, as opposed to :base or :key. Once we do that,
we still need to tell CLSQL how to create the join statements for the relation. This is what the :db-info option does. It
is a list of keywords and values. The available keywords are:

• :join-class - The view class to which we want to join. It can be another view class, or the same view class as our
object.

• :home-key - The slot(s) in the immediate object whose value will be compared to the foreign-key slot(s) in the
join-class in order to join the two tables. It can be a single slot-name, or it can be a list of slot names.

• :foreign-key - The slot(s) in the join-class which will be compared to the value(s) of the home-key.

• :set - A boolean which if false, indicates that this is a one-to-one relation, only one object will be returned. If
true, than this is a one-to-many relation, a list of objects will be returned when we ask for this slots value.

There are other :join-info options available in CLSQL, but we will save those till we get to the many-to-many rela-
tion examples.

Object Creation
Now that we have our model laid out, we should create some object. Let us assume that we have a database connect
set up already. We first need to create our tables in the database:

Note: the file examples/clsql-tutorial.lisp contains view class definitions which you can load into your list
at this point in order to play along at home.

(clsql:create-view-from-class 'employee)
(clsql:create-view-from-class 'company)

Then we will create our objects. We create them just like you would any other CLOS object:

(defvar company1 (make-instance 'company
:companyid 1
:presidentid 1
:name "Widgets Inc."))

(defvar employee1 (make-instance 'employee
:emplid 1
:first-name "Vladamir"
:last-name "Lenin"
:email "lenin@soviet.org"
:companyid 1))

(defvar employee2 (make-instance 'employee
:emplid 2
:first-name "Josef"
:last-name "Stalin"
:email "stalin@soviet.org"
:companyid 1
:managerid 1))

In order to insert an objects into the database we use the UPDATE-RECORDS-FROM-INSTANCE function as follows:

(clsql:update-records-from-instance employee1)
(clsql:update-records-from-instance employee2)
(clsql:update-records-from-instance company1)

CommonSQL Tutorial

8

After you make any changes to an object, you have to specifically tell CLSQL to update the SQL database. The UP-
DATE-RECORDS-FROM-INSTANCE method will write all of the changes you have made to the object into the data-
base.

Since CLSQL objects are just normal CLOS objects, we can manipulate their slots just like any other object. For in-
stance, let's say that Lenin changes his email because he was getting too much spam from the German Socialists.

;; Print Lenin's current email address, change it and save it to the
;; database. Get a new object representing Lenin from the database
;; and print the email

;; This lets us use the functional CLSQL interface with [] syntax
(clsql:locally-enable-sql-reader-syntax)

(format t "The email address of ~A ~A is ~A"
(first-name employee1)
(last-name employee1)
(employee-email employee1))

(setf (employee-email employee1) "lenin-nospam@soviets.org")

;; Update the database
(clsql:update-records-from-instance employee1)

(let ((new-lenin (car (clsql:select 'employee
:where [= [slot-value 'employee 'emplid] 1]))))

(format t "His new email is ~A"
(employee-email new-lenin)))

Everything except for the last LET expression is already familiar to us by now. To understand the call to
CLSQL:SELECT we need to discuss the Functional SQL interface and it's integration with the Object Oriented inter-
face of CLSQL.

Finding Objects
Now that we have our objects in the database, how do we get them out when we need to work with them? CLSQL
provides a functional interface to SQL, which consists of a special Lisp reader macro and some functions. The spe-
cial syntax allows us to embed SQL in lisp expressions, and lisp expressions in SQL, with ease.

Once we have turned on the syntax with the expression:

(clsql:locally-enable-sql-reader-syntax)

We can start entering fragments of SQL into our lisp reader. We will get back objects which represent the lisp ex-
pressions. These objects will later be compiled into SQL expressions that are optimized for the database backed we
are connected to. This means that we have a database independent SQL syntax. Here are some examples:

;; an attribute or table name
[foo] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO>

;; a attribute identifier with table qualifier
[foo bar] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO.BAR>

;; a attribute identifier with table qualifier
[= "Lenin" [first_name]] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP ('Lenin' = FIRST_NAME)>

[< [emplid] 3] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLID < 3)>

CommonSQL Tutorial

9

[and [< [emplid] 2] [= [first_name] "Lenin"]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP ((EMPLID < 2) AND

(FIRST_NAME = 'Lenin'))>

;; If we want to reference a slot in an object we can us the
;; SLOT-VALUE sql extension
[= [slot-value 'employee 'emplid] 1] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = 1)>

[= [slot-value 'employee 'emplid]
[slot-value 'company 'presidentid]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = COMPANY.PRESIDENTID)>

The SLOT-VALUE operator is important because it let's us query objects in a way that is robust to any changes in the
object->table mapping, like column name changes, or table name changes. So when you are querying objects, be
sure to use the SLOT-VALUE SQL extension.

Since we can now formulate SQL relational expression which can be used as qualifiers, like we put after the
WHERE keyword in SQL statements, we can start querying our objects. CLSQL provides a function SELECT which
can return use complete objects from the database which conform to a qualifier, can be sorted, and various other
SQL operations.

The first argument to SELECT is a class name. it also has a set of keyword arguments which are covered in the doc-
umentation. For now we will concern ourselves only with the :where keyword. Select returns a list of objects, or nil
if it can't find any. It's important to remember that it always returns a list, so even if you are expecting only one res-
ult, you should remember to extract it from the list you get from SELECT.

;; all employees
(clsql:select 'employee)
;; all companies
(clsql:select 'company)

;; employees named Lenin
(clsql:select 'employee :where [= [slot-value 'employee 'last-name]

"Lenin"])

(clsql:select 'company :where [= [slot-value 'company 'name]
"Widgets Inc."])

;; Employees of Widget's Inc.
(clsql:select 'employee

:where [and [= [slot-value 'employee 'companyid]
[slot-value 'company 'companyid]]

[= [slot-value 'company 'name]
"Widgets Inc."]])

;; Same thing, except that we are using the employee
;; relation in the company view class to do the join for us,
;; saving us the work of writing out the SQL!
(company-employees company1)

;; President of Widgets Inc.
(president company1)

;; Manager of Josef Stalin
(employee-manager employee2)

Deleting Objects
Now that we know how to create objects in our database, manipulate them and query them (including using our pre-
defined relations to save us the trouble writing alot of SQL) we should learn how to clean up after ourself. It's quite
simple really. The function DELETE-INSTANCE-RECORDS will remove an object from the database. However, when

CommonSQL Tutorial

10

we remove an object we are responsible for making sure that the database is left in a correct state.

For example, if we remove a company record, we need to either remove all of it's employees or we need to move
them to another company. Likewise if we remove an employee, we should make sure to update any other employees
who had them as a manager.

Conclusion
There are many nooks and crannies to CLSQL, some of which are covered in the Xanalys documents we refered to
earlier, some are not. The best documentation at this time is still the source code for CLSQL itself and the inline doc-
umentation for its various functions.

CommonSQL Tutorial

11

Connection and Initialisation
This section describes the CLSQL interface for initialising database interfaces of different types, creating and des-
troying databases and connecting and disconnecting from databases.

12

Name
DATABASE -- The super-type of all CLSQL databases

Class DATABASE

Class Precedence List
database, standard-object, t

Description
This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses of this class
to implement their databases. No instances of this class are ever created by CLSQL.

13

Name
CONNECT-IF-EXISTS -- Default value for the if-exists parameter of connect.

Variable *CONNECT-IF-EXISTS*

Value Type
A valid argument to the if-exists parameter of connect, i.e. one of :new, :warn-new, :error, :warn-old, :old.

Initial Value
:error

Description
The value of this variable is used in calls to connect as the default value of the if-exists parameter. See con-
nect for the semantics of the valid values for this variable.

Examples
None.

Affected By
None.

See Also

connect

Notes
None.

14

Name
DEFAULT-DATABASE -- The default database object to use.

Variable *DEFAULT-DATABASE*

Value Type
Any object of type database, or NIL to indicate no default database.

Initial Value
NIL

Description
Any function or macro in CLSQL that operates on a database uses the value of this variable as the default value for
it's database parameter.

The value of this parameter is changed by calls to connect, which sets *default-database* to the database object it
returns. It is also changed by calls to disconnect, when the database object being disconnected is the same as the
value of *default-database*. In this case disconnect sets *default-database* to the first database that remains in
the list of active databases as returned by connected-databases, or NIL if no further active databases exist.

The user may change *default-database* at any time to a valid value of his choice.

Caution

If the value of *default-database* is NIL, then all calls to CLSQL functions on databases must provide a
suitable database parameter, or an error will be signalled.

Examples
(connected-databases)
=> NIL
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql :if-exists :new)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
(disconnect)
=> T
default-database
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(disconnect)
=> T
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(disconnect)
=> T
default-database
=> NIL
(connected-databases)
=> NIL

15

Affected By
connect
disconnect

See Also

connected-databases

Notes
Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-level loop,
and because of this, connect and disconnect provide some fairly complex behaviour to keep
default-database set to useful values. Programmatic use of CLSQL should never depend on the value of
default-database and should provide correct database objects via the database parameter to functions
called.

DEFAULT-DATABASE

16

Name
DEFAULT-DATABASE-TYPE -- The default database type to use

Variable *DEFAULT-DATABASE-TYPE*

Value Type
Any keyword representing a valid database back-end of CLSQL, or NIL.

Initial Value
NIL

Description
The value of this variable is used in calls to initialize-database-type and connect as the default value of
the database-type parameter.

Caution

If the value of this variable is NIL, then all calls to initialize-database-type or connect will have
to specify the database-type to use, or a general-purpose error will be signalled.

Examples
(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t

Affected By
None.

See Also
intitialize-database-type

Notes
None.

17

Name
INITIALIZED-DATABASE-TYPES -- List of all initialized database types

Variable *INITIALIZED-DATABASE-TYPES*

Value Type
A list of all initialized database types, each of which represented by it's corresponding keyword.

Initial Value
NIL

Description
This variable is updated whenever initialize-database-type is called for a database type which hasn't already
been initialized before, as determined by this variable. In that case the keyword representing the database type is
pushed onto the list stored in *INITIALIZED-DATABASE-TYPES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples
(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t
initialized-database-types
=> (:MYSQL)

Affected By

initialize-database-type

See Also
intitialize-database-type

Notes
Direct access to this variable is primarily provided because of compatibility with Harlequin's Common SQL.

18

Name
CONNECT -- create a connection to a database.

Function CONNECT

Syntax

Syntax
connect connection-spec &key if-exists database-type pool make-default => database

Arguments and Values

connection-spec A vendor specific connection specification supplied as a list or as a string.

if-exists This indicates the action to take if a connection to the same database exists already.
See below for the legal values and actions. It defaults to the value of
connect-if-exists.

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

pool A boolean flag. If T, acquire connection from a pool of open connections. If the pool
is empty, a new connection is created. The default is NIL.

make-default A boolean flag. If T, *default-database* is set to the new connection, otherwise
default-database is not changed. The default is T.

database The database object representing the connection.

Description
This function takes a connection specification and a database type and creates a connection to the database specified
by those. The type and structure of the connection specification depend on the database type.

The parameter if-exists specifies what to do if a connection to the database specified exists already, which is
checked by calling find-database on the database name returned by database-name-from-spec when called
with the connection-spec and database-type parameters. The possible values of if-exists are:

:new Go ahead and create a new connection.

:warn-new This is just like :new, but also signals a warning of type clsql-exists-warning, indicating the
old and newly created databases.

:error This will cause connect to signal a correctable error of type clsql-exists-error. The user may
choose to proceed, either by indicating that a new connection shall be created, via the restart
create-new, or by indicating that the existing connection shall be used, via the restart use-old.

:old This will cause connect to use an old connection if one exists.

:warn-old This is just like :old, but also signals a warning of type clsql-exists-warning, indicating the old

19

database used, via the slots old-db and new-db

The database name of the returned database object will be the same under string= as that which would be returned
by a call to database-name-from-spec with the given connection-spec and database-type parameters.

Examples
(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}>
(database-name *)
=> "dent/newesim/dent"

(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
>> In call to CONNECT:
>> There is an existing connection #<CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}> to database dent/newesim/dent.
>>
>> Restarts:
>> 0: [CREATE-NEW] Create a new connection.
>> 1: [USE-OLD] Use the existing connection.
>> 2: [ABORT] Return to Top-Level.
>>
>> Debug (type H for help)
>>
>> (CONNECT ("dent" "newesim" "dent" "dent") :IF-EXISTS NIL :DATABASE-TYPE ...)
>> Source:
>> ; File: /prj/CLSQL/sql/sql.cl
>> (RESTART-CASE (ERROR 'CLSQL-EXISTS-ERROR :OLD-DB OLD-DB)
>> (CREATE-NEW NIL :REPORT "Create a new connection."
>> (SETQ RESULT #))
>> (USE-OLD NIL :REPORT "Use the existing connection."
>> (SETQ RESULT OLD-DB)))
>> 0] 0
=> #<CLSQL-MYSQL:MYSQL-DATABASE {480451F5}>

Side Effects
A database connection is established, and the resultant database object is registered, so as to appear in the list re-
turned by connected-databases. *default-database* may be rebound to the created object.

Affected by

default-database-type
connect-if-exists

Exceptional Situations
If the connection specification is not syntactically or semantically correct for the given database type, an error of
type sql-user-error is signalled. If during the connection attempt an error is detected (e.g. because of permission
problems, network trouble or any other cause), an error of type sql-database-error is signalled.

If a connection to the database specified by connection-spec exists already, conditions are signalled according to
the if-exists parameter, as described above.

CONNECT

20

See Also
connected-databases
disconnect
reconnect
connect-if-exists
find-database
status

Notes
The pool and make-default keyword arguments to connect are CLSQL extensions.

CONNECT

21

Name
CONNECTED-DATABASES -- Return the list of active database objects.

Function CONNECTED-DATABASES

Syntax
connected-databases => databases

Arguments and Values

databases The list of active database objects.

Description
This function returns the list of active database objects, i.e. all those database objects created by calls to connect,
which have not been closed by calling disconnect on them.

Caution

The consequences of modifying the list returned by connected-databases are undefined.

Examples
(connected-databases)
=> NIL
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>
(connected-databases)
=> (#<CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>

#<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)
(disconnect)
=> T
(connected-databases)
=> (#<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)
(disconnect)
=> T
(connected-databases)
=> NIL

Side Effects
None.

Affected By

22

connect
disconnect

Exceptional Situations
None.

See Also
disconnect
connect
status
find-database

Notes
None.

CONNECTED-DATABASES

23

Name
DATABASE-NAME -- Get the name of a database object

Generic Function DATABASE-NAME

Syntax
database-name database => name

Arguments and Values

database A database object, either of type database or of type closed-database.

name A string describing the identity of the database to which this database object is connected to.

Description
This function returns the database name of the given database. The database name is a string which somehow de-
scribes the identity of the database to which this database object is or has been connected. The database name of a
database object is determined at connect time, when a call to database-name-from-spec derives the database
name from the connection specification passed to connect in the connection-spec parameter.

The database name is used via find-database in connect to determine whether database connections to the spe-
cified database exist already.

Usually the database name string will include indications of the host, database name, user, or port that where used
during the connection attempt. The only important thing is that this string shall try to identify the database at the oth-
er end of the connection. Connection specifications parts like passwords and credentials shall not be used as part of
the database name.

Examples
(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

Side Effects

24

None.

Affected By

database-name-from-spec

Exceptional Situations
Will signal an error if the object passed as the database parameter is neither of type database nor of type closed-
database.

See Also

connect
find-database
connected-databases
disconnect
status

Notes
None.

DATABASE-NAME

25

Name
DATABASE-NAME-FROM-SPEC -- Return the database name string corresponding to the given connection spe-
cification.

Generic Function DATABASE-NAME-FROM-SPEC

Syntax
database-name-from-spec connection-spec database-type => name

Arguments and Values

connection-spec A connection specification, whose structure and interpretation are dependent on the
database-type.

database-type A database type specifier, i.e. a keyword.

name A string denoting a database name.

Description
This generic function takes a connection specification and a database type and returns the database name of the data-
base object that would be created had connect been called with the given connection specification and database
types.

This function is useful in determining a database name from the connection specification, since the way the connec-
tion specification is converted into a database name is dependent on the database type.

Examples
(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

(find-database "dent/newesim/dent")
=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/template1/dent")
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(find-database "www.pmsf.de/template1/dent" nil)
=> NIL
(find-database **)

26

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

Side Effects
None.

Affected by
None.

