
CLSQL Users' Guide

Kevin M. Rosenberg
Marcus T. Pearce

Pierre R. Mai
onShore Development, Inc.

CLSQL Users' Guide
by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Development, Inc.

• CLSQL is Copyright © 2002-2004 by Kevin M. Rosenberg, Copyright © 1999-2001 by Pierre R. Mai, and Copyright © 1999-2003 onShore
Development, Inc.

• Allegro CL® is a registered trademark of Franz Inc.

• Common SQL, LispWorks are trademarks or registered trademarks of LispWorks Ltd.

• Oracle® is a registered trademark of Oracle Inc.

• Microsoft Windows® is a registered trademark of Microsoft Inc.

• Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents
Preface ... viii
1. Introduction .. 1

Purpose ... 1
History .. 1
Prerequisites .. 1

ASDF ... 1
UFFI .. 1
MD5 ... 1
Supported Common Lisp Implementation .. 2
Supported SQL Implementation ... 2

Installation ... 2
Ensure ASDF is loaded .. 2
Build C helper libraries .. 2
Add UFFI path ... 3
Add MD5 path ... 3
Add CLSQL path and load module ... 3
Run test suite (optional) .. 3

2. CommonSQL Tutorial .. 5
Introduction ... 5
Data Modeling with CLSQL .. 5
Class Relations ... 7
Object Creation .. 9
Finding Objects .. 11
Deleting Objects ... 12
Conclusion .. 12

I. Connection and Initialisation ...
DATABASE .. 14
CONNECT-IF-EXISTS .. 15
DEFAULT-DATABASE .. 16
DEFAULT-DATABASE-TYPE ... 18
INITIALIZED-DATABASE-TYPES .. 19
CONNECT .. 20
CONNECTED-DATABASES ... 23
DATABASE-NAME ... 25
DATABASE-NAME-FROM-SPEC ... 27
DATABASE-TYPE .. 29
DISCONNECT ... 31
DISCONNECT-POOLED .. 33
FIND-DATABASE ... 34
INITIALIZE-DATABASE-TYPE .. 36
RECONNECT .. 38
STATUS ... 40
CREATE-DATABASE .. 42
DESTROY-DATABASE ... 44
PROBE-DATABASE .. 46
LIST-DATABASES .. 48
WITH-DATABASE .. 50
WITH-DEFAULT-DATABASE .. 52

II. The Symbolic SQL Syntax ...
ENABLE-SQL-READER-SYNTAX .. 55
DISABLE-SQL-READER-SYNTAX ... 56
LOCALLY-ENABLE-SQL-READER-SYNTAX ... 57
LOCALLY-DISABLE-SQL-READER-SYNTAX .. 59

iv

RESTORE-SQL-READER-SYNTAX-STATE ... 61
SQL ... 63
SQL-EXPRESSION .. 65
SQL-OPERATION ... 67
SQL-OPERATOR ... 69

III. Functional Data Definition Language (FDDL) ..
CREATE-TABLE ... 73
DROP-TABLE ... 75
LIST-TABLES ... 77
TABLE-EXISTS-P .. 79
CREATE-VIEW ... 81
DROP-VIEW ... 83
LIST-VIEWS ... 85
VIEW-EXISTS-P .. 87
CREATE-INDEX ... 89
DROP-INDEX ... 91
LIST-INDEXES ... 93
INDEX-EXISTS-P .. 95
ATTRIBUTE-TYPE .. 97
LIST-ATTRIBUTE-TYPES .. 99
LIST-ATTRIBUTES ... 101
CREATE-SEQUENCE .. 103
DROP-SEQUENCE .. 105
LIST-SEQUENCES .. 107
SEQUENCE-EXISTS-P ... 109
SEQUENCE-LAST ... 111
SEQUENCE-NEXT .. 113
SET-SEQUENCE-POSITION ... 115
TRUNCATE-DATABASE ... 117

IV. Functional Data Manipulation Language (FDML) ...
CACHE-TABLE-QUERIES-DEFAULT .. 120
CACHE-TABLE-QUERIES ... 121
INSERT-RECORDS .. 123
UPDATE-RECORDS .. 125
DELETE-RECORDS ... 127
EXECUTE-COMMAND .. 129
QUERY .. 131
PRINT-QUERY ... 134
SELECT ... 136
DO-QUERY .. 140
LOOP ... 142
MAP-QUERY .. 145

V. Transaction Handling ..
START-TRANSACTION .. 149
COMMIT .. 151
ROLLBACK .. 153
IN-TRANSACTION-P ... 155
ADD-TRANSACTION-COMMIT-HOOK .. 157
ADD-TRANSACTION-ROLLBACK-HOOK .. 159
SET-AUTOCOMMIT .. 161
WITH-TRANSACTION .. 163

VI. Object Oriented Data Definition Language (OODDL) ..
STANDARD-DB-OBJECT .. 166
DEFAULT-STRING-LENGTH .. 167
CREATE-VIEW-FROM-CLASS ... 168
DEF-VIEW-CLASS .. 170
DROP-VIEW-FROM-CLASS ... 176
LIST-CLASSES ... 178

CLSQL Users' Guide

v

VII. Object Oriented Data Manipulation Language (OODML) ..
DB-AUTO-SYNC ... 181
DEFAULT-CACHING ... 183
DEFAULT-UPDATE-OBJECTS-MAX-LEN ... 184
INSTANCE-REFRESHED ... 185
DELETE-INSTANCE-RECORDS ... 187
UPDATE-RECORDS-FROM-INSTANCE .. 189
UPDATE-RECORD-FROM-SLOT .. 191
UPDATE-RECORD-FROM-SLOTS .. 193
UPDATE-INSTANCE-FROM-RECORDS .. 195
UPDATE-SLOT-FROM-RECORD .. 197
UPDATE-OBJECTS-JOINS ... 199

VIII. SQL I/O Recording ...
START-SQL-RECORDING ... 202
STOP-SQL-RECORDING .. 204
SQL-RECORDING-P .. 206
SQL-STREAM ... 208
ADD-SQL-STREAM .. 210
DELETE-SQL-STREAM ... 212
LIST-SQL-STREAMS ... 214

IX. CLSQL Condition System ..
BACKEND-WARNING-BEHAVIOR ... 217
SQL-CONDITION .. 218
SQL-ERROR ... 219
SQL-WARNING .. 220
SQL-DATABASE-WARNING ... 221
SQL-USER-ERROR .. 222
SQL-DATABASE-ERROR .. 223
SQL-CONNECTION-ERROR .. 224
SQL-DATABASE-DATA-ERROR .. 225
SQL-TEMPORARY-ERROR ... 226
SQL-TIMEOUT-ERROR ... 227
SQL-FATAL-ERROR ... 228

X. Index .. 229
Alphabetical Index for package CLSQL .. 230

A. Database Back-ends .. 232
How CLSQL finds and loads foreign libraries ... 232
PostgreSQL ... 232

Libraries .. 232
Initialization ... 232
Connection Specification .. 232
Notes .. 233

PostgreSQL Socket ... 233
Libraries .. 233
Initialization ... 233
Connection Specification .. 233
Notes .. 234

MySQL ... 234
Libraries .. 234
Initialization ... 234
Connection Specification .. 235
Notes .. 235

ODBC .. 236
Libraries .. 236
Initialization ... 236
Connection Specification .. 236
Notes .. 236

AODBC .. 236

CLSQL Users' Guide

vi

Libraries .. 236
Initialization ... 237
Connection Specification .. 237
Notes .. 237

SQLite version 2 ... 237
Libraries .. 237
Initialization ... 237
Connection Specification .. 238
Notes .. 238

SQLite version 3 ... 238
Libraries .. 238
Initialization ... 238
Connection Specification .. 239
Notes .. 239

Oracle ... 239
Libraries .. 239
Library Versions ... 240
Initialization ... 240
Connection Specification .. 240
Notes .. 240

Glossary .. 242

CLSQL Users' Guide

vii

Preface
This guide provides reference to the features of CLSQL. The first chapter provides an introduction to
CLSQL and installation instructions. The reference sections document all user accessible symbols with
examples of usage. There is a glossary of commonly used terms with their definitions.

viii

Chapter 1. Introduction
Purpose

CLSQL is a Common Lisp interface to SQL databases. A number of Common Lisp implementations and
SQL databases are supported. The general structure of CLSQL is based on the CommonSQL package by
LispWorks Ltd.

History
The CLSQL project was started by Kevin M. Rosenberg in 2001 to support SQL access on multiple
Common Lisp implementations using the UFFI library. The initial code was based substantially on
Pierre R. Mai's excellent MaiSQL package. In late 2003, the UncommonSQL library was orphaned by
its author, onShore Development, Inc. In April 2004, Marcus Pearce ported the UncommonSQL library
to CLSQL. The UncommonSQL library provides a CommonSQL-compatible API for CLSQL.

The main changes from MaiSQL and UncommonSQL are:

• Port from the CMUCL FFI to UFFI which provide compatibility with the major Common Lisp im-
plementations.

• Optimized loading of integer and floating-point fields.

• Additional database backends: ODBC, AODBC, SQLite version 2 and SQLite version 3.

• A compatibility layer for CMUCL specific code.

• Much improved robustness for the MySQL back-end along with version 4 client library support.

• Improved library loading and installation documentation.

• Improved packages and symbol export.

• Pooled connections.

• Integrated transaction support for the classic MaiSQL iteration macros.

Prerequisites
ASDF

CLSQL uses ASDF to compile and load its components. ASDF is included in the CCLAN
[http://cclan.sourceforge.net] collection.

UFFI
CLSQL uses UFFI [http://uffi.b9.com/] as a Foreign Function Interface (FFI) to support multiple ANSI
Common Lisp implementations.

MD5

1

http://cclan.sourceforge.net
http://uffi.b9.com/

CLSQL's postgresql-socket interface uses Pierre Mai's md5 [http://files.b9.com/md5/] module.

Supported Common Lisp Implementation
The implementations that support CLSQL is governed by the supported implementations of UFFI. The
following implementations are supported:

• AllegroCL v6.2 and 7.0b on Debian Linux x86 & x86_64 & PowerPC, FreeBSD 4.5, and Microsoft
Windows XP.

• Lispworks v4.3 on Debian Linux and Microsoft Windows XP.

• CMUCL 18e on Debian Linux, FreeBSD 4.5, and Solaris 2.8.

• SBCL 0.8.5 on Debian Linux.

• SCL 1.1.1 on Debian Linux.

• OpenMCL 0.14 on Debian Linux PowerPC.

Supported SQL Implementation
Currently, CLSQL supports the following databases:

• MySQL v3.23.51 and v4.0.18.

• PostgreSQL v7.4 with both direct API and TCP socket connections.

• SQLite version 2.

• SQLite version 3.

• Direct ODBC interface.

• Oracle OCI.

• Allegro's DB interface (AODBC).

Installation
Ensure ASDF is loaded

Simply load the file asdf.lisp.

(load "asdf.lisp")

Build C helper libraries
CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL

Introduction

2

http://files.b9.com/md5/

implementations do not support 64-bit integers. Thus, C helper libraries are required to break these
64-bit integers into two compatible 32-bit integers. The helper libraries reside in the directories uffi
and db-mysql.

Microsoft Windows

Files named Makefile.msvc are supplied for building the libraries under Microsoft Windows. Since
Microsoft Windows does not come with that compiler, compiled DLL and LIB library files are supplied
with CLSQL.