Exceptional Situations
If the value of connection-spec is not a valid connection specification for the given database type, an error of
type clsql-invalid-spec-error might be signalled.

See Also

connect

Notes
database-name-from-spec is a CLSQL extension.

DATABASE-NAME-FROM-SPEC

27

Name
DATABASE-TYPE -- Get the type of a database object.

Generic Function DATABASE-TYPE

Syntax
database-type DATABASE => type

Arguments and Values

database A database object, either of type database or of type closed-database.

type A keyword symbol denoting a known database back-end.

Description
Returns the type of database.

Examples
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-type *default-database*)
=> :postgresql

Side Effects
None.

Affected by
None.

Exceptional Situations
Will signal an error if the object passed as the database parameter is neither of type database nor of type closed-
database.

See Also

connect
find-database
connected-databases

28

disconnect
status

Notes
database-type is a CLSQL extension.

DATABASE-TYPE

29

Name
DISCONNECT -- close a database connection

Function DISCONNECT

Syntax
disconnect &key database error => result

Arguments and Values

error A boolean flag indicating whether to signal an error if database is non-NIL but cannot be
found.

database The database to disconnect, which defaults to the database indicated by *default-database*.

result A Boolean indicating whether a connection was successfully disconnected.

Description
This function takes a database object as returned by connect, and closes the connection. If no matching database is
found and error and database are both non-NIL an error is signaled, otherwise NIL is returned. If the database is
from a pool it will be released to this pool.

The status of the object passed is changed to closed after the disconnection succeeds, thereby preventing further use
of the object as an argument to CLSQL functions, with the exception of database-name and database-type. If
the user does pass a closed database to any other CLSQL function, an error of type sql-fatal-error is signalled.

Examples
(disconnect :database (find-database "dent/newesim/dent"))
=> T

Side Effects
The database connection is closed, and the database object is removed from the list of connected databases as re-
turned by connected-databases.

The state of the database object is changed to closed.

If the database object passed is the same under eq as the value of *default-database*, then *default-database* is set
to the first remaining database from connected-databases or to NIL if no further active database exists.

Affected by

default-database

30

Exceptional Situations
If during the disconnection attempt an error is detected (e.g. because of network trouble or any other cause), an error
of type sql-error might be signalled.

See Also

connect
disconnect-pooled

Notes
None.

DISCONNECT

31

Name
DISCONNECT-POOLED -- closes all pooled database connections

Function DISCONNECT-POOLED

Syntax
disconnect-pooled => t

Description
This function disconnects all database connections that have been placed into the pool by calling connect with
:pool T.

Examples
(disconnect-pool)
=> T

Side Effects
Database connections will be closed and entries in the pool are removed.

Affected by

disconnect

Exceptional Situations
If during the disconnection attempt an error is detected (e.g. because of network trouble or any other cause), an error
of type clsql-error might be signalled.

See Also

connect
disconnect

Notes
disconnect-pooled is a CLSQL extension.

32

Name
FIND-DATABASE -- >Locate a database object through it's name.

Function FIND-DATABASE

Syntax
find-database database &optional errorp => result

Arguments and Values

database A database object or a string, denoting a database name.

errorp A generalized boolean. Defaults to t.

db-type A keyword symbol denoting a known database back-end.

result Either a database object, or, if errorp is NIL, possibly NIL.

Description
find-database locates an active database object given the specification in database. If database is an object of
type database, find-database returns this. Otherwise it will search the active databases as indicated by the list re-
turned by connected-databases for a database of type db-type whose name (as returned by database-name
is equal as per string= to the string passed as database. If it succeeds, it returns the first database found.

If db-type is NIL all databases matching the string database are considered. If no matching databases are found
and errorp is NIL then NIL is returned. If errorp is NIL and one or more matching databases are found, then the
most recently connected database is returned as a first value and the number of matching databases is returned as a
second value. If no, or more than one, matching databases are found and errorp is true, an error is signalled.

Examples
(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

(find-database "dent/newesim/dent")
=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/template1/dent")
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

33

(find-database "www.pmsf.de/template1/dent" nil)
=> NIL
(find-database **)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

Side Effects
None.

Affected By

connected-databases

Exceptional Situations
Will signal an error of type clsql-error if no matching database can be found, and errorp is true. Will signal an er-
ror if the value of database is neither an object of type database nor a string.

See Also

database-name
database-name-from-spec
disconnect
connect
status
connected-databases

Notes
The db-type keyword argument to find-database is a CLSQL extension.

FIND-DATABASE

34

Name
INITIALIZE-DATABASE-TYPE -- Initializes a database type

Function INITIALIZE-DATABASE-TYPE

Syntax
initialize-database-type &key database-type => result

Arguments and Values

database-type The database type to initialize, i.e. a keyword symbol denoting a known database
back-end. Defaults to the value of *default-database-type*.

result Either NIL if the initialization attempt fails, or t otherwise.

Description
If the back-end specified by database-type has not already been initialized, as seen from
initialized-database-types, an attempt is made to initialize the database. If this attempt succeeds, or the back-end
has already been initialized, the function returns t, and places the keyword denoting the database type onto the list
stored in *initialized-database-types*, if not already present.

If initialization fails, the function returns NIL, and/or signals an error of type clsql-error. The kind of action taken
depends on the back-end and the cause of the problem.

Examples
initialized-database-types
=> NIL
(setf *default-database-type* :mysql)
=> :MYSQL
(initialize-database-type)
>> Compiling LAMBDA (#:G897 #:G898 #:G901 #:G902):
>> Compiling Top-Level Form:
>>
=> T
initialized-database-types
=> (:MYSQL)
(initialize-database-type)
=> T
initialized-database-types
=> (:MYSQL)

Side Effects
The database back-end corresponding to the database type specified is initialized, unless it has already been initial-
ized. This can involve any number of other side effects, as determined by the back-end implementation (like e.g.
loading of foreign code, calling of foreign code, networking operations, etc.). If initialization is attempted and suc-
ceeds, the database-type is pushed onto the list stored in *initialized-database-types*.

35

Affected by

default-database-type
initialized-database-types

Exceptional Situations
If an error is encountered during the initialization attempt, the back-end may signal errors of kind clsql-error.

See Also
initialized-database-types
default-database-type

Notes
None.

INITIALIZE-DATABASE-TYPE

36

Name
RECONNECT -- Re-establishes the connection between a database object and its RDBMS.

Function RECONNECT

Syntax
reconnect &key database error force => result

Arguments and Values

database The database to reconnect, which defaults to the database indicated by *default-database*.

error A boolean flag indicating whether to signal an error if database is non-nil but cannot be found.
The default value is NIL.

force A Boolean indicating whether to signal an error if the database connection has been lost. The de-
fault value is T.

result A Boolean indicating whether the database was successfully reconnected.

Description
Reconnects database which defaults to *default-database* to the underlying database management system. On
success, T is returned and the variable *default-database* is set to the newly reconnected database. If database is a
database instance, this object is closed. If database is a string, then a connected database whose name matches
database is sought in the list of connected databases. If no matching database is found and error and database
are both non-NIL an error is signaled, otherwise NIL is returned.

When the current database connection has been lost, if force is non-NIL as it is by default, the connection is closed
and errors are suppressed. If force is NIL and the database connection cannot be closed, an error is signalled.

Examples
default-database
=> #<CLSQL-SQLITE:SQLITE-DATABASE :memory: OPEN {48CFBEA5}>
(reconnect)
=> #<CLSQL-SQLITE:SQLITE-DATABASE :memory: OPEN {48D64105}>

Side Effects
A database connection is re-established and *default-database* may be rebound to the supplied database object.

Affected by

default-database

37

Exceptional Situations
An error may be signalled if the specified database cannot be located or if the database cannot be closed.

See Also

connect
disconnect
disconnect-pooled

Notes
None.

RECONNECT

38

Name
STATUS -- Print information about connected databases.

Function STATUS

Syntax
status &optional full =>

Arguments and Values

full A boolean indicating whether to print additional table information. The default value is NIL.

Description
Prints information about the currently connected databases to *STANDARD-OUTPUT*. The argument full is
NIL by default and a value of t means that more detailed information about each database is printed.

Examples
(status)

CLSQL STATUS: 2004-06-13 15:07:39
--

DATABASE TYPE RECORDING
--

localhost/test/petrov mysql nil
localhost/test/petrov postgresql nil
localhost/test/petrov postgresql-socket nil
test/petrov odbc nil

* :memory: sqlite nil
--

(status t)

CLSQL STATUS: 2004-06-13 15:08:08

DATABASE TYPE RECORDING POOLED TABLES VIEWS

localhost/test/petrov mysql nil nil 7 0
localhost/test/petrov postgresql nil nil 7 0
localhost/test/petrov postgresql-socket nil nil 7 0
test/petrov odbc nil nil 7 0

* :memory: sqlite nil nil 0 0

Side Effects
None.

Affected by

39

None.

Exceptional Situations
None.

See Also

connected-databases
connect
disconnect
connect-if-exists
find-database

Notes
None.

STATUS

40

Name
CREATE-DATABASE -- create a database

Function CREATE-DATABASE

Syntax
create-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, a new database was successfully created.

Description
This function creates a database in the database system specified by database-type.

Examples
(create-database '("localhost" "new" "dent" "dent") :database-type :mysql)
=> T

(create-database '("localhost" "new" "dent" "badpasswd") :database-type :mysql)
=>
Error: While trying to access database localhost/new/dent

using database-type MYSQL:
Error database-create failed: mysqladmin: connect to server at 'localhost' failed

error: 'Access denied for user: 'root@localhost' (Using password: YES)'
has occurred.
[condition type: CLSQL-ACCESS-ERROR]

Side Effects
A database will be created on the filesystem of the host.

Exceptional Situations
An exception will be thrown if the database system does not allow new databases to be created or if database cre-
ation fails.

See Also

41

destroy-database
probe-database
list-databases

Notes
This function may invoke the operating systems functions. Thus, some database systems may require the administra-
tion functions to be available in the current PATH. At this time, the :mysql backend requires mysqladmin and the
:postgresql backend requires createdb.

create-database is a CLSQL extension.

CREATE-DATABASE

42

Name
DESTROY-DATABASE -- destroys a database

Function DESTROY-DATABASE

Syntax
destroy-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, the database was successfully destroyed.

Description
This function destroys a database in the database system specified by database-type.

Examples
(destroy-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> T

(destroy-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=>
Error: While trying to access database localhost/test2/root

using database-type POSTGRESQL:
Error database-destory failed: dropdb: database removal failed: ERROR: database "test2" does not exist
has occurred.
[condition type: CLSQL-ACCESS-ERROR]

Side Effects
A database will be removed from the filesystem of the host.

Exceptional Situations
An exception will be thrown if the database system does not allow databases to be removed, the database does not
exist, or if database removal fails.

See Also

create-database

43

probe-database
list-databases

Notes
This function may invoke the operating systems functions. Thus, some database systems may require the administra-
tion functions to be available in the current PATH. At this time, the :mysql backend requires mysqladmin and the
:postgresql backend requires dropdb.

destroy-database is a CLSQL extension.

DESTROY-DATABASE

44

Name
PROBE-DATABASE -- tests for existence of a database

Function PROBE-DATABASE

Syntax
probe-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, the database exists in the database system.

Description
This function tests for the existence of a database in the database system specified by database-type.

Examples
(probe-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> T

Side Effects
None

Exceptional Situations
An exception maybe thrown if the database system does not receive administrator-level authentication since func-
tion may need to read the administrative database of the database system.

See Also

create-database
destroy-database
list-databases

Notes

45

probe-database is a CLSQL extension.

PROBE-DATABASE

46

Name
LIST-DATABASES -- List databases matching the supplied connection spec and database type.

Function LIST-DATABASES

Syntax
list-databases connection-spec &key database-type => result

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

result A list of matching databases.

Description
This function returns a list of databases existing in the database system specified by database-type.

Examples
(list-databases '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> ("address-book" "sql-test" "template1" "template0" "test1" "dent" "test")

Side Effects
None.

Affected by
None.

Exceptional Situations
An exception maybe thrown if the database system does not receive administrator-level authentication since func-
tion may need to read the administrative database of the database system.

See Also

create-database

47

destroy-database
probe-database

Notes
list-databases is a CLSQL extension.

LIST-DATABASES

48

Name
WITH-DATABASE -- Execute a body of code with a variable bound to a specified database object.

Macro WITH-DATABASE

Syntax
with-database db-var connection-spec &rest connect-args &body body => result

Arguments and Values

db-var A variable to which the specified database is bound.

connection-spec A vendor specific connection specification supplied as a list or as a string.

connect-args Other optional arguments to connect.

body A Lisp code body.

result Determined by the result of executing the last expression in body.

Description
Evaluate body in an environment, where db-var is bound to the database connection given by connection-spec
and connect-args. The connection is automatically closed or released to the pool on exit from the body.

Examples
(connected-databases)
=> NIL
(with-database (db '(":memory:") :database-type :sqlite

:make-default nil)
(database-name db))

=> ":memory:"
(connected-databases)
=> NIL

Side Effects
See connect and disconnect.

Affected by
See connect and disconnect.

Exceptional Situations

49

See connect and disconnect.

See Also

connect
disconnect
disconnect-pooled
with-default-database

Notes
with-database is a CLSQL extension.

WITH-DATABASE

50

Name
WITH-DEFAULT-DATABASE -- Execute a body of code with *default-database* bound to a specified database.

Macro WITH-DEFAULT-DATABASE

Syntax
with-default-database database &rest body => result

Arguments and Values

database An active database object.

body A Lisp code body.

result Determined by the result of executing the last expression in body.

Description
Perform body with DATABASE bound as *default-database*.

Examples
default-database
=> #<CLSQL-ODBC:ODBC-DATABASE new/dent OPEN {49095CAD}>

(let ((database (clsql:find-database ":memory:")))
(with-default-database (database)
(database-name *default-database*)))

=> ":memory:"

Side Effects
None.

Affected by
None.

Exceptional Situations
Calls to CLSQL functions in body may signal errors if database is not an active database object.

See Also

51

with-database
default-database

Notes
with-default-database is a CLSQL extension.

WITH-DEFAULT-DATABASE

52

The Symbolic SQL Syntax
CLSQL provides a symbolic syntax allowing the construction of SQL expressions as lists delimited by square brack-
ets. The syntax is turned off by default. This section describes utilities for enabling and disabling the square bracket
reader syntax and for constructing symbolic SQL expressions.

53

Name
ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.

Macro ENABLE-SQL-READER-SYNTAX

Syntax
enable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns on the SQL reader syntax setting the syntax state such that if the syntax is subsequently disabled, restore-
sql-reader-syntax-state will enable it again.

Examples
None.

Side Effects
Sets the internal syntax state to enabled.

Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
disable-sql-reader-syntax
locally-enable-sql-reader-syntax
locally-disable-sql-reader-syntax
restore-sql-reader-syntax-state

Notes
The symbolic SQL syntax is disabled by default.

54

Name
DISABLE-SQL-READER-SYNTAX -- Globally disable square bracket reader syntax.

Macro DISABLE-SQL-READER-SYNTAX

Syntax
disable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns off the SQL reader syntax setting the syntax state such that if the syntax is subsequently enabled, restore-
sql-reader-syntax-state will disable it again.

Examples
None.

Side Effects
Sets the internal syntax state to disabled.

Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
locally-enable-sql-reader-syntax
locally-disable-sql-reader-syntax
restore-sql-reader-syntax-state

Notes
The symbolic SQL syntax is disabled by default.

55

Name
LOCALLY-ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.

Macro LOCALLY-ENABLE-SQL-READER-SYNTAX

Syntax
locally-enable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns on the SQL reader syntax without changing the syntax state such that restore-
sql-reader-syntax-state will re-establish the current syntax state.

Examples
Intended to be used in a file for code which uses the square bracket syntax without changing the global state.

#.(locally-enable-sql-reader-syntax)

... CODE USING SYMBOLIC SQL SYNTAX ...

#.(restore-sql-reader-syntax-state)

Side Effects
Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
disable-sql-reader-syntax
locally-disable-sql-reader-syntax
restore-sql-reader-syntax-state

56

Notes
The symbolic SQL syntax is disabled by default.

LOCALLY-ENABLE-SQL-READER-SYNTAX

57

Name
LOCALLY-DISABLE-SQL-READER-SYNTAX -- Locally disable square bracket reader syntax.

Macro LOCALLY-DISABLE-SQL-READER-SYNTAX

Syntax
locally-disable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns off the SQL reader syntax without changing the syntax state such that restore-
sql-reader-syntax-state will re-establish the current syntax state.

Examples
Intended to be used in a file for code in which the square bracket syntax should be disabled without changing the
global state.

#.(locally-disable-sql-reader-syntax)

... CODE NOT USING SYMBOLIC SQL SYNTAX ...

#.(restore-sql-reader-syntax-state)

Side Effects
Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
disable-sql-reader-syntax
locally-enable-sql-reader-syntax
restore-sql-reader-syntax-state

58

Notes
The symbolic SQL syntax is disabled by default.

LOCALLY-DISABLE-SQL-READER-SYNTAX

59

Name
RESTORE-SQL-READER-SYNTAX-STATE -- Restore square bracket reader syntax to its previous state.

Macro RESTORE-SQL-READER-SYNTAX-STATE

Syntax
restore-sql-reader-syntax-state =>

Arguments and Values
None.

Description
Enables the SQL reader syntax if enable-sql-reader-syntax has been called more recently than disable-
sql-reader-syntax and otherwise disables the SQL reader syntax. By default, the SQL reader syntax is disabled.

Examples
See locally-enable-sql-reader-syntax and locally-disable-sql-reader-syntax.

Side Effects
Reverts the internal syntax state.

Modifies the default readtable.

Affected by
The current internal syntax state.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
disable-sql-reader-syntax
locally-enable-sql-reader-syntax
locally-disable-sql-reader-syntax

Notes
The symbolic SQL syntax is disabled by default.

60

Name
SQL -- Construct an SQL string from supplied expressions.

Function SQL

Syntax
sql &rest args => sql-expression

Arguments and Values

args A set of expressions.

sql-expression A string representing an SQL expression.

Description
Returns an SQL string generated from the expressions args. The expressions are translated into SQL strings and
then concatenated with a single space delimiting each expression.

Examples
(sql nil)
=> "NULL"

(sql 'foo)
=> "FOO"

(sql "bar")
=> "'bar'"

(sql 10)
=> "10"

(sql '(nil foo "bar" 10))
=> "(NULL,FOO,'bar',10)"

(sql #(nil foo "bar" 10))
=> "NULL,FOO,'bar',10"

(sql [select [foo] [bar] :from [baz]] 'having [= [foo id] [bar id]]
'and [foo val] '< 5)

=> "SELECT FOO,BAR FROM BAZ HAVING (FOO.ID = BAR.ID) AND FOO.VAL < 5"

Side Effects
None.

Affected by

61

None.

Exceptional Situations
An error of type sql-user-error is signalled if any element in args is not of the supported types (a symbol,
string, number or symbolic SQL expression) or a list or vector containing only these supported types.

See Also
sql-expression
sql-operation
sql-operator

Notes
None.

SQL

62

Name
SQL-EXPRESSION -- Constructs an SQL expression from supplied keyword arguments.

Function SQL-EXPRESSION

Syntax
sql-expression &key string table alias attribute type => result

Arguments and Values

string A string.

table A symbol representing a database table identifier.

alias A table alias.

attribute A symbol representing an attribute identifier.

type A type specifier.

result A object of type sql-expression.

Description
Returns an SQL expression constructed from the supplied arguments which may be combined as follows:

• attribute and type;

• attribute;

• alias or table and attribute and type;

• alias or table and attribute;

• table, attribute and type;

• table and attribute;

• table and alias;

• table;

• string.

Examples
(sql-expression :table 'foo :attribute 'bar)
=> #<CLSQL-SYS:SQL-IDENT-ATTRIBUTE FOO.BAR>

63

(sql-expression :attribute 'baz)
=> #<CLSQL-SYS:SQL-IDENT-ATTRIBUTE BAZ>

Side Effects
None.

Affected by
None.

Exceptional Situations
An error of type sql-user-error is signalled if an unsupported combination of keyword arguments is specified.

See Also
sql
sql-operation
sql-operator

Notes
None.

SQL-EXPRESSION

64

Name
SQL-OPERATION -- Constructs an SQL expression from a supplied operator and arguments.

Function SQL-OPERATION

Syntax
sql-operation operator &rest args => result

sql-operation 'function func &rest args => result

Arguments and Values

operator A symbol denoting an SQL operator.

func A string denoting an SQL function.

args A set of arguments for the specified SQL operator or function.

result A object of type sql-expression.

Description
Returns an SQL expression constructed from the supplied SQL operator or function operator and its arguments
args. If operator is passed the symbol 'function then the first value in args is taken to be a valid SQL function
and the remaining values in args its arguments.

Examples
(sql-operation 'select

(sql-expression :table 'foo :attribute 'bar)
(sql-operation 'sum (sql-expression :table 'foo :attribute 'baz))
:from
(sql-expression :table 'foo)
:where
(sql-operation '> (sql-expression :attribute 'bar) 12)
:order-by (sql-operation 'sum (sql-expression :attribute 'baz)))

=> #<SQL-QUERY SELECT FOO.BAR,SUM(FOO.BAZ) FROM FOO WHERE (BAR > 12) ORDER BY SUM(BAZ)>

(sql-operation 'function "strpos" "CLSQL" "SQL")
=> #<CLSQL-SYS:SQL-FUNCTION-EXP STRPOS('CLSQL','SQL')>

Side Effects
None.

Affected by
65

None.

Exceptional Situations
An error of type sql-user-error is signalled if operator is not a symbol representing a supported SQL operat-
or.

See Also
sql
sql-expression
sql-operator

Notes
None.

SQL-OPERATION

66

Name
SQL-OPERATOR -- Returns the symbol for the supplied SQL operator.

Function SQL-OPERATOR

Syntax
sql-operator operator => result

Arguments and Values

operator A symbol denoting an SQL operator.

result The Lisp symbol used by CLSQL to represent the specified operator.

Description
Returns the Lisp symbol corresponding to the SQL operator represented by the symbol operator. If operator
does not represent a supported SQL operator or is not a symbol, nil is returned.

Examples
(sql-operator 'like)
=> SQL-LIKE

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

See Also
sql
sql-expression
sql-operation

67

Notes
CLSQL's symbolic SQL syntax currently has support for the following SQL operators:

any
some
all
not
union
intersect
minus
except
order-by
null
*
+
/
-
like
and
or
in
substr
||
=
<
>
>=
<=
<>
count
max
min
avg
sum
function
between
distinct
nvl
slot-value
userenv
concat
substring
limit
group-by
having
not-null
exists
uplike
is
==
the
coalesce
view-class

as well as the pseudo-operator function. Note that some of these operators are not supported by all of the RDBMS
supported by CLSQL.

SQL-OPERATOR

68

Functional Data Definition Language
(FDDL)

CLSQL provides a functional DDL which supports the creation and destruction of a variety of database objects in-
cluding tables, views, indexes and sequences. Functions which return information about currently defined database
objects are also provided. In addition, the FDDL includes functionality for examining table attributes and attribute
types.

69

Name
CREATE-TABLE -- Create a database table.

Function CREATE-TABLE

Syntax
create-table name description &key database constraints transactions =>

Arguments and Values

name The name of the table as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

description A list.

constraints A string, a list of strings or NIL.

transactions A Boolean. The default value is T.

Description
Creates a table called name, which may be a string, symbol or SQL table identifier, in database which defaults to
default-database. description is a list whose elements are lists containing the attribute names, types, and other
constraints such as not-null or primary-key for each column in the table.

constraints is a string representing an SQL table constraint expression or a list of such strings.

With MySQL databases, if transactions is T an InnoDB table is created which supports transactions.

Examples
(create-table [foo]

'(([id] integer)
([height] float)
([name] (string 24))
([comments] longchar)))

=>
(table-exists-p [foo])
=> T

Side Effects
A table is created in database.

Affected by

70

default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if a relation called name already exists.

See Also
drop-table
list-tables
table-exists-p

Notes
The constraints and transactions keyword arguments to create-table are CLSQL extensions. The
transactions keyword argument is for compatibility with MySQL databases.

CREATE-TABLE

71

Name
DROP-TABLE -- Drop a database table.

Function DROP-TABLE

Syntax
drop-table name &key if-does-not-exist database =>

Arguments and Values

name The name of the table as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the table called name from database which defaults to *default-database*. If the table does not exist and
if-does-not-exist is :ignore then drop-table returns NIL whereas an error is signalled if if-
does-not-exist is :error.

Examples
(table-exists-p [foo])
=> T
(drop-table [foo] :if-does-not-exist :ignore)
=>
(table-exists-p [foo])
=> NIL

Side Effects
A table is dropped database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if name doesn't exist and if-does-not-exist has a value of :error.

72

See Also
create-table
list-tables
table-exists-p

Notes
The if-does-not-exist keyword argument to drop-table is a CLSQL extension.

DROP-TABLE

73

Name
LIST-TABLES -- Returns a list of database tables.

Function LIST-TABLES

Syntax
list-tables &key owner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list of strings.

Description
Returns a list of strings representing table names in database which defaults to *default-database*. owner is NIL
by default which means that only tables owned by users are listed. If owner is a string denoting a user name, only
tables owned by owner are listed. If owner is :all then all tables are listed.

Examples
(list-tables :owner "fred")
=> ("type_table" "type_bigint" "employee" "company" "addr" "ea_join" "big")

(list-tables :owner :all)
=> ("pg_description" "pg_group" "pg_proc" "pg_rewrite" "pg_type" "pg_attribute"

"pg_class" "pg_inherits" "pg_index" "pg_operator" "pg_opclass" "pg_am"
"pg_amop" "pg_amproc" "pg_language" "pg_largeobject" "pg_aggregate"
"pg_trigger" "pg_listener" "pg_cast" "pg_namespace" "pg_shadow"
"pg_conversion" "pg_depend" "pg_attrdef" "pg_constraint" "pg_database"
"type_table" "type_bigint" "employee" "company" "pg_statistic" "addr"
"ea_join" "big")

Side Effects
None.

Affected by
default-database

Exceptional Situations

74

None.

See Also
create-table
drop-table
table-exists-p

Notes
None.

LIST-TABLES

75

Name
TABLE-EXISTS-P -- Tests for the existence of a database table.

Function TABLE-EXISTS-P

Syntax
table-exists-p name &key owner database => result

Arguments and Values

name The name of the table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL table called name in database which defaults to *default-database*. owner is
NIL by default which means that only tables owned by users are examined. If owner is a string denoting a user
name, only tables owned by owner are examined. If owner is :all then all tables are examined.

Examples
(table-exists-p [foo])
=> T

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

76

create-table
drop-table
list-tables

Notes
None.

TABLE-EXISTS-P

77

Name
CREATE-VIEW -- Create a database view.

Function CREATE-VIEW

Syntax
create-view name &key as column-list with-check-option database =>

Arguments and Values

name The name of the view as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

as A symbolic SQL query expression.

column-list A list.

with-check-option A Boolean.

Description
Creates a view called name in database which defaults to *default-database*. The view is created using the query
as and the columns of the view may be specified using the column-list parameter. The with-check-option is
NIL by default but if it has a non-NIL value, then all insert/update commands on the view are checked to ensure that
the new data satisfy the query as.

Examples
(create-view [lenins-group]

:as [select [first-name] [last-name] [email]
:from [employee]
:where [= [managerid] 1]])

=>

(select [*] :from [lenins-group])
=> (("Josef" "Stalin" "stalin@soviet.org")

("Leon" "Trotsky" "trotsky@soviet.org")
("Nikita" "Kruschev" "kruschev@soviet.org")
("Leonid" "Brezhnev" "brezhnev@soviet.org")
("Yuri" "Andropov" "andropov@soviet.org")
("Konstantin" "Chernenko" "chernenko@soviet.org")
("Mikhail" "Gorbachev" "gorbachev@soviet.org")
("Boris" "Yeltsin" "yeltsin@soviet.org")
("Vladamir" "Putin" "putin@soviet.org")),

("first_name" "last_name" "email")

Side Effects

78

A view is created in database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if a relation called name already exists.

See Also
drop-view
list-views
view-exists-p

Notes
None.

CREATE-VIEW

79

Name
DROP-VIEW -- Drops a database view.

Function DROP-VIEW

Syntax
drop-view name &key if-does-not-exist database =>

Arguments and Values

name The name of the view as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the view called name from database which defaults to *default-database*. If the view does not exist and
if-does-not-exist is :ignore then drop-view returns NIL whereas an error is signalled if if-
does-not-exist is :error.

Examples
(view-exists-p [foo])
=> T
(drop-view [foo] :if-does-not-exist :ignore)
=>
(view-exists-p [foo])
=> NIL

Side Effects
A view is dropped database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if name doesn't exist and if-does-not-exist has a value of :error.

80

See Also
create-view
list-views
view-exists-p

Notes
The if-does-not-exist keyword argument to drop-view is a CLSQL extension.

DROP-VIEW

81

Name
LIST-VIEWS -- Returns a list of database views.

Function LIST-VIEWS

Syntax
list-views &key owner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list of strings.

Description
Returns a list of strings representing view names in database which defaults to *default-database*. owner is NIL
by default which means that only views owned by users are listed. If owner is a string denoting a user name, only
views owned by owner are listed. If owner is :all then all views are listed.

Examples
(list-views :owner "fred")
=> ("lenins_group")

(list-views :owner :all)
=> ("pg_user" "pg_rules" "pg_views" "pg_tables" "pg_indexes" "pg_stats"

"pg_stat_all_tables" "pg_stat_sys_tables" "pg_stat_user_tables"
"pg_statio_all_tables" "pg_statio_sys_tables" "pg_statio_user_tables"
"pg_stat_all_indexes" "pg_stat_sys_indexes" "pg_stat_user_indexes"
"pg_statio_all_indexes" "pg_statio_sys_indexes" "pg_statio_user_indexes"
"pg_statio_all_sequences" "pg_statio_sys_sequences"
"pg_statio_user_sequences" "pg_stat_activity" "pg_stat_database"
"pg_locks" "pg_settings" "lenins_group")

Side Effects
None.

Affected by
default-database

Exceptional Situations

82

None.

See Also
create-view
drop-view
view-exists-p

Notes
list-views is a CLSQL extension.

LIST-VIEWS

83

Name
VIEW-EXISTS-P -- Tests for the existence of a database view.

Function VIEW-EXISTS-P

Syntax
view-exists-p name &key owner database => result

Arguments and Values

name The name of the view as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL view called name in database which defaults to *default-database*. owner is
NIL by default which means that only views owned by users are examined. If owner is a string denoting a user
name, only views owned by owner are examined. If owner is :all then all views are examined.

Examples
(view-exists-p [lenins-group])
=> T

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

84

create-view
drop-view
list-views

Notes
view-exists-p is a CLSQL extension.

VIEW-EXISTS-P

85

Name
CREATE-INDEX -- Create a database index.

Function CREATE-INDEX

Syntax
create-index name &key on unique attributes database =>

Arguments and Values

name The name of the index as a string, symbol or SQL expression.

on The name of a table as a string, symbol or SQL expression.

unique A Boolean.

attributes A list of attribute names.

database A database object which defaults to *default-database*.

Description
Creates an index called name on the table specified by on in database which default to *default-database*. The ta-
ble attributes to use in constructing the index name are specified by attributes. The unique argument is NIL by
default but if it has a non-NIL value then the indexed attributes must have unique values.

Examples
(create-index [bar] :on [employee]

:attributes '([first-name] [last-name] [email])
:unique t)

=>

(index-exists-p [bar])
=> T

Side Effects
An index is created in database.

Affected by
default-database

Exceptional Situations

86

An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if a relation called name already exists.

See Also
drop-index
list-indexes
index-exists-p

Notes
None.

CREATE-INDEX

87

Name
DROP-INDEX -- Drop a database index.

Function DROP-INDEX

Syntax
drop-index name &key if-does-not-exist on database =>

Arguments and Values

name The name of the index as a string, symbol or SQL expression.

on The name of a table as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the index called name in database which defaults to *default-database*. If the index does not exist and if-
does-not-exist is :ignore then drop-index returns NIL whereas an error is signalled if if-does-not-exist
is :error.

The argument on allows the optional specification of a table to drop the index from. This is required for compatabil-
ity with MySQL.

Examples
(index-exists-p [foo])
=> T
(drop-index [foo] :if-does-not-exist :ignore)
=>
(index-exists-p [foo])
=> NIL

Side Effects
An index is dropped in database.

Affected by
default-database

Exceptional Situations

88

An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if name doesn't exist and if-does-not-exist has a value of :error.

See Also
create-index
list-indexes
index-exists-p

Notes
The if-does-not-exist and on keyword arguments to drop-index are CLSQL extensions. The keyword argu-
ment on is provided for compatibility with MySQL.

DROP-INDEX

89

Name
LIST-INDEXES -- Returns a list of database indexes.