UNIX

Files named Makefile are supplied for building the libraries under UNIX. Loading the .asd files
automatically invokes make when necessary. So, manual building of the helper libraries is not necessary
on most UNIX systems. However, the location of the MySQL library files and include files may need to
adjusted in db-mysql/Makefile on non-Debian systems.

Add UFFI path
Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to
ASDF's asdf:*central-registry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the UFFI files reside in the /
usr/share/lisp/uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)

Add MD5 path
If you plan to use the clsql-postgresql-socket interface, you must load the md5 module. Unzip or untar
the cl-md5 distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf:*central-registry*. You can do that by pushing the pathname of the directory onto this
variable. The following example code assumes the cl-md5 files reside in the /
usr/share/lisp/cl-md5/ directory.

(push #P"/usr/share/lisp/cl-md5/" asdf:*central-registry*)

Add CLSQL path and load module
Unzip or untar the CLSQL distribution which creates a directory for the CLSQL files. Add that directory
to ASDF's asdf:*central-registry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the CLSQL files reside in the /
usr/share/lisp/clsql/ directory. You need to load the clsql system.

(push #P"/usr/share/lisp/clsql/" asdf:*central-registry*)
(asdf:operate 'asdf:load-op 'clsql) ; main CLSQL package

Run test suite (optional)

Introduction

3

The test suite can be executed using the ASDF test-op operator. If CLSQL has not been loaded with
asdf:load-op, the asdf:test-op operator will automatically load CLSQL. A configuration file named
.clsql-test.config must be created in your home directory. There are instructures on the format
of that file in the tests/README. After creating .clsql-test.config, you can run the test suite
with ASDF:

(asdf:operate 'asdf:test-op 'clsql)

Introduction

4

1 Philip Greenspun's "SQL For Web Nerds" - Data Modeling [http://philip.greenspun.com/sql/data-modeling.html]

Chapter 2. CommonSQL Tutorial
Based on the UncommonSQL Tutorial

Introduction
The goal of this tutorial is to guide a new developer thru the process of creating a set of CLSQL classes
providing a Object-Oriented interface to persistent data stored in an SQL database. We will assume that
the reader is familiar with how SQL works, how relations (tables) should be structured, and has created
at least one SQL application previously. We will also assume a minor level of experience with Common
Lisp.

CLSQL provides two different interfaces to SQL databases, a Functional interface, and an Object-Ori-
ented interface. The Functional interface consists of a special syntax for embedded SQL expressions in
Lisp, and provides lisp functions for SQL operations like SELECT and UPDATE. The object-oriented
interface provides a way for mapping Common Lisp Objects System (CLOS) objects into databases and
includes functions for inserting new objects, querying objects, and removing objects. Most applications
will use a combination of the two.

CLSQL is based on the CommonSQL package from LispWorks Ltd, so the documentation that Lisp-
Works makes available online is useful for CLSQL as well. It is suggested that developers new to
CLSQL read their documentation as well, as any differences between CommonSQL and CLSQL are
minor. LispWorks makes the following documents available:

• Lispworks User Guide - The CommonSQL Package
[http://www.lispworks.com/documentation/lw44/LWUG/html/lwuser-204.htm]

• Lispworks Reference Manual - The SQL Package
[http://www.lispworks.com/documentation/lw44/LWRM/html/lwref-424.htm]

• CommonSQL Tutorial by Nick Levine
[http://www.lispworks.com/documentation/sql-tutorial/index.html]

Data Modeling with CLSQL
Before we can create, query and manipulate CLSQL objects, we need to define our data model as noted
by Philip Greenspun 1

When data modeling, you are telling the relational database management system (RDBMS) the follow-
ing:

• What elements of the data you will store.

• How large each element can be.

• What kind of information each element can contain.

• What elements may be left blank.

• Which elements are constrained to a fixed range.

5

http://www.lispworks.com/documentation/lw44/LWUG/html/lwuser-204.htm
http://www.lispworks.com/documentation/lw44/LWRM/html/lwref-424.htm
http://www.lispworks.com/documentation/sql-tutorial/index.html
http://philip.greenspun.com/sql/data-modeling.html

• Whether and how various tables are to be linked.

With SQL database one would do this by defining a set of relations, or tables, followed by a set of quer-
ies for joining the tables together in order to construct complex records. However, with CLSQL we do
this by defining a set of CLOS classes, specifying how they will be turned into tables, and how they can
be joined to one another via relations between their attributes. The SQL tables, as well as the queries for
joining them together are created for us automatically, saving us from dealing with some of the tedium
of SQL.

Let us start with a simple example of two SQL tables, and the relations between them.

CREATE TABLE EMPLOYEE (emplid NOT NULL number(38),
first_name NOT NULL varchar2(30),
last_name NOT NULL varchar2(30),
email varchar2(100),
companyid NOT NULL number(38),
managerid number(38))

CREATE TABLE COMPANY (companyid NOT NULL number(38),
name NOT NULL varchar2(100),
presidentid NOT NULL number(38))

This is of course the canonical SQL tutorial example, "The Org Chart".

In CLSQL, we would have two "view classes" (a fancy word for a class mapped into a database). They
would be defined as follows:

(clsql:def-view-class employee ()
((emplid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :emplid)
(first-name
:accessor first-name
:type (string 30)
:initarg :first-name)
(last-name
:accessor last-name
:type (string 30)
:initarg :last-name)
(email
:accessor employee-email
:type (string 100)
:nulls-ok t
:initarg :email)
(companyid
:type integer
:initarg :companyid)
(managerid
:type integer
:nulls-ok t
:initarg :managerid))

(:base-table employee))

(clsql:def-view-class company ()
((companyid
:db-kind :key
:db-constraints :not-null

CommonSQL Tutorial

6

:type integer
:initarg :companyid)
(name
:type (string 100)
:initarg :name)
(presidentid
:type integer
:initarg :presidentid))

(:base-table company))

The DEF-VIEW-CLASS macro is just like the normal CLOS DEFCLASS macro, except that it handles
several slot options that DEFCLASS doesn't. These slot options have to do with the mapping of the slot
into the database. We only use a few of the slot options in the above example, but there are several oth-
ers.

• :column - The name of the SQL column this slot is stored in. Defaults to the slot name. If the slot
name is not a valid SQL identifier, it is escaped, so foo-bar becomes foo_bar.

• :db-kind - The kind of database mapping which is performed for this slot. :base indicates the slot
maps to an ordinary column of the database view. :key indicates that this slot corresponds to part of
the unique keys for this view, :join indicates a join slot representing a relation to another view and
:virtual indicates that this slot is an ordinary CLOS slot. Defaults to :base.

• :db-reader - If a string, then when reading values from the database, the string will be used for a
format string, with the only value being the value from the database. The resulting string will be
used as the slot value. If a function then it will take one argument, the value from the database, and
return the value that should be put into the slot.

• :db-writer - If a string, then when reading values from the slot for the database, the string will be
used for a format string, with the only value being the value of the slot. The resulting string will be
used as the column value in the database. If a function then it will take one argument, the value of
the slot, and return the value that should be put into the database.

• :column- - A string which will be used as the type specifier for this slots column definition in the
database.

• :void-value - The Lisp value to return if the field is NULL. The default is NIL.

• :db-info - A join specification.

In our example each table as a primary key attribute, which is required to be unique. We indicate that a
slot is part of the primary key (CLSQL supports multi-field primary keys) by specifying the :db-kind key
slot option.

The SQL type of a slot when it is mapped into the database is determined by the :type slot option. The
argument for the :type option is a Common Lisp datatype. The CLSQL framework will determine the ap-
propriate mapping depending on the database system the table is being created in. If we really wanted to
determine what SQL type was used for a slot, we could specify a :db-type option like "NUMBER(38)"
and we would be guaranteed that the slot would be stored in the database as a NUMBER(38). This is not
recomended because it could makes your view class unportable across database systems.

DEF-VIEW-CLASS also supports some class options, like :base-table. The :base-table option specifies
what the table name for the view class will be when it is mapped into the database.

Class Relations

CommonSQL Tutorial

7

In an SQL only application, the EMPLOYEE and COMPANY tables can be queried to determine things
like, "Who is Vladimir's manager?", "What company does Josef work for?", and "What employees work
for Widgets Inc.". This is done by joining tables with an SQL query.

Who works for Widgets Inc.?

SELECT first_name, last_name FROM employee, company
WHERE employee.companyid = company.companyid

AND company.company_name = "Widgets Inc."

Who is Vladimir's manager?

SELECT managerid FROM employee
WHERE employee.first_name = "Vladimir"

AND employee.last_name = "Lenin"

What company does Josef work for?

SELECT company_name FROM company, employee
WHERE employee.first_name = "Josef"

AND employee.last-name = "Stalin"
AND employee.companyid = company.companyid

With CLSQL however we do not need to write out such queries because our view classes can maintain
the relations between employees and companies, and employees to their managers for us. We can then
access these relations like we would any other attribute of an employee or company object. In order to
do this we define some join slots for our view classes.

What company does an employee work for? If we add the following slot definition to the employee class
we can then ask for it's COMPANY slot and get the appropriate result.

;; In the employee slot list
(company
:accessor employee-company
:db-kind :join
:db-info (:join-class company

:home-key companyid
:foreign-key companyid
:set nil))

Who are the employees of a given company? And who is the president of it? We add the following slot
definition to the company view class and we can then ask for it's EMPLOYEES slot and get the right
result.

;; In the company slot list
(employees
:reader company-employees
:db-kind :join
:db-info (:join-class employee

:home-key companyid
:foreign-key companyid
:set t))

CommonSQL Tutorial

8

(president
:reader president
:db-kind :join
:db-info (:join-class employee

:home-key presidentid
:foreign-key emplid
:set nil))

And lastly, to define the relation between an employee and their manager:

;; In the employee slot list
(manager
:accessor employee-manager
:db-kind :join
:db-info (:join-class employee

:home-key managerid
:foreign-key emplid
:set nil))

CLSQL join slots can represent one-to-one, one-to-many, and many-to-many relations. Above we only
have one-to-one and one-to-many relations, later we will explain how to model many-to-many relations.
First, let's go over the slot definitions and the available options.

In order for a slot to be a join, we must specify that it's :db-kind :join, as opposed to :base or :key. Once
we do that, we still need to tell CLSQL how to create the join statements for the relation. This is what the
:db-info option does. It is a list of keywords and values. The available keywords are:

• :join-class - The view class to which we want to join. It can be another view class, or the same view
class as our object.

• :home-key - The slot(s) in the immediate object whose value will be compared to the foreign-key
slot(s) in the join-class in order to join the two tables. It can be a single slot-name, or it can be a list
of slot names.

• :foreign-key - The slot(s) in the join-class which will be compared to the value(s) of the home-key.

• :set - A boolean which if false, indicates that this is a one-to-one relation, only one object will be re-
turned. If true, than this is a one-to-many relation, a list of objects will be returned when we ask for
this slots value.

There are other :join-info options available in CLSQL, but we will save those till we get to the many-
to-many relation examples.

Object Creation
Now that we have our model laid out, we should create some object. Let us assume that we have a data-
base connect set up already. We first need to create our tables in the database:

Note: the file examples/clsql-tutorial.lisp contains view class definitions which you can
load into your list at this point in order to play along at home.

(clsql:create-view-from-class 'employee)
(clsql:create-view-from-class 'company)

CommonSQL Tutorial

9

Then we will create our objects. We create them just like you would any other CLOS object:

(defvar company1 (make-instance 'company
:companyid 1
:presidentid 1
:name "Widgets Inc."))

(defvar employee1 (make-instance 'employee
:emplid 1
:first-name "Vladimir"
:last-name "Lenin"
:email "lenin@soviet.org"
:companyid 1))

(defvar employee2 (make-instance 'employee
:emplid 2
:first-name "Josef"
:last-name "Stalin"
:email "stalin@soviet.org"
:companyid 1
:managerid 1))

In order to insert an objects into the database we use the UPDATE-RECORDS-FROM-INSTANCE func-
tion as follows:

(clsql:update-records-from-instance employee1)
(clsql:update-records-from-instance employee2)
(clsql:update-records-from-instance company1)

After you make any changes to an object, you have to specifically tell CLSQL to update the SQL data-
base. The UPDATE-RECORDS-FROM-INSTANCE method will write all of the changes you have made
to the object into the database.

Since CLSQL objects are just normal CLOS objects, we can manipulate their slots just like any other ob-
ject. For instance, let's say that Lenin changes his email because he was getting too much spam from the
German Socialists.

;; Print Lenin's current email address, change it and save it to the
;; database. Get a new object representing Lenin from the database
;; and print the email

;; This lets us use the functional CLSQL interface with [] syntax
(clsql:locally-enable-sql-reader-syntax)

(format t "The email address of ~A ~A is ~A"
(first-name employee1)
(last-name employee1)
(employee-email employee1))

(setf (employee-email employee1) "lenin-nospam@soviets.org")

;; Update the database
(clsql:update-records-from-instance employee1)

(let ((new-lenin (car (clsql:select 'employee
:where [= [slot-value 'employee 'emplid] 1]))))

(format t "His new email is ~A"
(employee-email new-lenin)))

CommonSQL Tutorial

10

Everything except for the last LET expression is already familiar to us by now. To understand the call to
CLSQL:SELECT we need to discuss the Functional SQL interface and it's integration with the Object
Oriented interface of CLSQL.

Finding Objects
Now that we have our objects in the database, how do we get them out when we need to work with
them? CLSQL provides a functional interface to SQL, which consists of a special Lisp reader macro and
some functions. The special syntax allows us to embed SQL in lisp expressions, and lisp expressions in
SQL, with ease.

Once we have turned on the syntax with the expression:

(clsql:locally-enable-sql-reader-syntax)

We can start entering fragments of SQL into our lisp reader. We will get back objects which represent
the lisp expressions. These objects will later be compiled into SQL expressions that are optimized for
the database backed we are connected to. This means that we have a database independent SQL syntax.
Here are some examples:

;; an attribute or table name
[foo] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO>

;; a attribute identifier with table qualifier
[foo bar] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO.BAR>

;; a attribute identifier with table qualifier
[= "Lenin" [first_name]] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP ('Lenin' = FIRST_NAME)>

[< [emplid] 3] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLID < 3)>

[and [< [emplid] 2] [= [first_name] "Lenin"]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP ((EMPLID < 2) AND

(FIRST_NAME = 'Lenin'))>

;; If we want to reference a slot in an object we can us the
;; SLOT-VALUE sql extension
[= [slot-value 'employee 'emplid] 1] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = 1)>

[= [slot-value 'employee 'emplid]
[slot-value 'company 'presidentid]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = COMPANY.PRESIDENTID)>

The SLOT-VALUE operator is important because it let's us query objects in a way that is robust to any
changes in the object->table mapping, like column name changes, or table name changes. So when you
are querying objects, be sure to use the SLOT-VALUE SQL extension.

Since we can now formulate SQL relational expression which can be used as qualifiers, like we put after
the WHERE keyword in SQL statements, we can start querying our objects. CLSQL provides a function
SELECT which can return use complete objects from the database which conform to a qualifier, can be
sorted, and various other SQL operations.

CommonSQL Tutorial

11

The first argument to SELECT is a class name. it also has a set of keyword arguments which are covered
in the documentation. For now we will concern ourselves only with the :where keyword. Select returns a
list of objects, or nil if it can't find any. It's important to remember that it always returns a list, so even if
you are expecting only one result, you should remember to extract it from the list you get from SE-
LECT.

;; all employees
(clsql:select 'employee)
;; all companies
(clsql:select 'company)

;; employees named Lenin
(clsql:select 'employee :where [= [slot-value 'employee 'last-name]

"Lenin"])

(clsql:select 'company :where [= [slot-value 'company 'name]
"Widgets Inc."])

;; Employees of Widget's Inc.
(clsql:select 'employee

:where [and [= [slot-value 'employee 'companyid]
[slot-value 'company 'companyid]]

[= [slot-value 'company 'name]
"Widgets Inc."]])

;; Same thing, except that we are using the employee
;; relation in the company view class to do the join for us,
;; saving us the work of writing out the SQL!
(company-employees company1)

;; President of Widgets Inc.
(president company1)

;; Manager of Josef Stalin
(employee-manager employee2)

Deleting Objects
Now that we know how to create objects in our database, manipulate them and query them (including
using our predefined relations to save us the trouble writing alot of SQL) we should learn how to clean
up after ourself. It's quite simple really. The function DELETE-INSTANCE-RECORDS will remove an
object from the database. However, when we remove an object we are responsible for making sure that
the database is left in a correct state.

For example, if we remove a company record, we need to either remove all of it's employees or we need
to move them to another company. Likewise if we remove an employee, we should make sure to update
any other employees who had them as a manager.

Conclusion
There are many nooks and crannies to CLSQL, some of which are covered in the Xanalys documents we
refered to earlier, some are not. The best documentation at this time is still the source code for CLSQL
itself and the inline documentation for its various functions.

CommonSQL Tutorial

12

Connection and Initialisation
This section describes the CLSQL interface for initialising database interfaces of different types, creating
and destroying databases and connecting and disconnecting from databases.

13

Name
DATABASE -- The super-type of all CLSQL databases

Class Precedence List
database, standard-object, t,

Description
This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses
of this class to implement their databases. No instances of this class are ever created by CLSQL.

14

Name
CONNECT-IF-EXISTS -- Default value for the if-exists parameter of connect.

Value Type
A valid argument to the if-exists parameter of connect, that is, one of :new, :warn-new, :error,
:warn-old, :old, .

Initial Value
:error

Description
The value of this variable is used in calls to connect as the default value of the if-exists paramet-
er. See connect for the semantics of the valid values for this variable.

Examples
None.

Affected By
None.

See Also

connect

Notes
None.

15

Name
DEFAULT-DATABASE -- The default database object to use.

Value Type
Any object of type database, or NIL to indicate no default database.

Initial Value
NIL

Description
Any function or macro in CLSQL that operates on a database uses the value of this variable as the de-
fault value for it's database parameter.

The value of this parameter is changed by calls to connect, which sets *default-database* to the data-
base object it returns. It is also changed by calls to disconnect, when the database object being dis-
connected is the same as the value of *default-database*. In this case disconnect sets
default-database to the first database that remains in the list of active databases as returned by con-
nected-databases, or NIL if no further active databases exist.

The user may change *default-database* at any time to a valid value of his choice.

Caution

If the value of *default-database* is NIL, then all calls to CLSQL functions on databases must provide a
suitable database parameter, or an error will be signalled.

Examples

(connected-databases)
=> NIL
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql :if-exists :new)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
(disconnect)
=> T
default-database
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(disconnect)
=> T
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(disconnect)
=> T
default-database
=> NIL
(connected-databases)

16

=> NIL

Affected By
connect
disconnect

See Also

connected-databases

Notes
Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-level loop,
and because of this, connect and disconnect provide some fairly complex behaviour to keep
default-database set to useful values. Programmatic use of CLSQL should never depend on the value
of *default-database* and should provide correct database objects via the database parameter to func-
tions called.

DEFAULT-DATABASE

17

Name
DEFAULT-DATABASE-TYPE -- The default database type to use

Value Type
Any keyword representing a valid database back-end of CLSQL, or NIL.

Initial Value
NIL

Description
The value of this variable is used in calls to initialize-database-type and connect as the
default value of the database-type parameter.

Caution

If the value of this variable is NIL, then all calls to initialize-database-type or connect
will have to specify the database-type to use, or a general-purpose error will be signalled.

Examples

(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t

Affected By
None.

See Also
intitialize-database-type

Notes
None.

18

Name
INITIALIZED-DATABASE-TYPES -- List of all initialized database types

Value Type
A list of all initialized database types, each of which represented by it's corresponding keyword.

Initial Value
NIL

Description
This variable is updated whenever initialize-database-type is called for a database type
which hasn't already been initialized before, as determined by this variable. In that case the keyword
representing the database type is pushed onto the list stored in *INITIALIZED-DATABASE-TYPES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t
initialized-database-types
=> (:MYSQL)

Affected By

initialize-database-type

See Also
intitialize-database-type

Notes
Direct access to this variable is primarily provided because of compatibility with Harlequin's Common
SQL.

19

Name
CONNECT -- create a connection to a database.

Syntax
connect connection-spec &key if-exists database-type pool make-default => database

Arguments and Values

connection-spec A vendor specific connection specification supplied as a list or as a string.

if-exists This indicates the action to take if a connection to the same database exists
already. See below for the legal values and actions. It defaults to the value of
connect-if-exists.

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

pool A boolean flag. If T, acquire connection from a pool of open connections. If the
pool is empty, a new connection is created. The default is NIL.

make-default A boolean flag. If T, *default-database* is set to the new connection, otherwise
default-database is not changed. The default is T.

database The database object representing the connection.

Description
This function takes a connection specification and a database type and creates a connection to the data-
base specified by those. The type and structure of the connection specification depend on the database
type.

The parameter if-exists specifies what to do if a connection to the database specified exists already,
which is checked by calling find-database on the database name returned by database-
name-from-spec when called with the connection-spec and database-type parameters.
The possible values of if-exists are:

:new Go ahead and create a new connection.

:warn-new This is just like :new, but also signals a warning of type clsql-exists-warning, indicating
the old and newly created databases.

:error This will cause connect to signal a correctable error of type clsql-exists-error. The
user may choose to proceed, either by indicating that a new connection shall be created,
via the restart create-new, or by indicating that the existing connection shall be used, via
the restart use-old.

:old This will cause connect to use an old connection if one exists.

:warn-old This is just like :old, but also signals a warning of type clsql-exists-warning, indicating

20

the old database used, via the slots old-db and new-db

The database name of the returned database object will be the same under string= as that which
would be returned by a call to database-name-from-spec with the given connection-spec
and database-type parameters.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}>
(database-name *)
=> "dent/newesim/dent"

(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
>> In call to CONNECT:
>> There is an existing connection #<CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}> to database dent/newesim/dent.
>>
>> Restarts:
>> 0: [CREATE-NEW] Create a new connection.
>> 1: [USE-OLD] Use the existing connection.
>> 2: [ABORT] Return to Top-Level.
>>
>> Debug (type H for help)
>>
>> (CONNECT ("dent" "newesim" "dent" "dent") :IF-EXISTS NIL :DATABASE-TYPE ...)
>> Source:
>> ; File: /prj/CLSQL/sql/sql.cl
>> (RESTART-CASE (ERROR 'CLSQL-EXISTS-ERROR :OLD-DB OLD-DB)
>> (CREATE-NEW NIL :REPORT "Create a new connection."
>> (SETQ RESULT #))
>> (USE-OLD NIL :REPORT "Use the existing connection."
>> (SETQ RESULT OLD-DB)))
>> 0] 0
=> #<CLSQL-MYSQL:MYSQL-DATABASE {480451F5}>

Side Effects
A database connection is established, and the resultant database object is registered, so as to appear in
the list returned by connected-databases. *default-database* may be rebound to the created ob-
ject.