Function LIST-INDEXES

Syntax
list-indexes &key onowner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

on The name of a table as a string, symbol or SQL expression, a list of such names or NIL.

result A list of strings.

Description
Returns a list of strings representing index names in database which defaults to *default-database*. owner is NIL
by default which means that only indexes owned by users are listed. If owner is a string denoting a user name, only
indexes owned by owner are listed. If owner is :all then all indexes are listed.

The keyword argument on limits the results to indexes on the specified tables. Meaningful values for on are NIL
(the default) which means that all tables are considered, a string, symbol or SQL expression representing a table
name in database or a list of such table identifiers.

Examples
(list-indexes)
=> ("employeepk" "companypk" "addrpk" "bar")

(list-indexes :on '([addr] [company]))
=> ("addrpk" "companypk")

Side Effects
None.

Affected by
default-database

Exceptional Situations
90

None.

See Also
create-index
drop-index
index-exists-p

Notes
list-indexes is a CLSQL extension.

LIST-INDEXES

91

Name
INDEX-EXISTS-P -- Tests for the existence of a database index.

Function INDEX-EXISTS-P

Syntax
index-exists-p name &key owner database => result

Arguments and Values

name The name of the index as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL index called name in database which defaults to *default-database*. owner is
NIL by default which means that only indexes owned by users are examined. If owner is a string denoting a user
name, only indexes owned by owner are examined. If owner is :all then all indexes are examined.

Examples
(index-exists-p [bar])
=> T

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

92

create-index
drop-index
list-indexes

Notes
index-exists-p is a CLSQL extension.

INDEX-EXISTS-P

93

Name
ATTRIBUTE-TYPE -- Returns the type of the supplied attribute.

Function ATTRIBUTE-TYPE

Syntax
attribute-type attribute table &key owner database => type, precision, scale, nulls-accepted

Arguments and Values

attribute The name of the index as a string, symbol or SQL expression.

table The name of a table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

type A keyword symbol denoting a vendor-specific SQL type.

precision An integer denoting the precision of the attribute type or NIL.

scale An integer denoting the scale of the attribute type or NIL.

nulls-accepted 0 or 1.

Description
Returns a keyword symbol representing the vendor-specific field type of the supplied attribute attribute in the ta-
ble specified by table in database which defaults to *default-database*. owner is NIL by default which means
that the attribute specified by attribute, if it exists, must be user owned else NIL is returned. If owner is a string
denoting a user name, the attribute, if it exists, must be owned by owner else NIL is returned, whereas if owner is
:all then the attribute, if it exists, will be returned regardless of its owner.

Other information is also returned. The second value is the type precision, the third is the scale and the fourth repres-
ents whether or not the attribute accepts null values (a value of 0) or not (a value of 1).

Examples
(attribute-type [emplid] [employee])
=> :INT4, 4, NIL, 0

Side Effects
None.

94

Affected by
default-database

Exceptional Situations
None.

See Also
list-attributes
list-attribute-types

Notes
None.

ATTRIBUTE-TYPE

95

Name
LIST-ATTRIBUTE-TYPES -- Returns information about the attribute types of a table.

Function LIST-ATTRIBUTE-TYPES

Syntax
list-attribute-types table &key owner database => result

Arguments and Values

table The name of a table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list.

Description
Returns a list containing information about the SQL types of each of the attributes in the table specified by table in
database which has a default value of *default-database*. owner is NIL by default which means that only attrib-
utes owned by users are listed. If owner is a string denoting a user name, only attributes owned by owner are listed.
If owner is :all then all attributes are listed. The elements of the returned list are lists where the first element is the
name of the attribute, the second element is its SQL type, the third is the type precision, the fourth is the scale of the
attribute and the fifth is 1 if the attribute accepts null values and otherwise 0.

Examples
(list-attribute-types [employee])
=> (("emplid" :INT4 4 NIL 0) ("groupid" :INT4 4 NIL 0)

("first_name" :VARCHAR 30 NIL 1) ("last_name" :VARCHAR 30 NIL 1)
("email" :VARCHAR 100 NIL 1) ("ecompanyid" :INT4 4 NIL 1)
("managerid" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1)
("married" :BOOL 1 NIL 1) ("birthday" :TIMESTAMP 8 NIL 1)
("bd_utime" :INT8 8 NIL 1))

Side Effects
None.

Affected by
default-database

96

Exceptional Situations
None.

See Also
attribute-type
list-attribute-types

Notes
None.

LIST-ATTRIBUTE-TYPES

97

Name
LIST-ATTRIBUTES -- Returns the attributes of a table as a list.

Function LIST-ATTRIBUTES

Syntax
list-attributes name &key owner database => result

Arguments and Values

name The name of a table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list.

Description
Returns a list of strings representing the attributes of table name in database which defaults to *default-database*.
owner is NIL by default which means that only attributes owned by users are listed. If owner is a string denoting a
user name, only attributes owned by owner are listed. If owner is :all then all attributes are listed.

Examples
(list-attributes [employee])
=> ("emplid" "groupid" "first_name" "last_name" "email" "ecompanyid" "managerid"

"height" "married" "birthday" "bd_utime")

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

98

attribute-type
list-attribute-types

Notes
None.

LIST-ATTRIBUTES

99

Name
CREATE-SEQUENCE -- Create a database sequence.

Function CREATE-SEQUENCE

Syntax
create-sequence name &key database =>

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

Description
Creates a sequence called name in database which defaults to *default-database*.

Examples
(create-sequence [foo])
=>
(sequence-exists-p [foo])
=> T

Side Effects
A sequence is created in database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if a relation called name already exists.

See Also
drop-sequence
list-sequences
sequence-exists-p
sequence-last

100

sequence-next
set-sequence-position

Notes
create-sequence is a CLSQL extension.

CREATE-SEQUENCE

101

Name
DROP-SEQUENCE -- Drop a database sequence.

Function DROP-SEQUENCE

Syntax
drop-sequence name &key if-does-not-exist database =>

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the sequence called name from database which defaults to *default-database*. If the sequence does not ex-
ist and if-does-not-exist is :ignore then drop-sequence returns NIL whereas an error is signalled if if-
does-not-exist is :error.

Examples
(sequence-exists-p [foo])
=> T
(drop-sequence [foo] :if-does-not-exist :ignore)
=>
(sequence-exists-p [foo])
=> NIL

Side Effects
A sequence is dropped from database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-database-data-error is
signalled if name doesn't exist and if-does-not-exist has a value of :error.

102

See Also
create-sequence
list-sequences
sequence-exists-p
sequence-last
sequence-next
set-sequence-position

Notes
drop-sequence is a CLSQL extension.

DROP-SEQUENCE

103

Name
LIST-SEQUENCES -- Returns a list of database sequences.

Function LIST-SEQUENCES

Syntax
list-sequences &key owner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list of strings.

Description
Returns a list of strings representing sequence names in database which defaults to *default-database*. owner is
NIL by default which means that only sequences owned by users are listed. If owner is a string denoting a user
name, only sequences owned by owner are listed. If owner is :all then all sequences are listed.

Examples
(list-sequences)
=> ("foo")

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also
create-sequence
drop-sequence

104

sequence-exists-p
sequence-last
sequence-next
set-sequence-position

Notes
list-sequences is a CLSQL extension.

LIST-SEQUENCES

105

Name
SEQUENCE-EXISTS-P -- Tests for the existence of a database sequence.

Function SEQUENCE-EXISTS-P

Syntax
sequence-exists-p name &key owner database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL sequence called name in database which defaults to *default-database*. owner
is NIL by default which means that only sequences owned by users are examined. If owner is a string denoting a
user name, only sequences owned by owner are examined. If owner is :all then all sequences are examined.

Examples
(sequence-exists-p [foo])
=> NIL

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

106

create-sequence
drop-sequence
list-sequences
sequence-last
sequence-next
set-sequence-position

Notes
sequence-exists-p is a CLSQL extension.

SEQUENCE-EXISTS-P

107

Name
SEQUENCE-LAST -- Return the last element in a database sequence.

Function SEQUENCE-LAST

Syntax
sequence-last name &key database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

result An integer.

Description
Return the last value allocated in the sequence called name in database which defaults to *default-database*.

Examples
(sequence-last [foo])
=> 1

Side Effects
None.

Affected by
The current value stored in database sequence name.

default-database

Exceptional Situations
Will signal an error of type sql-database-data-error if a sequence called name does not exist in database.

See Also
create-sequence
drop-sequence

108

list-sequences
sequence-exists-p
sequence-next
set-sequence-position

Notes
sequence-last is a CLSQL extension.

SEQUENCE-LAST

109

Name
SEQUENCE-NEXT -- Increment the value of a database sequence.

Function SEQUENCE-NEXT

Syntax
sequence-next name &key database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

result An integer.

Description
Increment and return the value of the sequence called name in database which defaults to *default-database*.

Examples
(sequence-last [foo])
=> 3
(sequence-next [foo])
=> 4
(sequence-next [foo])
=> 5
(sequence-next [foo])
=> 6

Side Effects
Modifies the value of the sequence name in database.

Affected by
The current value stored in database sequence name.

default-database

Exceptional Situations
Will signal an error of type sql-database-data-error if a sequence called name does not exist in database.

110

See Also
create-sequence
drop-sequence
list-sequences
sequence-exists-p
sequence-last
set-sequence-position

Notes
sequence-next is a CLSQL extension.

SEQUENCE-NEXT

111

Name
SET-SEQUENCE-POSITION -- Sets the position of a database sequence.

Function SET-SEQUENCE-POSITION

Syntax
set-sequence-position name position &key database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

position An integer.

database A database object which defaults to *default-database*.

result An integer.

Description
Explicitly set the position of the sequence called name in database, which defaults to *default-database*, to posi-
tion which is returned.

Examples
(sequence-last [foo])
=> 4
(set-sequence-position [foo] 50)
=> 50
(sequence-next [foo])
=> 51

Side Effects
Modifies the value of the sequence name in database.

Affected by
default-database

Exceptional Situations
Will signal an error of type sql-database-data-error if a sequence called name does not exist in database.

112

See Also
create-sequence
drop-sequence
list-sequences
sequence-exists-p
sequence-last
sequence-next

Notes
set-sequence-position is a CLSQL extension.

SET-SEQUENCE-POSITION

113

Name
TRUNCATE-DATABASE -- Drop all tables, views, indexes and sequences in a database.

Function TRUNCATE-DATABASE

Syntax
truncate-database &key database =>

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
Drop all tables, views, indexes and sequences in database which defaults to *default-database*.

Examples
(list-tables)
=> ("type_table" "type_bigint" "employee" "company" "addr" "ea_join" "big")
(list-indexes)
=> ("employeepk" "companypk" "addrpk")
(list-views)
=> ("lenins_group")
(list-sequences)
=> ("foo" "bar")
(truncate-database)
=>
(list-tables)
=> NIL
(list-indexes)
=> NIL
(list-views)
=> NIL
(list-sequences)
=> NIL

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations

114

Signals an error of type sql-database-error if database is not a database object.

See Also

drop-table
drop-view
drop-index
drop-sequence

Notes
truncate-database is a CLSQL extension.

TRUNCATE-DATABASE

115

Functional Data Manipulation
Language (FDML)

116

Name
CACHE-TABLE-QUERIES-DEFAULT -- Specifies the default behaviour for caching of attribute types.

Variable *CACHE-TABLE-QUERIES-DEFAULT*

Value Type
A valid argument to the action parameter of cache-table-queries, i.e. one of T, NIL, :flush.

Initial Value
nil

Description
Specifies the default behaivour for caching of attribute types. Meaningful values are T, NIL and :flush as described
for the action argument to cache-table-queries.

Examples
None.

Affected By
None.

See Also
cache-table-queries

Notes
None.

117

Name
CACHE-TABLE-QUERIES -- Controls the caching of attribute type information for a database table.

Function CACHE-TABLE-QUERIES

Syntax
cache-table-queries table &key action database) =>

Arguments and Values

table A string representing a database table, T or :default.

action T, NIL or :flush.

database A database object. This will default to the value of *default-database*.

Description
Controls the caching of attribute type information on the table specified by table in database which defaults to
default-database. action specifies the caching behaviour to adopt. If its value is T then attribute type information
is cached whereas if its value is NIL then attribute type information is not cached. If action is :flush then all exist-
ing type information in the cache for table is removed, but caching is still enabled. table may be a string repres-
enting a table for which the caching action is to be taken while the caching action is applied to all tables if table is
T. Alternatively, when table is :default, the default caching action specified by *cache-table-queries-default* is ap-
plied to all tables for which a caching action has not been explicitly set.

Examples
(setf *cache-table-queries-default* t)
=> T
(create-table [foo]

'(([id] integer)
([height] float)
([name] (string 24))
([comments] varchar)))

=>
(cache-table-queries "foo")
=>
(list-attribute-types "foo")
=> (("id" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1) ("name" :BPCHAR 24 NIL 1)

("comments" :VARCHAR 255 NIL 1))
(drop-table "foo")
=>
(create-table [foo]

'(([id] integer)
([height] float)
([name] (string 36))
([comments] (string 100))))

=>
(cache-table-queries "foo" :action :flush)
=>
(list-attribute-types "foo")
=> (("id" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1) ("name" :BPCHAR 36 NIL 1)

118

("comments" :BPCHAR 100 NIL 1))

Side Effects
The internal attribute cache for database is modified.

Affected by
cache-table-queries-default

Exceptional Situations
None.

See Also
cache-table-queries-default

Notes
None.

CACHE-TABLE-QUERIES

119

Name
INSERT-RECORDS -- Insert tuples of data into a database table.

Function INSERT-RECORDS

Syntax
insert-records &key into attributes values av-pairs query database =>

Arguments and Values

into A string, symbol or symbolic SQL expression representing the name of a table existing in
database.

attributes A list of attribute identifiers or NIL.

values A list of attribute values or NIL.

av-pairs A list of attribute identifier/value pairs or NIL.

query A query expression or NIL.

database A database object. This will default to the value of *default-database*.

Description
Inserts records into the table specified by into in database which defaults to *default-database*.

There are five ways of specifying the values inserted into each row. In the first values contains a list of values to
insert and attributes, av-pairs and query are NIL. This can be used when values are supplied for all attributes
in into. In the second, attributes is a list of column names, values is a corresponding list of values and av-
pairs and query are NIL. In the third, attributes, values and query are NIL and av-pairs is an alist of
(attribute value) pairs. In the fourth, values, av-pairs and attributes are NIL and query is a symbolic SQL
query expression in which the selected columns also exist in into. In the fifth method, values and av-pairs are
nil and attributes is a list of column names and query is a symbolic SQL query expression which returns values
for the specified columns.

Examples
(select [first-name] [last-name] [email]

:from [employee]
:where [= [emplid] 11]
:field-names nil)

=> NIL
(insert-records :into [employee]

:attributes '(emplid groupid first_name last_name email
ecompanyid managerid)

:values '(11 1 "Yuri" "Gagarin" "gagarin@soviet.org"
1 1))

=>
(select [first-name] [last-name] [email]

:from [employee]

120

:where [= [emplid] 11]
:field-names nil)

=> (("Yuri" "Gagarin" "gagarin@soviet.org"))

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations
An error of type sql-database-data-error is signalled if table is not an existing table in database or if the specified
attributes are not found.

See Also
update-records
delete-records

Notes
None.

INSERT-RECORDS

121

Name
UPDATE-RECORDS -- Updates the values of existing records.

Function UPDATE-RECORDS

Syntax
update-records table &key attributes values av-pairs where database =>

Arguments and Values

table A string, symbol or symbolic SQL expression representing the name of a table existing in
database.

attributes A list of attribute identifiers or NIL.

values A list of attribute values or NIL.

av-pairs A list of attribute identifier/value pairs or NIL.

where A symbolic SQL expression.

database A database object. This will default to the value of *default-database*.

Description
Updates the attribute values of existing records satsifying the SQL expression where in the table specified by ta-
ble in database which defaults to *default-database*.

There are three ways of specifying the values to update for each row. In the first, values contains a list of values to
use in the update and attributes and av-pairs are NIL. This can be used when values are supplied for all attrib-
utes in table. In the second, attributes is a list of column names, values is a corresponding list of values and
av-pairs is NIL. In the third, attributes and values are NIL and av-pairs is an alist of (attribute value)
pairs.