Affected by

default-database-type
connect-if-exists

Exceptional Situations
If the connection specification is not syntactically or semantically correct for the given database type, an
error of type sql-user-error is signalled. If during the connection attempt an error is detected (e.g. be-
cause of permission problems, network trouble or any other cause), an error of type sql-database-error is
signalled.

CONNECT

21

If a connection to the database specified by connection-spec exists already, conditions are sig-
nalled according to the if-exists parameter, as described above.

See Also
connected-databases
disconnect
reconnect
connect-if-exists
find-database
status

Notes
The pool and make-default keyword arguments to connect are CLSQL extensions.

CONNECT

22

Name
CONNECTED-DATABASES -- Return the list of active database objects.

Syntax

connected-databases => databases

Arguments and Values

databases The list of active database objects.

Description
This function returns the list of active database objects, i.e. all those database objects created by calls to
connect, which have not been closed by calling disconnect on them.

Caution

The consequences of modifying the list returned by connected-databases are undefined.

Examples

(connected-databases)
=> NIL
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>
(connected-databases)
=> (#<CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>

#<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)
(disconnect)
=> T
(connected-databases)
=> (#<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)
(disconnect)
=> T
(connected-databases)
=> NIL

Side Effects
None.

Affected By

23

connect
disconnect

Exceptional Situations
None.

See Also
disconnect
connect
status
find-database

Notes
None.

CONNECTED-DATABASES

24

Name
DATABASE-NAME -- Get the name of a database object

Syntax
database-name database => name

Arguments and Values

database A database object, either of type database or of type closed-database.

name A string describing the identity of the database to which this database object is connected
to.

Description
This function returns the database name of the given database. The database name is a string which
somehow describes the identity of the database to which this database object is or has been connected.
The database name of a database object is determined at connect time, when a call to database-
name-from-spec derives the database name from the connection specification passed to connect
in the connection-spec parameter.

The database name is used via find-database in connect to determine whether database connec-
tions to the specified database exist already.

Usually the database name string will include indications of the host, database name, user, or port that
where used during the connection attempt. The only important thing is that this string shall try to identi-
fy the database at the other end of the connection. Connection specifications parts like passwords and
credentials shall not be used as part of the database name.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

25

Side Effects
None.

Affected By

database-name-from-spec

Exceptional Situations
Will signal an error if the object passed as the database parameter is neither of type database nor of
type closed-database.

See Also

connect
find-database
connected-databases
disconnect
status

Notes
None.

DATABASE-NAME

26

Name
DATABASE-NAME-FROM-SPEC -- Return the database name string corresponding to the given con-
nection specification.

Syntax

database-name-from-spec connection-spec database-type => name

Arguments and Values

connection-spec A connection specification, whose structure and interpretation are dependent on
the database-type.

database-type A database type specifier, i.e. a keyword.

name A string denoting a database name.

Description
This generic function takes a connection specification and a database type and returns the database name
of the database object that would be created had connect been called with the given connection spe-
cification and database types.

This function is useful in determining a database name from the connection specification, since the way
the connection specification is converted into a database name is dependent on the database type.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

(find-database "dent/newesim/dent")
=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/template1/dent")
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(find-database "www.pmsf.de/template1/dent" nil)

27

=> NIL
(find-database **)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

Side Effects
None.

Affected by
None.

Exceptional Situations
If the value of connection-spec is not a valid connection specification for the given database type,
an error of type clsql-invalid-spec-error might be signalled.

See Also

connect

Notes
database-name-from-spec is a CLSQL extension.

DATABASE-NAME-FROM-SPEC

28

Name
DATABASE-TYPE -- Get the type of a database object.

Syntax

database-type DATABASE => type

Arguments and Values

database A database object, either of type database or of type closed-database.

type A keyword symbol denoting a known database back-end.

Description
Returns the type of database.

Examples

(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-type *default-database*)
=> :postgresql

Side Effects
None.

Affected by
None.

Exceptional Situations
Will signal an error if the object passed as the database parameter is neither of type database nor of
type closed-database.

See Also

connect
find-database
connected-databases
disconnect

29

status

Notes
database-type is a CLSQL extension.

DATABASE-TYPE

30

Name
DISCONNECT -- close a database connection

Syntax
disconnect &key database error => result

Arguments and Values

error A boolean flag indicating whether to signal an error if database is non-NIL but cannot
be found.

database The database to disconnect, which defaults to the database indicated by
default-database.

result A Boolean indicating whether a connection was successfully disconnected.

Description
This function takes a database object as returned by connect, and closes the connection. If no match-
ing database is found and error and database are both non-NIL an error is signaled, otherwise NIL
is returned. If the database is from a pool it will be released to this pool.

The status of the object passed is changed to closed after the disconnection succeeds, thereby preventing
further use of the object as an argument to CLSQL functions, with the exception of database-name
and database-type. If the user does pass a closed database to any other CLSQL function, an error of
type sql-fatal-error is signalled.

Examples

(disconnect :database (find-database "dent/newesim/dent"))
=> T

Side Effects
The database connection is closed, and the database object is removed from the list of connected data-
bases as returned by connected-databases.

The state of the database object is changed to closed.

If the database object passed is the same under eq as the value of *default-database*, then
default-database is set to the first remaining database from connected-databases or to NIL if
no further active database exists.

Affected by

31

default-database

Exceptional Situations
If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type sql-error might be signalled.

See Also

connect
disconnect-pooled

Notes
None.

DISCONNECT

32

Name
DISCONNECT-POOLED -- closes all pooled database connections

Syntax
disconnect-pooled => t

Description
This function disconnects all database connections that have been placed into the pool by calling con-
nect with :pool T.

Examples

(disconnect-pool)
=> T

Side Effects
Database connections will be closed and entries in the pool are removed.

Affected by

disconnect

Exceptional Situations
If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type clsql-error might be signalled.

See Also

connect
disconnect

Notes
disconnect-pooled is a CLSQL extension.

33

Name
FIND-DATABASE -- >Locate a database object through it's name.

Syntax
find-database database &optional errorp => result

Arguments and Values

database A database object or a string, denoting a database name.

errorp A generalized boolean. Defaults to t.

db-type A keyword symbol denoting a known database back-end.

result Either a database object, or, if errorp is NIL, possibly NIL.

Description
find-database locates an active database object given the specification in database. If data-
base is an object of type database, find-database returns this. Otherwise it will search the active
databases as indicated by the list returned by connected-databases for a database of type db-
type whose name (as returned by database-name is equal as per string= to the string passed as
database. If it succeeds, it returns the first database found.

If db-type is NIL all databases matching the string database are considered. If no matching data-
bases are found and errorp is NIL then NIL is returned. If errorp is NIL and one or more matching
databases are found, then the most recently connected database is returned as a first value and the num-
ber of matching databases is returned as a second value. If no, or more than one, matching databases are
found and errorp is true, an error is signalled.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

34

(find-database "dent/newesim/dent")
=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/template1/dent")
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(find-database "www.pmsf.de/template1/dent" nil)
=> NIL
(find-database **)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

Side Effects
None.

Affected By

connected-databases

Exceptional Situations
Will signal an error of type clsql-error if no matching database can be found, and errorp is true. Will
signal an error if the value of database is neither an object of type database nor a string.

See Also

database-name
database-name-from-spec
disconnect
connect
status
connected-databases

Notes
The db-type keyword argument to find-database is a CLSQL extension.

FIND-DATABASE

35

Name
INITIALIZE-DATABASE-TYPE -- Initializes a database type

Syntax

initialize-database-type &key database-type => result

Arguments and Values

database-type The database type to initialize, i.e. a keyword symbol denoting a known database
back-end. Defaults to the value of *default-database-type*.

result Either NIL if the initialization attempt fails, or t otherwise.

Description
If the back-end specified by database-type has not already been initialized, as seen from
initialized-database-types, an attempt is made to initialize the database. If this attempt succeeds, or the
back-end has already been initialized, the function returns t, and places the keyword denoting the data-
base type onto the list stored in *initialized-database-types*, if not already present.

If initialization fails, the function returns NIL, and/or signals an error of type clsql-error. The kind of ac-
tion taken depends on the back-end and the cause of the problem.

Examples

initialized-database-types
=> NIL
(setf *default-database-type* :mysql)
=> :MYSQL
(initialize-database-type)
>> Compiling LAMBDA (#:G897 #:G898 #:G901 #:G902):
>> Compiling Top-Level Form:
>>
=> T
initialized-database-types
=> (:MYSQL)
(initialize-database-type)
=> T
initialized-database-types
=> (:MYSQL)

Side Effects
The database back-end corresponding to the database type specified is initialized, unless it has already
been initialized. This can involve any number of other side effects, as determined by the back-end im-

36

plementation (like e.g. loading of foreign code, calling of foreign code, networking operations, etc.). If
initialization is attempted and succeeds, the database-type is pushed onto the list stored in
initialized-database-types.

Affected by

default-database-type
initialized-database-types

Exceptional Situations
If an error is encountered during the initialization attempt, the back-end may signal errors of kind clsql-
error.

See Also
initialized-database-types
default-database-type

Notes
None.

INITIALIZE-DATABASE-TYPE

37

Name
RECONNECT -- Re-establishes the connection between a database object and its RDBMS.

Syntax

reconnect &key database error force => result

Arguments and Values

database The database to reconnect, which defaults to the database indicated by *default-database*.

error A boolean flag indicating whether to signal an error if database is non-nil but cannot
be found. The default value is NIL.

force A Boolean indicating whether to signal an error if the database connection has been lost.
The default value is T.

result A Boolean indicating whether the database was successfully reconnected.

Description
Reconnects database which defaults to *default-database* to the underlying database management
system. On success, T is returned and the variable *default-database* is set to the newly reconnected
database. If database is a database instance, this object is closed. If database is a string, then a
connected database whose name matches database is sought in the list of connected databases. If no
matching database is found and error and database are both non-NIL an error is signaled, other-
wise NIL is returned.

When the current database connection has been lost, if force is non-NIL as it is by default, the con-
nection is closed and errors are suppressed. If force is NIL and the database connection cannot be
closed, an error is signalled.

Examples

default-database
=> #<CLSQL-SQLITE:SQLITE-DATABASE :memory: OPEN {48CFBEA5}>
(reconnect)
=> #<CLSQL-SQLITE:SQLITE-DATABASE :memory: OPEN {48D64105}>

Side Effects
A database connection is re-established and *default-database* may be rebound to the supplied database
object.

Affected by

38

default-database

Exceptional Situations
An error may be signalled if the specified database cannot be located or if the database cannot be closed.

See Also

connect
disconnect
disconnect-pooled

Notes
None.

RECONNECT

39

Name
STATUS -- Print information about connected databases.