Examples
(select [first-name] [last-name] [email]

:from [employee]
:where [= [emplid] 1]
:field-names nil)

=> (("Vladamir" "Lenin" "lenin@soviet.org"))
(update-records [employee]

:av-pairs'((first_name "Yuri")
(last_name "Gagarin")
(email "gagarin@soviet.org"))

:where [= [emplid] 1])
=>
(select [first-name] [last-name] [email]

:from [employee]
:where [= [emplid] 1]
:field-names nil)

=> (("Yuri" "Gagarin" "gagarin@soviet.org"))

122

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations
An error of type sql-database-data-error is signalled if table is not an existing table in database, if the specified
attributes are not found or if the SQL statement resulting from the symbolic expression where does not return a
Boolean value.

If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also

insert-records
delete-records

Notes
None.

UPDATE-RECORDS

123

Name
DELETE-RECORDS -- Delete records from a database table.

Function DELETE-RECORDS

Syntax
delete-records &key from where database =>

Arguments and Values

from A string, symbol or symbolic SQL expression representing the name of a table existing in
database.

where A symbolic SQL expression.

database A database object. This will default to the value of *default-database*.

Description
Deletes records satisfying the SQL expression where from the table specified by from in database specifies a
database which defaults to *default-database*.

Examples
(select [first-name] [last-name] [email]

:from [employee]
:where [= [emplid] 11]
:field-names nil)

=> (("Yuri" "Gagarin" "gagarin@soviet.org"))
(delete-records :from [employee] :where [= [emplid] 11])
=>
(select [first-name] [last-name] [email]

:from [employee]
:where [= [emplid] 11]
:field-names nil)

=> NIL

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations

124

An error of type sql-database-data-error is signalled if from is not an existing table in database or if the SQL
statement resulting from the symbolic expression where does not return a Boolean value.

See Also

insert-records
update-records

Notes
None.

DELETE-RECORDS

125

Name
EXECUTE-COMMAND -- Execute an SQL command which returns no values.

Generic Function EXECUTE-COMMAND

Syntax
execute-command sql-expression &key database =>

Arguments and Values

sql-expression An sql expression that represents an SQL statement which will return no values.

database A database object. This will default to the value of *default-database*.

Description
Executes the SQL command sql-expression, which may be a symbolic SQL expression or a string representing
any SQL statement apart from a query, on the supplied database which defaults to *default-database*.

Examples
(execute-command "create table eventlog (time char(30),event char(70))")
=>

(execute-command "create table eventlog (time char(30),event char(70))")
>>
>> While accessing database #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {480B2B6D}>
>> with expression "create table eventlog (time char(30),event char(70))":
>> Error NIL: ERROR: amcreate: eventlog relation already exists
>> has occurred.
>>
>> Restarts:
>> 0: [ABORT] Return to Top-Level.
>>
>> Debug (type H for help)
>>
>> (CLSQL-POSTGRESQL::|(PCL::FAST-METHOD DATABASE-EXECUTE-COMMAND (T POSTGRESQL-DATABASE))|
>> #<unused-arg>
>> #<unused-arg>
>> #<unavailable-arg>
>> #<unavailable-arg>)
>> Source: (ERROR 'SQL-DATABASE-ERROR :DATABASE DATABASE :EXPRESSION ...)
>> 0] 0

(execute-command "drop table eventlog")
=>

Side Effects
Whatever effects the execution of the SQL statement has on the underlying database, if any.

126

Affected by
None.

Exceptional Situations
If the execution of the SQL statement leads to any errors, an error of type sql-database-error is signalled.

See Also

query

Notes
None.

EXECUTE-COMMAND

127

Name
QUERY -- Execute an SQL query and return the tuples as a list.

Generic Function QUERY

Syntax
query query-expression &key database result-types flatp field-names => result

Arguments and Values

query-expression An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set.

database A database object. This will default to the value of *default-database*.

flatp A Boolean whose default value is NIL.

result-types A field type specifier. The default is NIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields into nu-
meric Lisp objects rather than strings. This reduces the cost of allocating a temporary
string and the CLSQL users' inconvenience of converting number strings into number
objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a numeric
format where applicable. The default value of NIL causes all fields to be returned as
strings regardless of the SQL type. Otherwise a list is expected which has a element
for each field that specifies the conversion. Valid type identifiers are:

:int Field is imported as a signed integer, from 8-bits to 64-bits depending upon the
field type.
:double Field is imported as a double-float number.
t Field is imported as a string.
If the list is shorter than the number of fields, the a value of t is assumed for the field.
If the list is longer than the number of fields, the extra elements are ignored.

field-names A boolean with a default value of T. When T, this function returns a second value of a
list of field names. When NIL, this function only returns one value - the list of rows.

result A list representing the result set obtained. For each tuple in the result set, there is an
element in this list, which is itself a list of all the attribute values in the tuple.

Description
Executes the SQL query expression query-expression, which may be an SQL expression or a string, on the sup-
plied database which defaults to *default-database*. result-types is a list of symbols which specifies the lisp
type for each field returned by query-expression.

If result-types is NIL all results are returned as strings whereas the default value of :auto means that the lisp
types are automatically computed for each field.

128

field-names is T by default which means that the second value returned is a list of strings representing the
columns selected by query-expression. If field-names is NIL, the list of column names is not returned as a
second value.

flatp has a default value of NIL which means that the results are returned as a list of lists.If FLATP is T and only
one result is returned for each record selected by query-expression, the results are returned as elements of a list.

Examples
(query "select emplid,first_name,last_name,height from employee where emplid = 1")
=> ((1 "Vladamir" "Lenin" 1.5564661d0)),

("emplid" "first_name" "last_name" "height")

(query "select emplid,first_name,last_name,height from employee where emplid = 1"
:field-names nil)

=> ((1 "Vladamir" "Lenin" 1.5564661d0))

(query "select emplid,first_name,last_name,height from employee where emplid = 1"
:field-names nil
:result-types nil)

=> (("1" "Vladamir" "Lenin" "1.5564661"))

(query "select emplid,first_name,last_name,height from employee where emplid = 1"
:field-names nil
:result-types '(:int t t :double))

=> ((1 "Vladamir" "Lenin" 1.5564661))

(query "select last_name from employee where emplid > 5" :flatp t)
=> ("Andropov" "Chernenko" "Gorbachev" "Yeltsin" "Putin"),

("last_name")

(query "select last_name from employee where emplid > 10"
:flatp t
:field-names nil)

=> NIL

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also
execute-command
print-query
do-query
map-query
loop

QUERY

129

select

Notes
The field-names and result-types keyword arguments are a CLSQL extension.

QUERY

130

Name
PRINT-QUERY -- Prints a tabular report of query results.

Function PRINT-QUERY

Syntax
print-query query-expression &key titles formats sizes stream database =>

Arguments and Values

query-expression An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set.

database A database object. This will default to the value of *default-database*.

titles A list of strings or NIL which is the default value.

formats A list of strings, NIL or T which is the default value.

sizes A list of numbers, NIL or T which is the default value.

stream An output stream or T which is the default value.

Description
Prints a tabular report of the results returned by the SQL query query-expression, which may be a symbolic
SQL expression or a string, in database which defaults to *default-database*. The report is printed onto stream
which has a default value of T which means that *standard-output* is used. The title argument, which defaults to
NIL, allows the specification of a list of strings to use as column titles in the tabular output. sizes accepts a list of
column sizes, one for each column selected by query-expression, to use in formatting the tabular report. The de-
fault value of T means that minimum sizes are computed. formats is a list of format strings to be used for printing
each column selected by query-expression. The default value of formats is T meaning that ~A is used to
format all columns or ~VA if column sizes are used.

Examples
(print-query [select [emplid] [first-name] [last-name] [email]

:from [employee]
:where [< [emplid] 5]]

:titles '("ID" "FORENAME" "SURNAME" "EMAIL"))
ID FORENAME SURNAME EMAIL
1 Vladamir Lenin lenin@soviet.org
2 Josef Stalin stalin@soviet.org
3 Leon Trotsky trotsky@soviet.org
4 Nikita Kruschev kruschev@soviet.org
=>

(print-query "select emplid,first_name,last_name,email from employee where emplid >= 5"
:titles '("ID" "FORENAME" "SURNAME" "EMAIL"))

ID FORENAME SURNAME EMAIL
5 Leonid Brezhnev brezhnev@soviet.org
6 Yuri Andropov andropov@soviet.org

131

7 Konstantin Chernenko chernenko@soviet.org
8 Mikhail Gorbachev gorbachev@soviet.org
9 Boris Yeltsin yeltsin@soviet.org
10 Vladamir Putin putin@soviet.org
=>

Side Effects
None.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also
query
do-query
map-query
loop
select

Notes
None.

PRINT-QUERY

132

Name
SELECT -- Executes a query given the supplied constraints.

Function SELECT

Syntax
select &rest identifiers &key all distinct from group-by having order-by set-operation where result-types field-names flatp refresh database => result

Arguments and Values

identifiers A set of sql expressions each of which indicates a column to query.

all A Boolean.

distinct A Boolean.

from One or more SQL expression representing tables.

group-by An SQL expression.

having An SQL expression.

order-by An SQL expression.

set-operation An SQL expression.

where An SQL expression.

database A database object. This will default to the value of *default-database*.

flatp A Boolean whose default value is NIL.

result-types A field type specifier. The default is NIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields into nu-
meric Lisp objects rather than strings. This reduces the cost of allocating a temporary
string and the CLSQL users' inconvenience of converting number strings into number
objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a numeric
format where applicable. The default value of NIL causes all fields to be returned as
strings regardless of the SQL type. Otherwise a list is expected which has a element
for each field that specifies the conversion. Valid type identifiers are:

:int Field is imported as a signed integer, from 8-bits to 64-bits depending upon the
field type.
:double Field is imported as a double-float number.
t Field is imported as a string.
If the list is shorter than the number of fields, the a value of t is assumed for the field.
If the list is longer than the number of fields, the extra elements are ignored.

field-names A boolean with a default value of T. When T, this function returns a second value of a
list of field names. When NIL, this function only returns one value - the list of rows.

133

result A list representing the result set obtained. For each tuple in the result set, there is an
element in this list, which is itself a list of all the attribute values in the tuple.

Description
Executes a query on database, which has a default value of *default-database*, specified by the SQL expressions
supplied using the remaining arguments in args. The select function can be used to generate queries in both func-
tional and object oriented contexts.

In the functional case, the required arguments specify the columns selected by the query and may be symbolic SQL
expressions or strings representing attribute identifiers. Type modified identifiers indicate that the values selected
from the specified column are converted to the specified lisp type. The keyword arguments all, distinct, from,
group-by, having, order-by, set-operation and where are used to specify, using the symbolic SQL syntax,
the corresponding components of the SQL query generated by the call to select.

result-types is a list of symbols which specifies the lisp type for each field returned by the query. If result-
types is NIL all results are returned as strings whereas the default value of :auto means that the lisp types are auto-
matically computed for each field. field-names is T by default which means that the second value returned is a
list of strings representing the columns selected by the query. If field-names is NIL, the list of column names is
not returned as a second value.

In the object oriented case, the required arguments to select are symbols denoting View Classes which specify the
database tables to query. In this case, select returns a list of View Class instances whose slots are set from the at-
tribute values of the records in the specified table. Slot-value is a legal operator which can be employed as part of
the symbolic SQL syntax used in the where keyword argument to select. refresh is NIL by default which
means that the View Class instances returned are retrieved from a cache if an equivalent call to select has previ-
ously been issued. If refresh is true, the View Class instances returned are updated as necessary from the database
and the generic function instance-refreshed is called to perform any necessary operations on the updated in-
stances.

In both object oriented and functional contexts, flatp has a default value of NIL which means that the results are
returned as a list of lists. If flatp is t and only one result is returned for each record selected in the query, the res-
ults are returned as elements of a list.

Examples
(select [first-name] :from [employee] :flatp t :distinct t

:field-names nil
:result-types nil
:order-by [first-name])

=> ("Boris" "Josef" "Konstantin" "Leon" "Leonid" "Mikhail" "Nikita" "Vladamir"
"Yuri")

(select [first-name] [count [*]] :from [employee]
:result-types nil
:group-by [first-name]
:order-by [first-name]
:field-names nil)

=> (("Boris" "1") ("Josef" "1") ("Konstantin" "1") ("Leon" "1") ("Leonid" "1")
("Mikhail" "1") ("Nikita" "1") ("Vladamir" "2") ("Yuri" "1"))

(select [last-name] :from [employee]
:where [like [email] "%org"]
:order-by [last-name]
:field-names nil
:result-types nil
:flatp t)

=> ("Andropov" "Brezhnev" "Chernenko" "Gorbachev" "Kruschev" "Lenin" "Putin"
"Stalin" "Trotsky" "Yeltsin")

SELECT

134

(select [max [emplid]] :from [employee]
:flatp t
:field-names nil
:result-types :auto)

=> (10)

(clsql:select [avg [height]] :from [employee] :flatp t :field-names nil)
=> (1.58999584d0)

(select [emplid] [last-name] :from [employee] :where [= [emplid] 1])
=> ((1 "Lenin")),

("emplid" "last_name")

(select [emplid :string] :from [employee]
:where [= 1 [emplid]]
:field-names nil
:flatp t)

=> ("1")

(select [emplid] :from [employee] :order-by [emplid]
:where [not [between [* [emplid] 10] [* 5 10] [* 10 10]]]
:field-names nil
:flatp t)

=> (1 2 3 4)

(clsql:select [emplid] :from [employee]
:where [in [emplid] '(1 2 3 4)]
:flatp t
:order-by [emplid]
:field-names nil)

=> (1 2 3 4)

(select [first-name] [last-name] :from [employee]
:field-names nil
:order-by '(([first-name] :asc) ([last-name] :desc)))

=> (("Boris" "Yeltsin") ("Josef" "Stalin") ("Konstantin" "Chernenko")
("Leon" "Trotsky") ("Leonid" "Brezhnev") ("Mikhail" "Gorbachev")
("Nikita" "Kruschev") ("Vladamir" "Putin") ("Vladamir" "Lenin")
("Yuri" "Andropov"))

(select [last-name] :from [employee]
:set-operation [union [select [first-name] :from [employee]

:order-by [last-name]]]
:flatp t
:result-types nil
:field-names nil)

=> ("Andropov" "Boris" "Brezhnev" "Chernenko" "Gorbachev" "Josef" "Konstantin"
"Kruschev" "Lenin" "Leon" "Leonid" "Mikhail" "Nikita" "Putin" "Stalin"
"Trotsky" "Vladamir" "Yeltsin" "Yuri")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

SELECT

135

See Also
query
print-query
do-query
map-query
loop
instance-refreshed

Notes
The field-names and result-types keyword arguments are a CLSQL extension.

select is common across the functional and object-oriented data manipulation languages.

SELECT

136

Name
DO-QUERY -- Iterate over all the tuples of a query.

Macro DO-QUERY

Syntax
do-query ((&rest args) query-expression &key database result-types &body body => result

Arguments and Values

args A list of variable names.

query-expression An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as function takes argu-
ments.

database A database object. This will default to *default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of this argu-
ment.

body A body of Lisp code, like in a destructuring-bind form.

result The result of executing body.

Description
Repeatedly executes body within a binding of args on the fields of each row selected by the SQL query query-
expression, which may be a string or a symbolic SQL expression, in database which defaults to
default-database.

The body of code is executed in a block named nil which may be returned from prematurely via return or re-
turn-from. In this case the result of evaluating the do-query form will be the one supplied to return or re-
turn-from. Otherwise the result will be nil.

The body of code appears also is if wrapped in a destructuring-bind form, thus allowing declarations at the
start of the body, especially those pertaining to the bindings of the variables named in args.

result-types is a list of symbols which specifies the lisp type for each field returned by query-expression. If
result-types is NIL all results are returned as strings whereas the default value of :auto means that the lisp types
are automatically computed for each field.

query-expression may be an object query (i.e., the selection arguments refer to View Classes), in which case
args are bound to the tuples of View Class instances returned by the object oriented query.

Examples
(do-query ((salary name) "select salary,name from simple")

(format t "~30A gets $~2,5$~%" name (read-from-string salary)))

137

>> Mai, Pierre gets $10000.00
>> Hacker, Random J. gets $08000.50
=> NIL

(do-query ((salary name) "select salary,name from simple")
(return (cons salary name)))

=> ("10000.00" . "Mai, Pierre")

(let ((result '()))
(do-query ((name) [select [last-name] :from [employee]

:order-by [last-name]])
(push name result))

result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"

"Chernenko" "Brezhnev" "Andropov")

(let ((result '()))
(do-query ((e) [select 'employee :order-by [last-name]])
(push (slot-value e 'last-name) result))

result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"

"Chernenko" "Brezhnev" "Andropov")

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

If the number of variable names in args and the number of attributes in the tuples in the result set don't match up,
an error is signalled.

See Also
query
map-query
print-query
loop
select

Notes
The result-types keyword argument is a CLSQL extension.

do-query is common across the functional and object-oriented data manipulation languages.

DO-QUERY

138

Name
FOR-EACH-ROW --

Function FOR-EACH-ROW

Syntax
for-each-row &KEY FROM ORDER-BY WHERE DISTINCT LIMIT &REST FIELDS &body body =>

Arguments and Values

Description

Examples

Side Effects

Affected by

Exceptional Situations

See Also
query
print-query
do-query
map-query
loop
select

Notes

139

Name
LOOP -- Iterate over all the tuples of a query via a loop clause.

Additional clause for LOOP

Syntax
{as | for} var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} query [from database]

Arguments and Values

var A d-var-spec, as defined in the grammar for loop-clauses in the ANSI Standard for Com-
mon Lisp. This allows for the usual loop-style destructuring.

type-spec An optional type-spec either simple or destructured, as defined in the grammar for loop-
clauses in the ANSI Standard for Common Lisp.

query An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as function takes arguments.

database An optional database object. This will default to the value of *default-database*.

Description
This clause is an iteration driver for loop, that binds the given variable (possibly destructured) to the consecutive
tuples (which are represented as lists of attribute values) in the result set returned by executing the SQL query ex-
pression on the database specified.

query may be an object query (i.e., the selection arguments refer to View Classes), in which case the supplied vari-
able is bound to the tuples of View Class instances returned by the object oriented query.

Examples
(defvar *my-db* (connect '("dent" "newesim" "dent" "dent"))
"My database"
=> *MY-DB*
(loop with time-graph = (make-hash-table :test #'equal)

with event-graph = (make-hash-table :test #'equal)
for (time event) being the tuples of "select time,event from log"
from *my-db*
do

(incf (gethash time time-graph 0))
(incf (gethash event event-graph 0))

finally
(flet ((show-graph (k v) (format t "~40A => ~5D~%" k v)))

(format t "~&Time-Graph:~%===========~%")
(maphash #'show-graph time-graph)
(format t "~&~%Event-Graph:~%============~%")
(maphash #'show-graph event-graph))

(return (values time-graph event-graph)))
>> Time-Graph:
>> ===========
>> D => 53000
>> X => 3

140

>> test-me => 3000
>>
>> Event-Graph:
>> ============
>> CLOS Benchmark entry. => 9000
>> Demo Text... => 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000
=> #<EQUAL hash table, 3 entries {48350A1D}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

(loop for (forename surname)
being each tuple in
[select [first-name] [last-name] :from [employee]

:order-by [last-name]]
collect (concatenate 'string forename " " surname))

=> ("Yuri Andropov" "Leonid Brezhnev" "Konstantin Chernenko" "Mikhail Gorbachev"
"Nikita Kruschev" "Vladamir Lenin" "Vladamir Putin" "Josef Stalin"
"Leon Trotsky" "Boris Yeltsin")

(loop for (e) being the records in
[select 'employee :where [< [emplid] 4] :order-by [emplid]]

collect (slot-value e 'last-name))
=> ("Lenin" "Stalin" "Trotsky")

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

Otherwise, any of the exceptional situations of loop applies.

See Also

query
map-query
do-query
print-query
select

Notes
The database loop keyword is a CLSQL extension.

The extended loop syntax is common across the functional and object-oriented data manipulation languages.

LOOP

141

Name
MAP-QUERY -- Map a function over all the tuples from a query

Function MAP-QUERY

Syntax
map-query output-type-spec function query-expression &key database result-types => result

Arguments and Values

output-type-spec A sequence type specifier or nil.

function A function designator. function takes a single argument which is the atom value for
a query single with a single column or is a list of values for a multi-column query.

query-expression An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set.

database A database object. This will default to the value of *default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of this argu-
ment.

result If output-type-spec is a type specifier other than nil, then a sequence of the type it
denotes. Otherwise nil is returned.

Description
Applies function to the successive tuples in the result set returned by executing the SQL query-expression. If
the output-type-spec is nil, then the result of each application of function is discarded, and map-query re-
turns nil. Otherwise the result of each successive application of function is collected in a sequence of type out-
put-type-spec, where the jths element is the result of applying function to the attributes of the jths tuple in the
result set. The collected sequence is the result of the call to map-query.

If the output-type-spec is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element type specified for
the result-type, the element type of the resulting array is the result of upgrading that element type; or, if the im-
plementation can determine that the element type is unspecified (or *), the element type of the resulting array is t;
otherwise, an error is signaled.

If result-types is NIL all results are returned as strings whereas the default value of :auto means that the lisp
types are automatically computed for each field.

query-expression may be an object query (i.e., the selection arguments refer to View Classes), in which case the
supplied function is applied to the tuples of View Class instances returned by the object oriented query.

Examples
(map-query 'list #'(lambda (tuple)

142

(multiple-value-bind (salary name) tuple
(declare (ignorable name))
(read-from-string salary)))

"select salary,name from simple where salary > 8000")
=> (10000.0 8000.5)

(map-query '(vector double-float)
#'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(declare (ignorable name))
(let ((*read-default-float-format* 'double-float))

(coerce (read-from-string salary) 'double-float))
"select salary,name from simple where salary > 8000")))

=> #(10000.0d0 8000.5d0)
(type-of *)
=> (SIMPLE-ARRAY DOUBLE-FLOAT (2))

(let (list)
(values (map-query nil #'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(push (cons name (read-from-string salary)) list))

"select salary,name from simple where salary > 8000"))
list))

=> NIL
=> (("Hacker, Random J." . 8000.5) ("Mai, Pierre" . 10000.0))

(map-query 'vector #'identity
[select [last-name] :from [employee] :flatp t

:order-by [last-name]])
=> #("Andropov" "Brezhnev" "Chernenko" "Gorbachev" "Kruschev" "Lenin" "Putin"

"Stalin" "Trotsky" "Yeltsin")

(map-query 'list #'identity
[select [first-name] [last-name] :from [employee]

:order-by [last-name]])
=> (("Yuri" "Andropov") ("Leonid" "Brezhnev") ("Konstantin" "Chernenko")

("Mikhail" "Gorbachev") ("Nikita" "Kruschev") ("Vladamir" "Lenin")
("Vladamir" "Putin") ("Josef" "Stalin") ("Leon" "Trotsky")
("Boris" "Yeltsin"))

(map-query 'list #'last-name [select 'employee :order-by [emplid]])
=> ("Lenin" "Stalin" "Trotsky" "Kruschev" "Brezhnev" "Andropov" "Chernenko"

"Gorbachev" "Yeltsin" "Putin")

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

An error of type type-error must be signaled if the output-type-spec is not a recognizable subtype of list, not a
recognizable subtype of vector, and not nil.

An error of type type-error should be signaled if output-type-spec specifies the number of elements and the size
of the result set is different from that number.

MAP-QUERY

143

See Also
query
do-query
print-query
loop
select

Notes
The result-types keyword argument is a CLSQL extension.

map-query is common across the functional and object-oriented data manipulation languages.

MAP-QUERY

144

Name
PREPARE-SQL -- Create a prepared statement.

Function PREPARE-SQL

Syntax
prepare-sql sql-stmt types &key database result-types field-names => result

Arguments and Values

Description
Prepares a SQL statement sql-stmt for execution. types contains a list of types corresponding to the input para-
meters. Returns a prepared-statement object. A type can be :int :double :null (:string n)

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

145

Name
RUN-PREPARED-SQL -- Execute a prepared statement.

Function RUN-PREPARED-SQL

Syntax
run-prepared-sql prepared-stmt =>

Arguments and Values

Description
Execute the prepared sql statment. All input parameters must be bound.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

146

Name
FREE-PREPARED-SQL -- Delete a prepared statement object.

Function FREE-PREPARED-SQL

Syntax
free-prepared-sql prepared-stmt =>

Arguments and Values

Description
Delete the objects associated with a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

147

Name
BIND-PARAMETER -- Bind a parameter in a prepared statement.

Function BIND-PARAMETER

Syntax
bind-parameter prepared-stmt position value =>

Arguments and Values

Description
Sets the value of a parameter in a prepared statement.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

148

Transaction Handling
This section describes the interface provided by CLSQL for handling database transactions. The interface allows for
opening transaction blocks, committing or rolling back changes made and controlling autocommit behaviour.

149

Name
START-TRANSACTION -- Open a transaction block.

Function START-TRANSACTION

Syntax
start-transaction &key database => NIL

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
Starts a transaction block on database which defaults to *default-database* and which continues until rollback
or commit are called.

Examples
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))
(rollback)
=> NIL
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL

Side Effects
Autocommit mode is disabled and if database is currently within the scope of a transaction, all commit and roll-
back hooks are removed and the transaction level associated with database is modified.

Affected by
None.

150

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object.

See Also
commit
rollback
in-transaction-p
set-autocommit
with-transaction

Notes
start-transaction is a CLSQL extension.

START-TRANSACTION

151

Name
COMMIT -- Commit modifications made in the current transaction.

Function COMMIT

Syntax
commit &key database => NIL

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
If database, which defaults to *default-database*, is currently within the scope of a transaction, commits changes
made since the transaction began.

Examples
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))
(commit)
=> NIL
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))

Side Effects
Changes made within the scope of the current transaction are committed in the underlying database and the transac-
tion level of database is reset.

Affected by
The transaction level of database which indicates whether a transaction has been initiated by a call to start-
transaction since the last call to rollback or commit.

152

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object. A warning of type sql-warning is
signalled if there is no transaction in progress.

See Also
start-transaction
rollback
in-transaction-p
add-transaction-commit-hook
set-autocommit
with-transaction

Notes
None.

COMMIT

153

Name
ROLLBACK -- Roll back modifications made in the current transaction.

Function ROLLBACK

Syntax
rollback &key database => NIL

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
If database, which defaults to *default-database*, is currently within the scope of a transaction, rolls back changes
made since the transaction began.

Examples
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))
(rollback)
=> NIL
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL

Side Effects
Changes made within the scope of the current transaction are reverted in the underlying database and the transaction
level of database is reset.

Affected by
The transaction level of database which indicates whether a transaction has been initiated by a call to start-
transaction since the last call to rollback or commit.

154

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object. A warning of type sql-warning is
signalled if there is no transaction in progress.

See Also
start-transaction
commit
in-transaction-p
add-transaction-rollback-hook
set-autocommit
with-transaction

Notes
None.

ROLLBACK

155

Name
IN-TRANSACTION-P -- A predicate for testing whether a transaction is currently in progress.

Function IN-TRANSACTION-P

Syntax
in-transaction-p &key database => result

Arguments and Values

database A database object. This will default to the value of *default-database*.

result A Boolean.

Description
A predicate to test whether database, which defaults to *default-database*, is currently within the scope of a trans-
action.

Examples
(in-transaction-p)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(commit)
=> NIL
(in-transaction-p)
=> NIL

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

See Also
156

start-transaction
commit
rollback
set-autocommit

Notes
in-transaction-p is a CLSQL extension.

IN-TRANSACTION-P

157

Name
ADD-TRANSACTION-COMMIT-HOOK -- Specify hooks to be run when committing changes.

Function ADD-TRANSACTION-COMMIT-HOOK

Syntax
add-transaction-commit-hook commit-hook &key database => result

Arguments and Values

commit-hook A designator for a function with no required arguments.

database A database object. This will default to the value of *default-database*.

result The list of currently defined commit hooks for database.

Description
Adds commit-hook, which should a designator for a function with no required arguments, to the list of hooks run
when commit is called on database which defaults to *default-database*.

Examples
(start-transaction)
=> NIL
(add-transaction-commit-hook #'(lambda () (print "Successfully committed.")))
=> (#<Interpreted Function (LAMBDA # #) {48E2E689}>)
(commit)
"Successfully committed."
=> NIL

Side Effects
commit-hook is added to the list of commit hooks for database.

Affected by
None.

Exceptional Situations
If commit-hook has one or more required arguments, an error will be signalled when commit is called.

See Also

158

commit
rollback
add-transaction-rollback-hook
with-transaction

Notes
add-transaction-commit-hook is a CLSQL extension.

ADD-TRANSACTION-COMMIT-HOOK

159

Name
ADD-TRANSACTION-ROLLBACK-HOOK -- Specify hooks to be run when rolling back changes.

Function ADD-TRANSACTION-ROLLBACK-HOOK

Syntax
add-transaction-rollback-hook rollback-hook &key database => result

Arguments and Values

rollback-hook A designator for a function with no required arguments.

database A database object. This will default to the value of *default-database*.

result The list of currently defined rollback hooks for database.

Description
Adds rollback-hook, which should a designator for a function with no required arguments, to the list of hooks
run when rollback is called on database which defaults to *default-database*.

Examples
(start-transaction)
=> NIL
(add-transaction-rollback-hook #'(lambda () (print "Successfully rolled back.")))
=> (#<Interpreted Function (LAMBDA # #) {48E37C31}>)
(rollback)
"Successfully rolled back."
=> NIL

Side Effects
rollback-hook is added to the list of rollback hooks for database.

Affected by
None.

Exceptional Situations
If rollback-hook has one or more required arguments, an error will be signalled when rollback is called.

See Also

160

commit
rollback
add-transaction-commit-hook

Notes
add-transaction-rollback-hook is a CLSQL extension.

ADD-TRANSACTION-ROLLBACK-HOOK

161

Name
SET-AUTOCOMMIT -- Turn on or off autocommit for a database.

Function SET-AUTOCOMMIT

Syntax
set-autocommit value &key database => result

Arguments and Values

value A Boolean specifying the desired autocommit behaviour for database.

database A database object. This will default to the value of *default-database*.

result The previous autocommit value for database.

Description
Turns autocommit off for database if value is NIL, and otherwise turns it on. Returns the old value of autocom-
mit flag.

For RDBMS (such as Oracle) which don't automatically commit changes, turning autocommit on has the effect of
explicitly committing changes made whenever SQL statements are executed.

Autocommit is turned on by default.

Examples

Side Effects
database is associated with the specified autocommit mode.

Affected by
None.

Exceptional Situations
None.

See Also

162

start-transaction
commit
add-transaction-commit-hook
with-transaction

Notes
set-autocommit is a CLSQL extension.

SET-AUTOCOMMIT

163

Name
WITH-TRANSACTION -- Execute a body of code within a transaction.

Macro WITH-TRANSACTION

Syntax
with-transaction &key database &rest body => result

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
Starts a transaction in the database specified by database, which is *default-database* by default, and executes
body within that transaction. If body aborts or throws, database is rolled back and otherwise the transaction is
committed.

Examples
(in-transaction-p)
=> NIL
(select [email] :from [employee] :where [= [emplid] 1] :flatp t :field-names nil)
=> ("lenin@soviet.org")
(with-transaction ()

(update-records [employee]
:av-pairs '((email "lenin-nospam@soviet.org"))
:where [= [emplid] 1]))

=> NIL
(select [email] :from [employee] :where [= [emplid] 1] :flatp t :field-names nil)
=> ("lenin-nospam@soviet.org")
(in-transaction-p)
=> NIL

Side Effects
Changes specified in body may be made to the underlying database if body completes successfully.

Affected by
None.

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object.

164

See Also
start-transaction
commit
rollback
add-transaction-commit-hook
add-transaction-rollback-hook

Notes
None.

WITH-TRANSACTION

165

Object Oriented Data Definition
Language (OODDL)

166

Name
STANDARD-DB-OBJECT -- Superclass for all CLSQL View Classes.

STANDARD-DB-OBJECT

Class Precedence List
standard-db-object, standard-object, t

Description
This class is the superclass of all CLSQL View Classes.

Class details
(defclass STANDARD-DB-OBJECT ()(...))

Slots

167

Name
DEFAULT-VARCHAR-LENGTH --

DEFAULT-VARCHAR-LENGTH

Value Type

Initial Value
nil

Description

Examples

Affected By
None.

See Also
None.

Notes
None.