Syntax

status &optional full =>

Arguments and Values

full A boolean indicating whether to print additional table information. The default value is NIL.

Description
Prints information about the currently connected databases to *STANDARD-OUTPUT*. The argument
full is NIL by default and a value of t means that more detailed information about each database is
printed.

Examples

(status)

CLSQL STATUS: 2004-06-13 15:07:39
--

DATABASE TYPE RECORDING
--

localhost/test/petrov mysql nil
localhost/test/petrov postgresql nil
localhost/test/petrov postgresql-socket nil
test/petrov odbc nil

* :memory: sqlite nil
--

(status t)

CLSQL STATUS: 2004-06-13 15:08:08

DATABASE TYPE RECORDING POOLED TABLES VIEWS

localhost/test/petrov mysql nil nil 7 0
localhost/test/petrov postgresql nil nil 7 0
localhost/test/petrov postgresql-socket nil nil 7 0
test/petrov odbc nil nil 7 0

* :memory: sqlite nil nil 0 0

Side Effects
None.

40

Affected by
None.

Exceptional Situations
None.

See Also

connected-databases
connect
disconnect
connect-if-exists
find-database

Notes
None.

STATUS

41

Name
CREATE-DATABASE -- create a database

Syntax
create-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, a new database was successfully created.

Description
This function creates a database in the database system specified by database-type.

Examples

(create-database '("localhost" "new" "dent" "dent") :database-type :mysql)
=> T

(create-database '("localhost" "new" "dent" "badpasswd") :database-type :mysql)
=>
Error: While trying to access database localhost/new/dent
using database-type MYSQL:
Error database-create failed: mysqladmin: connect to server at 'localhost' failed

error: 'Access denied for user: 'root@localhost' (Using password: YES)'
has occurred.
[condition type: CLSQL-ACCESS-ERROR]

Side Effects
A database will be created on the filesystem of the host.

Exceptional Situations
An exception will be thrown if the database system does not allow new databases to be created or if
database creation fails.

See Also

42

destroy-database
probe-database
list-databases

Notes
This function may invoke the operating systems functions. Thus, some database systems may require the
administration functions to be available in the current PATH. At this time, the :mysql backend requires
mysqladmin and the :postgresql backend requires createdb.

create-database is a CLSQL extension.

CREATE-DATABASE

43

Name
DESTROY-DATABASE -- destroys a database

Syntax
destroy-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, the database was successfully destroyed.

Description
This function destroys a database in the database system specified by database-type.

Examples

(destroy-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> T

(destroy-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=>
Error: While trying to access database localhost/test2/root
using database-type POSTGRESQL:
Error database-destory failed: dropdb: database removal failed: ERROR: database "test2" does not exist
has occurred.
[condition type: CLSQL-ACCESS-ERROR]

Side Effects
A database will be removed from the filesystem of the host.

Exceptional Situations
An exception will be thrown if the database system does not allow databases to be removed, the data-
base does not exist, or if database removal fails.

See Also

create-database

44

probe-database
list-databases

Notes
This function may invoke the operating systems functions. Thus, some database systems may require the
administration functions to be available in the current PATH. At this time, the :mysql backend requires
mysqladmin and the :postgresql backend requires dropdb.

destroy-database is a CLSQL extension.

DESTROY-DATABASE

45

Name
PROBE-DATABASE -- tests for existence of a database

Syntax
probe-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, the database exists in the database system.

Description
This function tests for the existence of a database in the database system specified by database-
type.

Examples

(probe-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> T

Side Effects
None

Exceptional Situations
An exception maybe thrown if the database system does not receive administrator-level authentication
since function may need to read the administrative database of the database system.

See Also

create-database
destroy-database
list-databases

Notes

46

probe-database is a CLSQL extension.

PROBE-DATABASE

47

Name
LIST-DATABASES -- List databases matching the supplied connection spec and database type.

Syntax

list-databases connection-spec &key database-type => result

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

result A list of matching databases.

Description
This function returns a list of databases existing in the database system specified by database-type.

Examples

(list-databases '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> ("address-book" "sql-test" "template1" "template0" "test1" "dent" "test")

Side Effects
None.

Affected by
None.

Exceptional Situations
An exception maybe thrown if the database system does not receive administrator-level authentication
since function may need to read the administrative database of the database system.

See Also

create-database
destroy-database

48

probe-database

Notes
list-databases is a CLSQL extension.

LIST-DATABASES

49

Name
WITH-DATABASE -- Execute a body of code with a variable bound to a specified database object.

Syntax

with-database db-var connection-spec &rest connect-args &body body => result

Arguments and Values

db-var A variable to which the specified database is bound.

connection-spec A vendor specific connection specification supplied as a list or as a string.

connect-args Other optional arguments to connect.

body A Lisp code body.

result Determined by the result of executing the last expression in body.

Description
Evaluate body in an environment, where db-var is bound to the database connection given by con-
nection-spec and connect-args. The connection is automatically closed or released to the pool
on exit from the body.

Examples

(connected-databases)
=> NIL
(with-database (db '(":memory:") :database-type :sqlite

:make-default nil)
(database-name db))

=> ":memory:"
(connected-databases)
=> NIL

Side Effects
See connect and disconnect.

Affected by
See connect and disconnect.

Exceptional Situations

50

See connect and disconnect.

See Also

connect
disconnect
disconnect-pooled
with-default-database

Notes
with-database is a CLSQL extension.

WITH-DATABASE

51

Name
WITH-DEFAULT-DATABASE -- Execute a body of code with *default-database* bound to a specified
database.

Syntax

with-default-database database &rest body => result

Arguments and Values

database An active database object.

body A Lisp code body.

result Determined by the result of executing the last expression in body.

Description
Perform body with DATABASE bound as *default-database*.

Examples

default-database
=> #<CLSQL-ODBC:ODBC-DATABASE new/dent OPEN {49095CAD}>

(let ((database (clsql:find-database ":memory:")))
(with-default-database (database)
(database-name *default-database*)))

=> ":memory:"

Side Effects
None.

Affected by
None.

Exceptional Situations
Calls to CLSQL functions in body may signal errors if database is not an active database object.

See Also

52

with-database
default-database

Notes
with-default-database is a CLSQL extension.

WITH-DEFAULT-DATABASE

53

The Symbolic SQL Syntax
CLSQL provides a symbolic syntax allowing the construction of SQL expressions as lists delimited by
square brackets. The syntax is turned off by default. This section describes utilities for enabling and dis-
abling the square bracket reader syntax and for constructing symbolic SQL expressions.

54

Name
ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.

Syntax

enable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns on the SQL reader syntax setting the syntax state such that if the syntax is subsequently disabled,
restore-sql-reader-syntax-state will enable it again.

Examples
None.

Side Effects
Sets the internal syntax state to enabled.

Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
disable-sql-reader-syntax
locally-enable-sql-reader-syntax
locally-disable-sql-reader-syntax
restore-sql-reader-syntax-state

Notes
The symbolic SQL syntax is disabled by default.

CLSQL differs from CommonSQL in that enable-sql-reader-syntax is defined as a macro
rather than a function.

55

Name
DISABLE-SQL-READER-SYNTAX -- Globally disable square bracket reader syntax.

Syntax

disable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns off the SQL reader syntax setting the syntax state such that if the syntax is subsequently enabled,
restore-sql-reader-syntax-state will disable it again.

Examples
None.

Side Effects
Sets the internal syntax state to disabled.

Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
locally-enable-sql-reader-syntax
locally-disable-sql-reader-syntax
restore-sql-reader-syntax-state

Notes
The symbolic SQL syntax is disabled by default.

CLSQL differs from CommonSQL in that disable-sql-reader-syntax is defined as a macro
rather than a function.

56

Name
LOCALLY-ENABLE-SQL-READER-SYNTAX -- Globally enable square bracket reader syntax.

Syntax

locally-enable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns on the SQL reader syntax without changing the syntax state such that restore-
sql-reader-syntax-state will re-establish the current syntax state.

Examples
Intended to be used in a file for code which uses the square bracket syntax without changing the global
state.

#.(locally-enable-sql-reader-syntax)

... CODE USING SYMBOLIC SQL SYNTAX ...

#.(restore-sql-reader-syntax-state)

Side Effects
Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
disable-sql-reader-syntax
locally-disable-sql-reader-syntax
restore-sql-reader-syntax-state

57

Notes
The symbolic SQL syntax is disabled by default.

CLSQL differs from CommonSQL in that locally-enable-sql-reader-syntax is defined as
a macro rather than a function.

LOCALLY-EN-
ABLE-SQL-READER-SYNTAX

58

Name
LOCALLY-DISABLE-SQL-READER-SYNTAX -- Locally disable square bracket reader syntax.

Syntax

locally-disable-sql-reader-syntax =>

Arguments and Values
None.

Description
Turns off the SQL reader syntax without changing the syntax state such that restore-
sql-reader-syntax-state will re-establish the current syntax state.

Examples
Intended to be used in a file for code in which the square bracket syntax should be disabled without
changing the global state.

#.(locally-disable-sql-reader-syntax)

... CODE NOT USING SYMBOLIC SQL SYNTAX ...

#.(restore-sql-reader-syntax-state)

Side Effects
Modifies the default readtable.

Affected by
None.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
disable-sql-reader-syntax
locally-enable-sql-reader-syntax
restore-sql-reader-syntax-state

59

Notes
The symbolic SQL syntax is disabled by default.

CLSQL differs from CommonSQL in that locally-disable-sql-reader-syntax is defined as
a macro rather than a function.

LOCALLY-DIS-
ABLE-SQL-READER-SYNTAX

60

Name
RESTORE-SQL-READER-SYNTAX-STATE -- Restore square bracket reader syntax to its previous
state.

Syntax

restore-sql-reader-syntax-state =>

Arguments and Values
None.

Description
Enables the SQL reader syntax if enable-sql-reader-syntax has been called more recently
than disable-sql-reader-syntax and otherwise disables the SQL reader syntax. By default, the
SQL reader syntax is disabled.

Examples
See locally-enable-sql-reader-syntax and locally-dis-
able-sql-reader-syntax.

Side Effects
Reverts the internal syntax state.

Modifies the default readtable.

Affected by
The current internal syntax state.

Exceptional Situations
None.

See Also
enable-sql-reader-syntax
disable-sql-reader-syntax
locally-enable-sql-reader-syntax
locally-disable-sql-reader-syntax

Notes
The symbolic SQL syntax is disabled by default.

61

CLSQL differs from CommonSQL in that restore-sql-reader-syntax-state is defined as a
macro rather than a function.

RESTORE-
SQL-READER-SYNTAX-STATE

62

Name
SQL -- Construct an SQL string from supplied expressions.

Syntax

sql &rest args => sql-expression

Arguments and Values

args A set of expressions.

sql-expression A string representing an SQL expression.

Description
Returns an SQL string generated from the expressions args. The expressions are translated into SQL
strings and then concatenated with a single space delimiting each expression.

Examples

(sql nil)
=> "NULL"

(sql 'foo)
=> "FOO"

(sql "bar")
=> "'bar'"

(sql 10)
=> "10"

(sql '(nil foo "bar" 10))
=> "(NULL,FOO,'bar',10)"

(sql #(nil foo "bar" 10))
=> "NULL,FOO,'bar',10"

(sql [select [foo] [bar] :from [baz]] 'having [= [foo id] [bar id]]
'and [foo val] '< 5)

=> "SELECT FOO,BAR FROM BAZ HAVING (FOO.ID = BAR.ID) AND FOO.VAL < 5"

Side Effects
None.