168

Name
CREATE-VIEW-FROM-CLASS --

CREATE-VIEW-FROM-CLASS

Syntax
(CREATE-VIEW-FROM-CLASS VIEW-CLASS-NAME &KEY (DATABASE *DEFAULT-DATABASE*) (TRANSACTIONS T)) [function] =>

Arguments and Values

Description
Creates a table as defined by the View Class VIEW-CLASS-NAME in DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

169

Name
DEF-VIEW-CLASS --

DEF-VIEW-CLASS

Syntax
(DEF-VIEW-CLASS CLASS SUPERS SLOTS &REST CL-OPTIONS) [macro] =>

Arguments and Values

Description
Creates a View Class called CLASS whose slots SLOTS can map onto the attributes of a table in a database. If SU-
PERS is nil then the superclass of CLASS will be STANDARD-DB-OBJECT, otherwise SUPERS is a list of super-
classes for CLASS which must include STANDARD-DB-OBJECT or a descendent of this class. The syntax of DE-
FCLASS is extended through the addition of a class option :base-table which defines the database table onto which
the View Class maps and which defaults to CLASS. The DEFCLASS syntax is also extended through additional slot
options. The :db-kind slot option specifies the kind of DB mapping which is performed for this slot and defaults to
:base which indicates that the slot maps to an ordinary column of the database table. A :db-kind value of :key indic-
ates that this slot is a special kind of :base slot which maps onto a column which is one of the unique keys for the
database table, the value :join indicates this slot represents a join onto another View Class which contains View
Class objects, and the value :virtual indicates a standard CLOS slot which does not map onto columns of the data-
base table. If a slot is specified with :db-kind :join, the slot option :db-info contains a list which specifies the nature
of the join. For slots of :db-kind :base or :key, the :type slot option has a special interpretation such that Lisp types,
such as string, integer and float are automatically converted into appropriate SQL types for the column onto which
the slot maps. This behaviour may be over-ridden using the :db-type slot option which is a string specifying the
vendor-specific database type for this slot's column definition in the database. The :column slot option specifies the
name of the SQL column which the slot maps onto, if :db-kind is not :virtual, and defaults to the slot name. The
:void-value slot option specifies the value to store if the SQL value is NULL and defaults to NIL. The
:db-constraints slot option is a string representing an SQL table constraint expression or a list of such strings.

Examples

Side Effects

Affected by

Exceptional Situations

170

See Also

Notes

DEF-VIEW-CLASS

171

Name
DROP-VIEW-FROM-CLASS --

DROP-VIEW-FROM-CLASS

Syntax
(DROP-VIEW-FROM-CLASS VIEW-CLASS-NAME &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Removes a table defined by the View Class VIEW-CLASS-NAME from DATABASE which defaults to
DEFAULT-DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

172

Name
LIST-CLASSES --

LIST-CLASSES

Syntax
(LIST-CLASSES &KEY (TEST #'IDENTITY) (ROOT-CLASS (FIND-CLASS 'STANDARD-DB-OBJECT)) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns a list of all the View Classes which are connected to DATABASE, which defaults to
DEFAULT-DATABASE, and which descend from the class ROOT-CLASS and which satisfy the function TEST.
By default ROOT-CLASS is STANDARD-DB-OBJECT and TEST is IDENTITY.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

173

Object Oriented Data Manipulation
Language (OODML)

174

Name
DB-AUTO-SYNC --

DB-AUTO-SYNC

Value Type

Initial Value
nil

Description

Examples

Affected By
None.

See Also
None.

Notes
None.

175

Name
DEFAULT-UPDATE-OBJECTS-MAX-LEN --

DEFAULT-UPDATE-OBJECTS-MAX-LEN

Value Type

Initial Value
nil

Description

Examples

Affected By
None.

See Also
None.

Notes
None.

176

Name
DELETE-INSTANCE-RECORDS --

DELETE-INSTANCE-RECORDS

Syntax
(DELETE-INSTANCE-RECORDS OBJECT) [generic] =>

Arguments and Values

Description
Deletes the records represented by OBJECT in the appropriate table of the database associated with OBJECT. If
OBJECT is not yet associated with a database, an error is signalled.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

177

Name
INSTANCE-REFRESHED --

INSTANCE-REFRESHED

Syntax
(INSTANCE-REFRESHED OBJECT) [generic] =>

Arguments and Values

Description
Provides a hook which is called within an object oriented call to SELECT with a non-nil value of REFRESH when
the View Class instance OBJECT has been updated from the database. A method specialised on STANDARD-
DB-OBJECT is provided which has no effects. Methods specialised on particular View Classes can be used to spe-
cify any operations that need to be made on View Classes instances which have been updated in calls to SELECT.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

178

Name
UPDATE-INSTANCE-FROM-RECORDS --

UPDATE-INSTANCE-FROM-RECORDS

Syntax
(UPDATE-INSTANCE-FROM-RECORDS OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the slot values of the View Class instance OBJECT using the attribute values of the appropriate table of
DATABASE which defaults to the database associated with OBJECT or, if OBJECT is not associated with a data-
base, *DEFAULT-DATABASE*. Join slots are updated but instances of the class on which the join is made are not
updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

179

Name
UPDATE-OBJECTS-JOINS --

UPDATE-OBJECTS-JOINS

Syntax
(UPDATE-OBJECTS-JOINS OBJECTS &KEY (SLOTS T) (FORCE-P T) CLASS-NAME (MAX-LEN *DEFAULT-UPDATE-OBJECTS-MAX-LEN*)) [function] =>

Arguments and Values

Description
Updates from the records of the appropriate database tables the join slots specified by SLOTS in the supplied list of
View Class instances OBJECTS. SLOTS is t by default which means that all join slots with :retrieval :immediate are
updated. CLASS-NAME is used to specify the View Class of all instance in OBJECTS and default to nil which
means that the class of the first instance in OBJECTS is used. FORCE-P is t by default which means that all join
slots are updated whereas a value of nil means that only unbound join slots are updated. MAX-LEN defaults to
DEFAULT-UPDATE-OBJECTS-MAX-LEN and when non-nil specifies that UPDATE-OBJECT-JOINS may is-
sue multiple database queries with a maximum of MAX-LEN instances updated in each query.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

180

Name
UPDATE-RECORD-FROM-SLOT --

UPDATE-RECORD-FROM-SLOT

Syntax
(UPDATE-RECORD-FROM-SLOT OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the value stored in the column represented by the slot, specified by the CLOS slot name SLOT, of View
Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and specifies the database in which
the update is made only if OBJECT is not associated with a database. In this case, a record is created in DATA-
BASE and the attribute represented by SLOT is initialised from the value of the supplied slots with other attributes
having default values. Furthermore, OBJECT becomes associated with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

181

Name
UPDATE-RECORD-FROM-SLOTS --

UPDATE-RECORD-FROM-SLOTS

Syntax
(UPDATE-RECORD-FROM-SLOTS OBJECT SLOTS &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the values stored in the columns represented by the slots, specified by the CLOS slot names SLOTS, of
View Class instance OBJECT. DATABASE defaults to *DEFAULT-DATABASE* and specifies the database in
which the update is made only if OBJECT is not associated with a database. In this case, a record is created in the
appropriate table of DATABASE and the attributes represented by SLOTS are initialised from the values of the sup-
plied slots with other attributes having default values. Furthermore, OBJECT becomes associated with DATA-
BASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

182

Name
UPDATE-RECORDS-FROM-INSTANCE --

UPDATE-RECORDS-FROM-INSTANCE

Syntax
(UPDATE-RECORDS-FROM-INSTANCE OBJECT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Using an instance of a View Class, OBJECT, update the table that stores its instance data. DATABASE defaults to
DEFAULT-DATABASE and specifies the database in which the update is made only if OBJECT is not associ-
ated with a database. In this case, a record is created in the appropriate table of DATABASE using values from the
slot values of OBJECT, and OBJECT becomes associated with DATABASE.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

183

Name
UPDATE-SLOT-FROM-RECORD --

UPDATE-SLOT-FROM-RECORD

Syntax
(UPDATE-SLOT-FROM-RECORD OBJECT SLOT &KEY DATABASE) [generic] =>

Arguments and Values

Description
Updates the slot value, specified by the CLOS slot name SLOT, of the View Class instance OBJECT using the at-
tribute values of the appropriate table of DATABASE which defaults to the database associated with OBJECT or, if
OBJECT is not associated with a database, *DEFAULT-DATABASE*. Join slots are updated but instances of the
class on which the join is made are not updated.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

184

SQL I/O Recording

185

Name
ADD-SQL-STREAM --

ADD-SQL-STREAM

Syntax
(ADD-SQL-STREAM STREAM &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Adds the supplied stream STREAM (or T for *standard-output*) as a component of the recording broadcast stream
for the SQL recording type specified by TYPE on DATABASE which defaults to *DEFAULT-DATABASE*.
TYPE must be one of :commands, :results, or :both, defaulting to :commands, depending on whether the stream is to
be added for recording SQL commands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

186

Name
DELETE-SQL-STREAM --

DELETE-SQL-STREAM

Syntax
(DELETE-SQL-STREAM STREAM &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Removes the supplied stream STREAM from the recording broadcast stream for the SQL recording type specified
by TYPE on DATABASE which defaults to *DEFAULT-DATABASE*. TYPE must be one of :commands,
:results, or :both, defaulting to :commands, depending on whether the stream is to be added for recording SQL com-
mands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

187

Name
LIST-SQL-STREAMS --

LIST-SQL-STREAMS

Syntax
(LIST-SQL-STREAMS &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns the list of component streams for the broadcast stream recording SQL commands sent to and/or results re-
turned from DATABASE which defaults to *DEFAULT-DATABASE*. TYPE must be one of :commands, :results,
or :both, defaulting to :commands, and determines whether the listed streams contain those recording SQL com-
mands, results or both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

188

Name
SQL-RECORDING-P --

SQL-RECORDING-P

Syntax
(SQL-RECORDING-P &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Predicate to test whether the SQL recording specified by TYPE is currently enabled for DATABASE which defaults
to *DEFAULT-DATABASE*. TYPE may be one of :commands, :results, :both or :either, defaulting to :commands,
otherwise nil is returned.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

189

Name
SQL-STREAM --

SQL-STREAM

Syntax
(SQL-STREAM &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Returns the broadcast stream used for recording SQL commands sent to or results returned from DATABASE which
defaults to *DEFAULT-DATABASE*. TYPE must be one of :commands or :results, defaulting to :commands, and
determines whether the stream returned is that used for recording SQL commands or results.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

190

Name
START-SQL-RECORDING --

START-SQL-RECORDING

Syntax
(START-SQL-RECORDING &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Starts recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The SQL is output on one or more broadcast streams, initially just
STANDARD-OUTPUT, and the functions ADD-SQL-STREAM and DELETE-SQL-STREAM may be used to
add or delete command or result recording streams. The default value of TYPE is :commands which means that SQL
commands sent to DATABASE are recorded. If TYPE is :results then SQL results returned from DATABASE are
recorded. Both commands and results may be recorded by passing TYPE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

191

Name
STOP-SQL-RECORDING --

STOP-SQL-RECORDING

Syntax
(STOP-SQL-RECORDING &KEY (TYPE :COMMANDS) (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Stops recording of SQL commands sent to and/or results returned from DATABASE which defaults to
DEFAULT-DATABASE. The default value of TYPE is :commands which means that SQL commands sent to
DATABASE will no longer be recorded. If TYPE is :results then SQL results returned from DATABASE will no
longer be recorded. Recording may be stopped for both commands and results by passing TYPE value of :both.

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

192

CLSQL Condition System

193

Name
BACKEND-WARNING-BEHAVIOR --

BACKEND-WARNING-BEHAVIOR

Value Type

Initial Value
nil

Description
Action to perform on warning messages from backend. Default is to :warn. May also be set to :error to signal an er-
ror or :ignore/nil to silently ignore the warning.

Examples

Affected By
None.

See Also
None.

Notes
None.

194

Name
SQL-CONDITION -- the super-type of all CLSQL-specific conditions

SQL-CONDITION

Class Precedence List
sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specific inter-
faces. There are no defined initialization arguments nor any accessors.

195

Name
SQL-ERROR -- the super-type of all CLSQL-specific errors

SQL-ERROR

Class Precedence List
sql-error, error, serious-condition, sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or any of it's
database-specific interfaces. There are no defined initialization arguments nor any accessors.

196

Name
SQL-WARNING -- the super-type of all CLSQL-specific warnings

SQL-WARNING

Class Precedence List
sql-warning, warning, sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL, or any of it's
database-specific interfaces. There are no defined initialization arguments nor any accessors.

197

Name
SQL-DATABASE-WARNING -- Used to warn while accessing a CLSQL database.

SQL-DATABASE-WARNING

Class Precedence List
sql-database-warning, sql-warning, warning, sql-condition, condition, t

Description
This condition represents warnings signalled while accessing a database. The following initialization arguments and
accessors exist:
Initarg: :database
Accessor: sql-warning-database
Description: The database object that was involved in the incident.

198

Name
SQL-USER-ERROR -- condition representing errors because of invalid parameters from the library user.

SQL-USER-ERROR

Class Precedence List
sql-user-error, sql-error, sql-condition, condition, t

Description
This condition represents errors that occur because the user supplies invalid data to CLSQL. This includes errors
such as an invalid format connection specification or an error in the syntax for the LOOP macro extensions. The fol-
lowing initialization arguments and accessors exist:
Initarg: :message
Accessor: sql-user-error-message
Description: The error message.

199

Name
SQL-DATABASE-ERROR -- condition representing errors during query or command execution

SQL-DATABASE-ERROR

Class Precedence List
sql-database-error, sql-error, error, serious-condition, sql-condition, condition, t

Description
This condition represents errors that occur while executing SQL statements, either as part of query operations or
command execution, either explicitly or implicitly, as caused e.g. by with-transaction. The following initializa-
tion arguments and accessors exist:
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-end.

200

Name
SQL-CONNECTION-ERROR -- condition representing errors during connection

SQL-CONNECTION-ERROR

Class Precedence List
sql-connection-error, sql-database-error, sql-error, sql-condition, condition, t

Description
This condition represents errors that occur while trying to connect to a database. The following initialization argu-
ments and accessors exist:
Initarg: :database-type
Accessor: sql-connection-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-connection-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :message
Accessor: sql-database-error-error
Description: A string describing the problem that occurred, possibly one returned by the database back-end.

201

Name
SQL-DATABASE-DATA-ERROR -- Used to signal an error with the SQL data passed to a database.

SQL-DATABASE-DATA-ERROR

Class Precedence List
sql-database-data-error, sql-database-error, sql-error, error, serious-condition, sql-condition, condition, t

Description
This condition represents errors that occur while executing SQL statements, specifically as a result of malformed
SQL expressions. The following initialization arguments and accessors exist:
Initarg: :expression
Accessor: sql-database-error-expression
Description: The SQL expression whose execution caused the error.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-end.

202

Name
SQL-TEMPORARY-ERROR -- Used to signal a temporary error in the database backend.

SQL-TEMPORARY-ERROR

Class Precedence List
sql-database-error, sql-error, error, serious-condition, sql-condition, condition, t

Description
This condition represents errors occurring when the database cannot currently process a valid interaction because,
for example, it is still executing another command possibly issued by another user. The following initialization argu-
ments and accessors exist:
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-end.

203

Name
SQL-TIMEOUT-ERROR -- condition representing errors when a connection times out.

SQL-TIMEOUT-ERROR

Class Precedence List
sql-connection-error, sql-database-error, sql-error, sql-condition, condition, t

Description
This condition represents errors that occur when the database times out while processing some operation. The fol-
lowing initialization arguments and accessors exist:
Initarg: :database-type
Accessor: sql-connection-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-connection-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-end.

204

Name
SQL-FATAL-ERROR -- condition representing a fatal error in a database connection

SQL-FATAL-ERROR

Class Precedence List
sql-connection-error, sql-database-error, sql-error, sql-condition, condition, t

Description
This condition represents errors occurring when the database connection is no longer usable. The following initializ-
ation arguments and accessors exist:
Initarg: :database-type
Accessor: sql-connection-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-connection-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values and se-
mantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-end.

205

Large Object Support

206

Name
CREATE-LARGE-OBJECT --

CREATE-LARGE-OBJECT

Syntax
(CREATE-LARGE-OBJECT &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Creates a new large object in the database and returns the object identifier

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

207

Name
DELETE-LARGE-OBJECT --

DELETE-LARGE-OBJECT

Syntax
(DELETE-LARGE-OBJECT OBJECT-ID &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Deletes the large object in the database

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

208

Name
READ-LARGE-OBJECT --

READ-LARGE-OBJECT

Syntax
(READ-LARGE-OBJECT OBJECT-ID &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Reads the large object content

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

209

Name
WRITE-LARGE-OBJECT --

WRITE-LARGE-OBJECT

Syntax
(WRITE-LARGE-OBJECT OBJECT-ID DATA &KEY (DATABASE *DEFAULT-DATABASE*)) [function] =>

Arguments and Values

Description
Writes data to the large object

Examples

Side Effects

Affected by

Exceptional Situations

See Also

Notes

210

CLSQL-SYS
This part gives a reference to the symbols exported from the package CLSQL-SYS, which are not exported from
CLSQL package.. These symbols are part of the interface for database back-ends, but not part of the normal user-
interface of CLSQL.