63

Affected by
None.

Exceptional Situations
An error of type sql-user-error is signalled if any element in args is not of the supported types
(a symbol, string, number or symbolic SQL expression) or a list or vector containing only these suppor-
ted types.

See Also
sql-expression
sql-operation
sql-operator

Notes
None.

SQL

64

Name
SQL-EXPRESSION -- Constructs an SQL expression from supplied keyword arguments.

Syntax

sql-expression &key string table alias attribute type => result

Arguments and Values

string A string.

table A symbol representing a database table identifier.

alias A table alias.

attribute A symbol representing an attribute identifier.

type A type specifier.

result A object of type sql-expression.

Description
Returns an SQL expression constructed from the supplied arguments which may be combined as fol-
lows:

• attribute and type;

• attribute;

• alias or table and attribute and type;

• alias or table and attribute;

• table, attribute and type;

• table and attribute;

• table and alias;

• table;

• string.

Examples

(sql-expression :table 'foo :attribute 'bar)

65

=> #<CLSQL-SYS:SQL-IDENT-ATTRIBUTE FOO.BAR>

(sql-expression :attribute 'baz)
=> #<CLSQL-SYS:SQL-IDENT-ATTRIBUTE BAZ>

Side Effects
None.

Affected by
None.

Exceptional Situations
An error of type sql-user-error is signalled if an unsupported combination of keyword arguments
is specified.

See Also
sql
sql-operation
sql-operator

Notes
None.

SQL-EXPRESSION

66

Name
SQL-OPERATION -- Constructs an SQL expression from a supplied operator and arguments.

Syntax

sql-operation operator &rest args => result

sql-operation 'function func &rest args => result

Arguments and Values

operator A symbol denoting an SQL operator.

func A string denoting an SQL function.

args A set of arguments for the specified SQL operator or function.

result A object of type sql-expression.

Description
Returns an SQL expression constructed from the supplied SQL operator or function operator and its
arguments args. If operator is passed the symbol 'function then the first value in args is taken to
be a valid SQL function and the remaining values in args its arguments.

Examples

(sql-operation 'select
(sql-expression :table 'foo :attribute 'bar)
(sql-operation 'sum (sql-expression :table 'foo :attribute 'baz))
:from
(sql-expression :table 'foo)
:where
(sql-operation '> (sql-expression :attribute 'bar) 12)
:order-by (sql-operation 'sum (sql-expression :attribute 'baz)))

=> #<SQL-QUERY SELECT FOO.BAR,SUM(FOO.BAZ) FROM FOO WHERE (BAR > 12) ORDER BY SUM(BAZ)>

(sql-operation 'function "strpos" "CLSQL" "SQL")
=> #<CLSQL-SYS:SQL-FUNCTION-EXP STRPOS('CLSQL','SQL')>

Side Effects
None.

67

Affected by
None.

Exceptional Situations
An error of type sql-user-error is signalled if operator is not a symbol representing a suppor-
ted SQL operator.

See Also
sql
sql-expression
sql-operator

Notes
None.

SQL-OPERATION

68

Name
SQL-OPERATOR -- Returns the symbol for the supplied SQL operator.

Syntax

sql-operator operator => result

Arguments and Values

operator A symbol denoting an SQL operator.

result The Lisp symbol used by CLSQL to represent the specified operator.

Description
Returns the Lisp symbol corresponding to the SQL operator represented by the symbol operator. If
operator does not represent a supported SQL operator or is not a symbol, nil is returned.

Examples

(sql-operator 'like)
=> SQL-LIKE

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

See Also
sql
sql-expression
sql-operation

Notes

69

CLSQL's symbolic SQL syntax currently has support for the following CommonSQL compatible SQL
operators:

any
some
all
not
union
intersect
minus
except
order-by
null
*
+
/
-
like
and
or
in
substr
||
=
<
>
>=
<=
<>
count
max
min
avg
sum
function
between
distinct
nvl
slot-value
userenv

as well as the pseudo-operator function.

The following operators are provided as CLSQL extensions to the CommonSQL API.

concat
substring
limit
group-by
having
not-null
exists
uplike
is
==
the
coalesce
view-class

SQL-OPERATOR

70

Note that some of these operators are not supported by all of the RDBMS supported by CLSQL (see the
Appendix for details).

SQL-OPERATOR

71

Functional Data Definition
Language (FDDL)

CLSQL provides a functional DDL which supports the creation and destruction of a variety of database
objects including tables, views, indexes and sequences. Functions which return information about cur-
rently defined database objects are also provided. In addition, the FDDL includes functionality for ex-
amining table attributes and attribute types.

72

Name
CREATE-TABLE -- Create a database table.

Syntax

create-table name description &key database constraints transactions =>

Arguments and Values

name The name of the table as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

description A list.

constraints A string, a list of strings or NIL.

transactions A Boolean. The default value is T.

Description
Creates a table called name, which may be a string, symbol or SQL table identifier, in database
which defaults to *default-database*. description is a list whose elements are lists containing the
attribute names, types, and other constraints such as not-null or primary-key for each column in the ta-
ble.

constraints is a string representing an SQL table constraint expression or a list of such strings.

With MySQL databases, if transactions is T an InnoDB table is created which supports transac-
tions.

Examples

(create-table [foo]
'(([id] integer)
([height] float)
([name] (string 24))
([comments] longchar)))

=>
(table-exists-p [foo])
=> T

(create-table [foo] '(([bar] integer :not-null :unique :primary-key)
([baz] string :not-null :unique)))

=>
(table-exists-p [foo])
=> T

(create-table [foo] '(([bar] integer :not-null) ([baz] string :not-null))

73

:constraints '("UNIQUE (bar,baz)" "PRIMARY KEY (bar)"))
=>
(table-exists-p [foo])
=> T

Side Effects
A table is created in database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if a relation called name already exists.

See Also
drop-table
list-tables
table-exists-p

Notes
The constraints and transactions keyword arguments to create-table are CLSQL exten-
sions. The transactions keyword argument is for compatibility with MySQL databases.

CREATE-TABLE

74

Name
DROP-TABLE -- Drop a database table.

Syntax

drop-table name &key if-does-not-exist database =>

Arguments and Values

name The name of the table as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the table called name from database which defaults to *default-database*. If the table does
not exist and if-does-not-exist is :ignore then drop-table returns NIL whereas an error is
signalled if if-does-not-exist is :error.

Examples

(table-exists-p [foo])
=> T
(drop-table [foo] :if-does-not-exist :ignore)
=>
(table-exists-p [foo])
=> NIL

Side Effects
A table is dropped database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if name doesn't exist and if-does-not-exist has a value of :error.

See Also

75

create-table
list-tables
table-exists-p

Notes
The if-does-not-exist keyword argument to drop-table is a CLSQL extension.

DROP-TABLE

76

Name
LIST-TABLES -- Returns a list of database tables.

Syntax

list-tables &key owner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list of strings.

Description
Returns a list of strings representing table names in database which defaults to *default-database*.
owner is NIL by default which means that only tables owned by users are listed. If owner is a string
denoting a user name, only tables owned by owner are listed. If owner is :all then all tables are listed.

Examples

(list-tables :owner "fred")
=> ("type_table" "type_bigint" "employee" "company" "addr" "ea_join" "big")

(list-tables :owner :all)
=> ("pg_description" "pg_group" "pg_proc" "pg_rewrite" "pg_type" "pg_attribute"

"pg_class" "pg_inherits" "pg_index" "pg_operator" "pg_opclass" "pg_am"
"pg_amop" "pg_amproc" "pg_language" "pg_largeobject" "pg_aggregate"
"pg_trigger" "pg_listener" "pg_cast" "pg_namespace" "pg_shadow"
"pg_conversion" "pg_depend" "pg_attrdef" "pg_constraint" "pg_database"
"type_table" "type_bigint" "employee" "company" "pg_statistic" "addr"
"ea_join" "big")

Side Effects
None.

Affected by
default-database

Exceptional Situations

77

None.

See Also
create-table
drop-table
table-exists-p

Notes
None.

LIST-TABLES

78

Name
TABLE-EXISTS-P -- Tests for the existence of a database table.

Syntax

table-exists-p name &key owner database => result

Arguments and Values

name The name of the table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL table called name in database which defaults to
default-database. owner is NIL by default which means that only tables owned by users are ex-
amined. If owner is a string denoting a user name, only tables owned by owner are examined. If own-
er is :all then all tables are examined.

Examples

(table-exists-p [foo])
=> T

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

79

create-table
drop-table
list-tables

Notes
None.

TABLE-EXISTS-P

80

Name
CREATE-VIEW -- Create a database view.

Syntax

create-view name &key as column-list with-check-option database =>

Arguments and Values

name The name of the view as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

as A symbolic SQL query expression.

column-list A list.

with-check-option A Boolean.

Description
Creates a view called name in database which defaults to *default-database*. The view is created us-
ing the query as and the columns of the view may be specified using the column-list parameter.
The with-check-option is NIL by default but if it has a non-NIL value, then all insert/update
commands on the view are checked to ensure that the new data satisfy the query as.

Examples

(create-view [lenins-group]
:as [select [first-name] [last-name] [email]

:from [employee]
:where [= [managerid] 1]])

=>

(select [*] :from [lenins-group])
=> (("Josef" "Stalin" "stalin@soviet.org")

("Leon" "Trotsky" "trotsky@soviet.org")
("Nikita" "Kruschev" "kruschev@soviet.org")
("Leonid" "Brezhnev" "brezhnev@soviet.org")
("Yuri" "Andropov" "andropov@soviet.org")
("Konstantin" "Chernenko" "chernenko@soviet.org")
("Mikhail" "Gorbachev" "gorbachev@soviet.org")
("Boris" "Yeltsin" "yeltsin@soviet.org")
("Vladimir" "Putin" "putin@soviet.org")),
("first_name" "last_name" "email")

Side Effects

81

A view is created in database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if a relation called name already exists.

See Also
drop-view
list-views
view-exists-p

Notes
None.

CREATE-VIEW

82

Name
DROP-VIEW -- Drops a database view.

Syntax

drop-view name &key if-does-not-exist database =>

Arguments and Values

name The name of the view as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the view called name from database which defaults to *default-database*. If the view does
not exist and if-does-not-exist is :ignore then drop-view returns NIL whereas an error is sig-
nalled if if-does-not-exist is :error.

Examples

(view-exists-p [foo])
=> T
(drop-view [foo] :if-does-not-exist :ignore)
=>
(view-exists-p [foo])
=> NIL

Side Effects
A view is dropped database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if name doesn't exist and if-does-not-exist has a value of :error.

See Also

83

create-view
list-views
view-exists-p

Notes
The if-does-not-exist keyword argument to drop-view is a CLSQL extension.

DROP-VIEW

84

Name
LIST-VIEWS -- Returns a list of database views.

Syntax

list-views &key owner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list of strings.

Description
Returns a list of strings representing view names in database which defaults to *default-database*.
owner is NIL by default which means that only views owned by users are listed. If owner is a string
denoting a user name, only views owned by owner are listed. If owner is :all then all views are listed.

Examples

(list-views :owner "fred")
=> ("lenins_group")

(list-views :owner :all)
=> ("pg_user" "pg_rules" "pg_views" "pg_tables" "pg_indexes" "pg_stats"

"pg_stat_all_tables" "pg_stat_sys_tables" "pg_stat_user_tables"
"pg_statio_all_tables" "pg_statio_sys_tables" "pg_statio_user_tables"
"pg_stat_all_indexes" "pg_stat_sys_indexes" "pg_stat_user_indexes"
"pg_statio_all_indexes" "pg_statio_sys_indexes" "pg_statio_user_indexes"
"pg_statio_all_sequences" "pg_statio_sys_sequences"
"pg_statio_user_sequences" "pg_stat_activity" "pg_stat_database"
"pg_locks" "pg_settings" "lenins_group")

Side Effects
None.

Affected by
default-database

Exceptional Situations

85

None.

See Also
create-view
drop-view
view-exists-p

Notes
list-views is a CLSQL extension.

LIST-VIEWS

86

Name
VIEW-EXISTS-P -- Tests for the existence of a database view.

Syntax

view-exists-p name &key owner database => result

Arguments and Values

name The name of the view as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL view called name in database which defaults to
default-database. owner is NIL by default which means that only views owned by users are ex-
amined. If owner is a string denoting a user name, only views owned by owner are examined. If own-
er is :all then all views are examined.

Examples

(view-exists-p [lenins-group])
=> T

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

87

create-view
drop-view
list-views

Notes
view-exists-p is a CLSQL extension.

VIEW-EXISTS-P

88

Name
CREATE-INDEX -- Create a database index.

Syntax

create-index name &key on unique attributes database =>

Arguments and Values

name The name of the index as a string, symbol or SQL expression.

on The name of a table as a string, symbol or SQL expression.

unique A Boolean.

attributes A list of attribute names.

database A database object which defaults to *default-database*.

Description
Creates an index called name on the table specified by on in database which default to
default-database. The table attributes to use in constructing the index name are specified by at-
tributes. The unique argument is NIL by default but if it has a non-NIL value then the indexed at-
tributes must have unique values.

Examples

(create-index [bar] :on [employee]
:attributes '([first-name] [last-name] [email])
:unique t)

=>

(index-exists-p [bar])
=> T

Side Effects
An index is created in database.

Affected by
default-database

89

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if a relation called name already exists.

See Also
drop-index
list-indexes
index-exists-p

Notes
None.

CREATE-INDEX

90

Name
DROP-INDEX -- Drop a database index.

Syntax

drop-index name &key if-does-not-exist on database =>

Arguments and Values

name The name of the index as a string, symbol or SQL expression.

on The name of a table as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the index called name in database which defaults to *default-database*. If the index does not
exist and if-does-not-exist is :ignore then drop-index returns NIL whereas an error is sig-
nalled if if-does-not-exist is :error.

The argument on allows the optional specification of a table to drop the index from. This is required for
compatability with MySQL.

Examples

(index-exists-p [foo])
=> T
(drop-index [foo] :if-does-not-exist :ignore)
=>
(index-exists-p [foo])
=> NIL

Side Effects
An index is dropped in database.

Affected by
default-database

Exceptional Situations

91

An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if name doesn't exist and if-does-not-exist has a value of :error.

See Also
create-index
list-indexes
index-exists-p

Notes
The if-does-not-exist and on keyword arguments to drop-index are CLSQL extensions. The
keyword argument on is provided for compatibility with MySQL.

DROP-INDEX

92

Name
LIST-INDEXES -- Returns a list of database indexes.

Syntax

list-indexes &key onowner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

on The name of a table as a string, symbol or SQL expression, a list of such names or NIL.

result A list of strings.

Description
Returns a list of strings representing index names in database which defaults to *default-database*.
owner is NIL by default which means that only indexes owned by users are listed. If owner is a string
denoting a user name, only indexes owned by owner are listed. If owner is :all then all indexes are lis-
ted.

The keyword argument on limits the results to indexes on the specified tables. Meaningful values for on
are NIL (the default) which means that all tables are considered, a string, symbol or SQL expression
representing a table name in database or a list of such table identifiers.

Examples

(list-indexes)
=> ("employeepk" "companypk" "addrpk" "bar")

(list-indexes :on '([addr] [company]))
=> ("addrpk" "companypk")

Side Effects
None.

Affected by
default-database

93

Exceptional Situations
None.

See Also
create-index
drop-index
index-exists-p

Notes
list-indexes is a CLSQL extension.

LIST-INDEXES

94

Name
INDEX-EXISTS-P -- Tests for the existence of a database index.

Syntax

index-exists-p name &key owner database => result

Arguments and Values

name The name of the index as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL index called name in database which defaults to
default-database. owner is NIL by default which means that only indexes owned by users are ex-
amined. If owner is a string denoting a user name, only indexes owned by owner are examined. If
owner is :all then all indexes are examined.

Examples

(index-exists-p [bar])
=> T

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

95

create-index
drop-index
list-indexes

Notes
index-exists-p is a CLSQL extension.

INDEX-EXISTS-P

96

Name
ATTRIBUTE-TYPE -- Returns the type of the supplied attribute.

Syntax

attribute-type attribute table &key owner database => type, precision, scale, nulls-accepted

Arguments and Values

attribute The name of the index as a string, symbol or SQL expression.

table The name of a table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

type A keyword symbol denoting a vendor-specific SQL type.

precision An integer denoting the precision of the attribute type or NIL.

scale An integer denoting the scale of the attribute type or NIL.

nulls-accepted 0 or 1.

Description
Returns a keyword symbol representing the vendor-specific field type of the supplied attribute at-
tribute in the table specified by table in database which defaults to *default-database*. owner
is NIL by default which means that the attribute specified by attribute, if it exists, must be user
owned else NIL is returned. If owner is a string denoting a user name, the attribute, if it exists, must be
owned by owner else NIL is returned, whereas if owner is :all then the attribute, if it exists, will be re-
turned regardless of its owner.

Other information is also returned. The second value is the type precision, the third is the scale and the
fourth represents whether or not the attribute accepts null values (a value of 0) or not (a value of 1).

Examples

(attribute-type [emplid] [employee])
=> :INT4, 4, NIL, 0

Side Effects
None.

97

Affected by
default-database

Exceptional Situations
None.

See Also
list-attributes
list-attribute-types

Notes
None.

ATTRIBUTE-TYPE

98

Name
LIST-ATTRIBUTE-TYPES -- Returns information about the attribute types of a table.

Syntax

list-attribute-types table &key owner database => result

Arguments and Values

table The name of a table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list.

Description
Returns a list containing information about the SQL types of each of the attributes in the table specified
by table in database which has a default value of *default-database*. owner is NIL by default
which means that only attributes owned by users are listed. If owner is a string denoting a user name,
only attributes owned by owner are listed. If owner is :all then all attributes are listed. The elements of
the returned list are lists where the first element is the name of the attribute, the second element is its
SQL type, the third is the type precision, the fourth is the scale of the attribute and the fifth is 1 if the at-
tribute accepts null values and otherwise 0.

Examples

(list-attribute-types [employee])
=> (("emplid" :INT4 4 NIL 0) ("groupid" :INT4 4 NIL 0)

("first_name" :VARCHAR 30 NIL 1) ("last_name" :VARCHAR 30 NIL 1)
("email" :VARCHAR 100 NIL 1) ("ecompanyid" :INT4 4 NIL 1)
("managerid" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1)
("married" :BOOL 1 NIL 1) ("birthday" :TIMESTAMP 8 NIL 1)
("bd_utime" :INT8 8 NIL 1))

Side Effects
None.

Affected by
default-database

99

Exceptional Situations
None.

See Also
attribute-type
list-attribute-types

Notes
None.

LIST-ATTRIBUTE-TYPES

100

Name
LIST-ATTRIBUTES -- Returns the attributes of a table as a list.

Syntax

list-attributes name &key owner database => result

Arguments and Values

name The name of a table as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list.

Description
Returns a list of strings representing the attributes of table name in database which defaults to
default-database. owner is NIL by default which means that only attributes owned by users are lis-
ted. If owner is a string denoting a user name, only attributes owned by owner are listed. If owner is
:all then all attributes are listed.

Examples

(list-attributes [employee])
=> ("emplid" "groupid" "first_name" "last_name" "email" "ecompanyid" "managerid"

"height" "married" "birthday" "bd_utime")

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

101

attribute-type
list-attribute-types

Notes
None.

LIST-ATTRIBUTES

102

Name
CREATE-SEQUENCE -- Create a database sequence.

Syntax

create-sequence name &key database =>

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

Description
Creates a sequence called name in database which defaults to *default-database*.

Examples

(create-sequence [foo])
=>
(sequence-exists-p [foo])
=> T

Side Effects
A sequence is created in database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if a relation called name already exists.

See Also
drop-sequence
list-sequences
sequence-exists-p
sequence-last

103

sequence-next
set-sequence-position

Notes
create-sequence is a CLSQL extension.

CREATE-SEQUENCE

104

Name
DROP-SEQUENCE -- Drop a database sequence.

Syntax

drop-sequence name &key if-does-not-exist database =>

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

if-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the sequence called name from database which defaults to *default-database*. If the sequence
does not exist and if-does-not-exist is :ignore then drop-sequence returns NIL whereas an
error is signalled if if-does-not-exist is :error.

Examples

(sequence-exists-p [foo])
=> T
(drop-sequence [foo] :if-does-not-exist :ignore)
=>
(sequence-exists-p [foo])
=> NIL

Side Effects
A sequence is dropped from database.

Affected by
default-database

Exceptional Situations
An error is signalled if name is not a string, symbol or SQL expression. An error of type sql-data-
base-data-error is signalled if name doesn't exist and if-does-not-exist has a value of :error.

See Also

105

create-sequence
list-sequences
sequence-exists-p
sequence-last
sequence-next
set-sequence-position

Notes
drop-sequence is a CLSQL extension.

DROP-SEQUENCE

106

Name
LIST-SEQUENCES -- Returns a list of database sequences.

Syntax

list-sequences &key owner database => result

Arguments and Values

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A list of strings.

Description
Returns a list of strings representing sequence names in database which defaults to
default-database. owner is NIL by default which means that only sequences owned by users are lis-
ted. If owner is a string denoting a user name, only sequences owned by owner are listed. If owner is
:all then all sequences are listed.

Examples

(list-sequences)
=> ("foo")

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also
create-sequence
drop-sequence

107

sequence-exists-p
sequence-last
sequence-next
set-sequence-position

Notes
list-sequences is a CLSQL extension.

LIST-SEQUENCES

108

Name
SEQUENCE-EXISTS-P -- Tests for the existence of a database sequence.

Syntax

sequence-exists-p name &key owner database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

owner A string, NIL or :all.

database A database object which defaults to *default-database*.

result A Boolean.

Description
Tests for the existence of an SQL sequence called name in database which defaults to
default-database. owner is NIL by default which means that only sequences owned by users are ex-
amined. If owner is a string denoting a user name, only sequences owned by owner are examined. If
owner is :all then all sequences are examined.

Examples

(sequence-exists-p [foo])
=> NIL

Side Effects
None.

Affected by
default-database

Exceptional Situations
None.

See Also

109

create-sequence
drop-sequence
list-sequences
sequence-last
sequence-next
set-sequence-position

Notes
sequence-exists-p is a CLSQL extension.