211

Name
DATABASE-INITIALIZE-DATABASE-TYPE -- Back-end part of initialize-database-type.

DATABASE-INITIALIZE-DATABASE-TYPE

Syntax
database-initialize-database-type database-type => result

Arguments and Values

database-type A keyword indicating the database type to initialize.

result Either t if the initialization succeeds or nil if it fails.

Description
This generic function implements the main part of the database type initialization performed by initialize-data-
base-type. After initialize-database-type has checked that the given database type has not been initialized
before, as indicated by *initialized-database-types*, it will call this function with the database type as it's sole para-
meter. Database back-ends are required to define a method on this generic function which is specialized via an eql-
specializer to the keyword representing their database type.

Database back-ends shall indicate successful initialization by returning t from their method, and nil otherwise. Meth-
ods for this generic function are allowed to signal errors of type clsql-error or subtypes thereof. They may also sig-
nal other types of conditions, if appropriate, but have to document this.

Examples

Side Effects
All necessary side effects to initialize the database instance.

Affected By
None.

Exceptional Situations
Conditions of type clsql-error or other conditions may be signalled, depending on the database back-end.

See Also

initialize-database-type
initialized-database-types

212

Notes
None.

DATABASE-INITIALIZE-DATABASE-TYPE

213

Index

214

Name
Alphabetical Index for package CLSQL -- Clickable index of all symbols

Alphabetical Index for package CLSQL

BACKEND-WARNING-BEHAVIOR INSTANCE-REFRESHED
CACHE-TABLE-QUERIES-DEFAULT LIST-ATTRIBUTE-TYPES
CONNECT-IF-EXISTS LIST-ATTRIBUTES
DB-AUTO-SYNC LIST-CLASSES
DEFAULT-DATABASE LIST-DATABASES
DEFAULT-DATABASE-TYPE LIST-INDEXES
DEFAULT-UPDATE-OBJECTS-MAX-LEN LIST-SEQUENCES
DEFAULT-VARCHAR-LENGTH LIST-SQL-STREAMS
INITIALIZED-DATABASE-TYPES LIST-TABLES
ADD-SQL-STREAM LIST-VIEWS
ADD-TRANSACTION-COMMIT-HOOK LOCALLY-DISABLE-SQL-READER-SYNTAX
ADD-TRANSACTION-ROLLBACK-HOOK LOCALLY-ENABLE-SQL-READER-SYNTAX
ATTRIBUTE-TYPE LOOP-FOR-AS-TUPLES
BIND-PARAMETER MAP-QUERY
CACHE-TABLE-QUERIES PREPARE-SQL
COMMIT PROBE-DATABASE
CONNECT QUERY
CONNECTED-DATABASES READ-LARGE-OBJECT
CREATE-DATABASE RECONNECT
CREATE-INDEX RESTORE-SQL-READER-SYNTAX-STATE
CREATE-LARGE-OBJECT ROLLBACK
CREATE-SEQUENCE RUN-PREPARED-SQL
CREATE-TABLE SELECT
CREATE-VIEW SEQUENCE-EXISTS-P
CREATE-VIEW-FROM-CLASS SEQUENCE-LAST
DATABASE SEQUENCE-NEXT
DATABASE-NAME SET-AUTOCOMMIT
DATABASE-NAME-FROM-SPEC SET-SEQUENCE-POSITION
DATABASE-TYPE SQL
DEF-VIEW-CLASS SQL-EXPRESSION
DELETE-INSTANCE-RECORDS SQL-OPERATION
DELETE-LARGE-OBJECT SQL-OPERATOR
DELETE-RECORDS SQL-RECORDING-P
DELETE-SQL-STREAM SQL-STREAM
DESTROY-DATABASE START-SQL-RECORDING
DISABLE-SQL-READER-SYNTAX START-TRANSACTION
DISCONNECT STATUS
DISCONNECT-POOLED STOP-SQL-RECORDING
DO-QUERY TABLE-EXISTS-P
DROP-INDEX TRUNCATE-DATABASE
DROP-SEQUENCE UPDATE-INSTANCE-FROM-RECORDS
DROP-TABLE UPDATE-OBJECTS-JOINS
DROP-VIEW UPDATE-RECORD-FROM-SLOT
DROP-VIEW-FROM-CLASS UPDATE-RECORD-FROM-SLOTS
ENABLE-SQL-READER-SYNTAX UPDATE-RECORDS
EXECUTE-COMMAND UPDATE-RECORDS-FROM-INSTANCE
FIND-DATABASE UPDATE-SLOT-FROM-RECORD
FOR-EACH-ROW VIEW-EXISTS-P
FREE-PREPARED-SQL WITH-DATABASE
IN-TRANSACTION-P WITH-DEFAULT-DATABASE
INDEX-EXISTS-P WITH-TRANSACTION
INITIALIZE-DATABASE-TYPE WRITE-LARGE-OBJECT

215

INSERT-RECORDS

Alphabetical Index for package CLSQL

216

Appendix A. Database Back-ends
PostgreSQL
Libraries

The PostgreSQL back-end requires the PostgreSQL C client library (libpq.so). The location of this library is spe-
cified via *postgresql-so-load-path*, which defaults to /usr/lib/libpq.so. Additional flags to ld needed for
linking are specified via *postgresql-so-libraries*, which defaults to ("-lcrypt" "-lc").

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-postgresql)

to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresql.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment variables (see
PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the C client library are
used.

host String representing the hostname or IP address the PostgreSQL server resides on. Use the empty
string to indicate a connection to localhost via Unix-Domain sockets instead of TCP/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

port String representing the port to use for communication with the PostgreSQL server.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL server.

PostgreSQL Socket

217

Libraries
The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it communicates directly
with the PostgreSQL server using the published frontend/backend protocol, version 2.0. This eases installation and
makes it possible to dump CMU CL images containing CLSQL and this backend, contrary to backends which re-
quire FFI code.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-postgresql-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is
:postgresql-socket.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host If this is a string, it represents the hostname or IP address the PostgreSQL server resides on. In
this case communication with the server proceeds via a TCP connection to the given host and
port.

If this is a pathname, then it is assumed to name the directory that contains the server's Unix-
Domain sockets. The full name to the socket is then constructed from this and the port number
passed, and communication will proceed via a connection to this unix-domain socket.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication. This can be the empty
string if no password is required for authentication.

port Integer representing the port to use for communication with the PostgreSQL server. This de-
faults to 5432.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL server.

MySQL
Libraries

Database Back-ends

218

The MySQL back-end requires the MySQL C client library (libmysqlclient.so). The location of this library is
specified via *mysql-so-load-path*, which defaults to /usr/lib/libmysqlclient.so. Additional flags to ld
needed for linking are specified via *mysql-so-libraries*, which defaults to ("-lc").

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-mysql)

to load the MySQL back-end. The database type for the MySQL back-end is :mysql.

Connection Specification

Syntax of connection-spec
(host db user password)

Description of connection-spec

host String representing the hostname or IP address the MySQL server resides on, or nil to indicate
the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix user
ID.

password String representing the unencrypted password to use for authentication, or nil if the authentica-
tion record has an empty password field.

ODBC
Libraries

The ODBC back-end requires access to an ODBC driver manager as well as ODBC drivers for the underlying data-
base server. CLSQL has been tested with unixODBC ODBC Driver Manager as well as Microsoft's ODBC manager.
These driver managers have been tested with the psqlODBC [http://odbc.postgresql.org] driver for PostgreSQL and
the MyODBC [http://www.mysql.com/products/connector/odbc/] driver for MySQL.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-odbc)

to load the ODBC back-end. The database type for the ODBC back-end is :odbc.

Database Back-ends

219

http://odbc.postgresql.org
http://www.mysql.com/products/connector/odbc/

Connection Specification

Syntax of connection-spec
(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

AODBC
Libraries

The AODBC back-end requires access to the ODBC interface of AllegroCL named DBI. This interface is not avail-
able in the trial version of AllegroCL

Initialization
Use

(require 'aodbc-v2)
(asdf:operate 'asdf:load-op 'clsql-aodbc)

to load the AODBC back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

SQLite

Database Back-ends

220

Libraries
The SQLite back-end requires the SQLite shared library file. Its default file name is /usr/lib/libsqlite.so.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-sqlite)

to load the SQLite back-end. The database type for the SQLite back-end is :sqlite.

Connection Specification

Syntax of connection-spec
(filename)

Description of connection-spec

filename String representing the filename of the SQLite database file.

Oracle
Libraries

The Oracle back-end requires the Oracle OCI client library. (libclntsh.so). The location of this library is spe-
cified relative to the ORACLE_HOME value in the operating system environment. CLSQL has tested sucessfully
using the client library from Oracle 9i and Oracle 10g server installations as well as Oracle's 10g Instant Client lib-
rary.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-oracle)

to load the Oracle back-end. The database type for the Oracle back-end is :oracle.

Connection Specification

Syntax of connection-spec
(global-name user password)

Description of connection-spec

Database Back-ends

221

global-name String representing the global name of the Orace database. This is looked up through the
tnsnames.ora file.

user String representing the user name to use for authentication.

password String representing the password to use for authentication..

Database Back-ends

222

Glossary
Note

This glossary is still very thinly populated, and not all references in the main text have been properly linked
and coordinated with this glossary. This will hopefully change in future revisions.

Attribute
A property of objects stored in a database table. Attributes are represented as
columns (or fields) in a table.

Active database See Database ObjectAn object of type database..

Connection See Database ObjectAn object of type database..

Column See Attribute A property of objects stored in a database table. Attributes are rep-
resented as columns (or fields) in a table. .

Data Definition Language
(DDL) The subset of SQL used for defining and examining the structure of a database.

Data Manipulation Language
(DML) The subset of SQL used for inserting, deleting, updating and fetching data in a

database.

database See Database ObjectAn object of type database..

Database Object
An object of type database.

Field See Attribute A property of objects stored in a database table. Attributes are rep-
resented as columns (or fields) in a table. .

Field Types Specifier
A value that specifies the type of each field in a query.

Foreign Function Interface
(FFI) An interface from Common Lisp to a external library which contains compiled

functions written in other programming languages, typically C.

Query
An SQL statement which returns a set of results.

RDBMS
A Relational DataBase Management System (RDBMS) is a software package
for managing a database in which the data is defined, organised and accessed as
rows and columns of a table.

Record
A sequence of attribute values stored in a database table.

Row See Record A sequence of attribute values stored in a database table. .

Structured Query Language
(SQL) An ANSI standard language for storing and retrieving data in a relational data-

base.

223

SQL Expression
Either a string containing a valid SQL statement, or an object of type sql-
expression.

Table
A collection of data which is defined, stored and accessed as tuples of attribute
values (i.e., rows and columns).

Transaction
An atomic unit of one or more SQL statements of which all or none are success-
fully executed.

Tuple See Record A sequence of attribute values stored in a database table. .

View
A table display whose structure and content are derived from an existing table
via a query.

Glossary

224

	CLSQL Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	History
	Prerequisites
	ASDF
	UFFI
	MD5
	Supported Common Lisp Implementation
	Supported SQL Implementation

	Installation
	Ensure ASDF is loaded
	Build C helper libraries
	Microsoft Windows
	UNIX

	Add UFFI path
	Add MD5 path
	Add CLSQL path and load module
	Run test suite (optional)

	Chapter 2. CommonSQL Tutorial
	Introduction
	Data Modeling with CLSQL
	Class Relations
	Object Creation
	Finding Objects
	Deleting Objects
	Conclusion

	Connection and Initialisation
	DATABASE
	CONNECT-IF-EXISTS
	DEFAULT-DATABASE
	DEFAULT-DATABASE-TYPE
	INITIALIZED-DATABASE-TYPES
	CONNECT
	CONNECTED-DATABASES
	DATABASE-NAME
	DATABASE-NAME-FROM-SPEC
	DATABASE-TYPE
	DISCONNECT
	DISCONNECT-POOLED
	FIND-DATABASE
	INITIALIZE-DATABASE-TYPE
	RECONNECT
	STATUS
	CREATE-DATABASE
	DESTROY-DATABASE
	PROBE-DATABASE
	LIST-DATABASES
	WITH-DATABASE
	WITH-DEFAULT-DATABASE

	The Symbolic SQL Syntax
	ENABLE-SQL-READER-SYNTAX
	DISABLE-SQL-READER-SYNTAX
	LOCALLY-ENABLE-SQL-READER-SYNTAX
	LOCALLY-DISABLE-SQL-READER-SYNTAX
	RESTORE-SQL-READER-SYNTAX-STATE
	SQL
	SQL-EXPRESSION
	SQL-OPERATION
	SQL-OPERATOR

	Functional Data Definition Language (FDDL)
	CREATE-TABLE
	DROP-TABLE
	LIST-TABLES
	TABLE-EXISTS-P
	CREATE-VIEW
	DROP-VIEW
	LIST-VIEWS
	VIEW-EXISTS-P
	CREATE-INDEX
	DROP-INDEX
	LIST-INDEXES
	INDEX-EXISTS-P
	ATTRIBUTE-TYPE
	LIST-ATTRIBUTE-TYPES
	LIST-ATTRIBUTES
	CREATE-SEQUENCE
	DROP-SEQUENCE
	LIST-SEQUENCES
	SEQUENCE-EXISTS-P
	SEQUENCE-LAST
	SEQUENCE-NEXT
	SET-SEQUENCE-POSITION
	TRUNCATE-DATABASE

	Functional Data Manipulation Language (FDML)
	CACHE-TABLE-QUERIES-DEFAULT
	CACHE-TABLE-QUERIES
	INSERT-RECORDS
	UPDATE-RECORDS
	DELETE-RECORDS
	EXECUTE-COMMAND
	QUERY
	PRINT-QUERY
	SELECT
	DO-QUERY
	FOR-EACH-ROW
	LOOP
	MAP-QUERY
	PREPARE-SQL
	RUN-PREPARED-SQL
	FREE-PREPARED-SQL
	BIND-PARAMETER

	Transaction Handling
	START-TRANSACTION
	COMMIT
	ROLLBACK
	IN-TRANSACTION-P
	ADD-TRANSACTION-COMMIT-HOOK
	ADD-TRANSACTION-ROLLBACK-HOOK
	SET-AUTOCOMMIT
	WITH-TRANSACTION

	Object Oriented Data Definition Language (OODDL)
	STANDARD-DB-OBJECT
	DEFAULT-VARCHAR-LENGTH
	CREATE-VIEW-FROM-CLASS
	DEF-VIEW-CLASS
	DROP-VIEW-FROM-CLASS
	LIST-CLASSES

	Object Oriented Data Manipulation Language (OODML)
	DB-AUTO-SYNC
	DEFAULT-UPDATE-OBJECTS-MAX-LEN
	DELETE-INSTANCE-RECORDS
	INSTANCE-REFRESHED
	UPDATE-INSTANCE-FROM-RECORDS
	UPDATE-OBJECTS-JOINS
	UPDATE-RECORD-FROM-SLOT
	UPDATE-RECORD-FROM-SLOTS
	UPDATE-RECORDS-FROM-INSTANCE
	UPDATE-SLOT-FROM-RECORD

	SQL I/O Recording
	ADD-SQL-STREAM
	DELETE-SQL-STREAM
	LIST-SQL-STREAMS
	SQL-RECORDING-P
	SQL-STREAM
	START-SQL-RECORDING
	STOP-SQL-RECORDING

	CLSQL Condition System
	BACKEND-WARNING-BEHAVIOR
	SQL-CONDITION
	SQL-ERROR
	SQL-WARNING
	SQL-DATABASE-WARNING
	SQL-USER-ERROR
	SQL-DATABASE-ERROR
	SQL-CONNECTION-ERROR
	SQL-DATABASE-DATA-ERROR
	SQL-TEMPORARY-ERROR
	SQL-TIMEOUT-ERROR
	SQL-FATAL-ERROR

	Large Object Support
	CREATE-LARGE-OBJECT
	DELETE-LARGE-OBJECT
	READ-LARGE-OBJECT
	WRITE-LARGE-OBJECT

	CLSQL-SYS
	DATABASE-INITIALIZE-DATABASE-TYPE

	Index
	Alphabetical Index for package CLSQL

	Appendix A. Database Back-ends
	PostgreSQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	PostgreSQL Socket
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	MySQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	ODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	AODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	SQLite
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Oracle
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Glossary