SEQUENCE-EXISTS-P

110

Name
SEQUENCE-LAST -- Return the last element in a database sequence.

Syntax

sequence-last name &key database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

result An integer.

Description
Return the last value allocated in the sequence called name in database which defaults to
default-database.

Examples

(sequence-last [foo])
=> 1

Side Effects
None.

Affected by
The current value stored in database sequence name.

default-database

Exceptional Situations
Will signal an error of type sql-database-data-error if a sequence called name does not exist in data-
base.

See Also
create-sequence

111

drop-sequence
list-sequences
sequence-exists-p
sequence-next
set-sequence-position

Notes
sequence-last is a CLSQL extension.

SEQUENCE-LAST

112

Name
SEQUENCE-NEXT -- Increment the value of a database sequence.

Syntax

sequence-next name &key database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

database A database object which defaults to *default-database*.

result An integer.

Description
Increment and return the value of the sequence called name in database which defaults to
default-database.

Examples

(sequence-last [foo])
=> 3
(sequence-next [foo])
=> 4
(sequence-next [foo])
=> 5
(sequence-next [foo])
=> 6

Side Effects
Modifies the value of the sequence name in database.

Affected by
The current value stored in database sequence name.

default-database

Exceptional Situations
Will signal an error of type sql-database-data-error if a sequence called name does not exist in data-
base.

113

See Also
create-sequence
drop-sequence
list-sequences
sequence-exists-p
sequence-last
set-sequence-position

Notes
sequence-next is a CLSQL extension.

SEQUENCE-NEXT

114

Name
SET-SEQUENCE-POSITION -- Sets the position of a database sequence.

Syntax

set-sequence-position name position &key database => result

Arguments and Values

name The name of the sequence as a string, symbol or SQL expression.

position An integer.

database A database object which defaults to *default-database*.

result An integer.

Description
Explicitly set the position of the sequence called name in database, which defaults to
default-database, to position which is returned.

Examples

(sequence-last [foo])
=> 4
(set-sequence-position [foo] 50)
=> 50
(sequence-next [foo])
=> 51

Side Effects
Modifies the value of the sequence name in database.

Affected by
default-database

Exceptional Situations
Will signal an error of type sql-database-data-error if a sequence called name does not exist in data-
base.

115

See Also
create-sequence
drop-sequence
list-sequences
sequence-exists-p
sequence-last
sequence-next

Notes
set-sequence-position is a CLSQL extension.

SET-SEQUENCE-POSITION

116

Name
TRUNCATE-DATABASE -- Drop all tables, views, indexes and sequences in a database.

Syntax

truncate-database &key database =>

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
Drop all tables, views, indexes and sequences in database which defaults to *default-database*.

Examples

(list-tables)
=> ("type_table" "type_bigint" "employee" "company" "addr" "ea_join" "big")
(list-indexes)
=> ("employeepk" "companypk" "addrpk")
(list-views)
=> ("lenins_group")
(list-sequences)
=> ("foo" "bar")
(truncate-database)
=>
(list-tables)
=> NIL
(list-indexes)
=> NIL
(list-views)
=> NIL
(list-sequences)
=> NIL

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations

117

Signals an error of type sql-database-error if database is not a database object.

See Also

drop-table
drop-view
drop-index
drop-sequence

Notes
truncate-database is a CLSQL extension.

TRUNCATE-DATABASE

118

Functional Data Manipulation
Language (FDML)

The functional data manipulation interface provided by CLSQL includes functions for inserting, updat-
ing and deleting records in existing database tables and executing SQL queries and statements with the
results of queries returned as Lisp types. SQL statements expressed as strings may be executed with the
query and execute-command functions. The select function, on the other hand, allows for the
construction of queries in Lisp using the symbolic SQL syntax. Finally, iterative manipulation of query
results is supported by do-query, map-query and an extended clause for the loop macro.

119

Name
CACHE-TABLE-QUERIES-DEFAULT -- Specifies the default behaviour for caching of attribute
types.

Value Type
A valid argument to the action parameter of cache-table-queries, i.e. one of T, NIL, :flush, .

Initial Value
nil

Description
Specifies the default behaivour for caching of attribute types. Meaningful values are T, NIL and :flush
as described for the action argument to cache-table-queries.

Examples
None.

Affected By
None.

See Also
cache-table-queries

Notes
None.

120

Name
CACHE-TABLE-QUERIES -- Control the caching of table attribute types.

Syntax

cache-table-queries table &key action database =>

Arguments and Values

table A string representing a database table, T or :default.

action T, NIL or :flush.

database A database object. This will default to the value of *default-database*.

Description
Controls the caching of attribute type information on the table specified by table in database which
defaults to *default-database*. action specifies the caching behaviour to adopt. If its value is T then
attribute type information is cached whereas if its value is NIL then attribute type information is not
cached. If action is :flush then all existing type information in the cache for table is removed, but
caching is still enabled. table may be a string representing a table for which the caching action is to be
taken while the caching action is applied to all tables if table is T. Alternatively, when table is
:default, the default caching action specified by *cache-table-queries-default* is applied to all tables for
which a caching action has not been explicitly set.

Examples

(setf *cache-table-queries-default* t)
=> T
(create-table [foo]

'(([id] integer)
([height] float)
([name] (string 24))
([comments] varchar)))

=>
(cache-table-queries "foo")
=>
(list-attribute-types "foo")
=> (("id" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1) ("name" :BPCHAR 24 NIL 1)

("comments" :VARCHAR 255 NIL 1))
(drop-table "foo")
=>
(create-table [foo]

'(([id] integer)
([height] float)
([name] (string 36))
([comments] (string 100))))

=>

121

(cache-table-queries "foo" :action :flush)
=>
(list-attribute-types "foo")
=> (("id" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1) ("name" :BPCHAR 36 NIL 1)

("comments" :BPCHAR 100 NIL 1))

Side Effects
The internal attribute cache for database is modified.

Affected by
cache-table-queries-default

Exceptional Situations
None.

See Also
cache-table-queries-default

Notes
None.

CACHE-TABLE-QUERIES

122

Name
INSERT-RECORDS -- Insert tuples of data into a database table.

Syntax

insert-records &key into attributes values av-pairs query database =>

Arguments and Values

into A string, symbol or symbolic SQL expression representing the name of a table existing
in database.

attributes A list of attribute identifiers or NIL.

values A list of attribute values or NIL.

av-pairs A list of attribute identifier/value pairs or NIL.

query A query expression or NIL.

database A database object. This will default to the value of *default-database*.

Description
Inserts records into the table specified by into in database which defaults to *default-database*.

There are five ways of specifying the values inserted into each row. In the first values contains a list
of values to insert and attributes, av-pairs and query are NIL. This can be used when values
are supplied for all attributes in into. In the second, attributes is a list of column names, values
is a corresponding list of values and av-pairs and query are NIL. In the third, attributes,
values and query are NIL and av-pairs is an alist of (attribute value) pairs. In the fourth, val-
ues, av-pairs and attributes are NIL and query is a symbolic SQL query expression in which
the selected columns also exist in into. In the fifth method, values and av-pairs are nil and at-
tributes is a list of column names and query is a symbolic SQL query expression which returns
values for the specified columns.

Examples

(select [first-name] [last-name] [email]
:from [employee]
:where [= [emplid] 11]
:field-names nil)

=> NIL
(insert-records :into [employee]

:attributes '(emplid groupid first_name last_name email
ecompanyid managerid)

:values '(11 1 "Yuri" "Gagarin" "gagarin@soviet.org"
1 1))

=>

123

(select [first-name] [last-name] [email]
:from [employee]
:where [= [emplid] 11]
:field-names nil)

=> (("Yuri" "Gagarin" "gagarin@soviet.org"))

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations
An error of type sql-database-data-error is signalled if table is not an existing table in database or
if the specified attributes are not found.

See Also
update-records
delete-records

Notes
None.

INSERT-RECORDS

124

Name
UPDATE-RECORDS -- Updates the values of existing records.

Syntax

update-records table &key attributes values av-pairs where database =>

Arguments and Values

table A string, symbol or symbolic SQL expression representing the name of a table existing
in database.

attributes A list of attribute identifiers or NIL.

values A list of attribute values or NIL.

av-pairs A list of attribute identifier/value pairs or NIL.

where A symbolic SQL expression.

database A database object. This will default to the value of *default-database*.

Description
Updates the attribute values of existing records satsifying the SQL expression where in the table spe-
cified by table in database which defaults to *default-database*.

There are three ways of specifying the values to update for each row. In the first, values contains a list
of values to use in the update and attributes and av-pairs are NIL. This can be used when val-
ues are supplied for all attributes in table. In the second, attributes is a list of column names,
values is a corresponding list of values and av-pairs is NIL. In the third, attributes and
values are NIL and av-pairs is an alist of (attribute value) pairs.

Examples

(select [first-name] [last-name] [email]
:from [employee]
:where [= [emplid] 1]
:field-names nil)

=> (("Vladimir" "Lenin" "lenin@soviet.org"))
(update-records [employee]

:av-pairs'((first_name "Yuri")
(last_name "Gagarin")
(email "gagarin@soviet.org"))

:where [= [emplid] 1])
=>
(select [first-name] [last-name] [email]

:from [employee]
:where [= [emplid] 1]

125

:field-names nil)
=> (("Yuri" "Gagarin" "gagarin@soviet.org"))

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations
An error of type sql-database-data-error is signalled if table is not an existing table in database, if
the specified attributes are not found or if the SQL statement resulting from the symbolic expression
where does not return a Boolean value.

If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also

insert-records
delete-records

Notes
None.

UPDATE-RECORDS

126

Name
DELETE-RECORDS -- Delete records from a database table.

Syntax

delete-records &key from where database =>

Arguments and Values

from A string, symbol or symbolic SQL expression representing the name of a table existing in
database.

where A symbolic SQL expression.

database A database object. This will default to the value of *default-database*.

Description
Deletes records satisfying the SQL expression where from the table specified by from in database
specifies a database which defaults to *default-database*.

Examples

(select [first-name] [last-name] [email]
:from [employee]
:where [= [emplid] 11]
:field-names nil)

=> (("Yuri" "Gagarin" "gagarin@soviet.org"))
(delete-records :from [employee] :where [= [emplid] 11])
=>
(select [first-name] [last-name] [email]

:from [employee]
:where [= [emplid] 11]
:field-names nil)

=> NIL

Side Effects
Modifications are made to the underlying database.

Affected by
None.

Exceptional Situations

127

An error of type sql-database-data-error is signalled if from is not an existing table in database or if
the SQL statement resulting from the symbolic expression where does not return a Boolean value.

See Also

insert-records
update-records

Notes
None.

DELETE-RECORDS

128

Name
EXECUTE-COMMAND -- Execute an SQL command which returns no values.

Syntax

execute-command sql-expression &key database =>

Arguments and Values

sql-expression An sql expression that represents an SQL statement which will return no values.

database A database object. This will default to the value of *default-database*.

Description
Executes the SQL command sql-expression, which may be a symbolic SQL expression or a string
representing any SQL statement apart from a query, on the supplied database which defaults to
default-database.

Examples

(execute-command "create table eventlog (time char(30),event char(70))")
=>

(execute-command "create table eventlog (time char(30),event char(70))")
>>
>> While accessing database #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {480B2B6D}>
>> with expression "create table eventlog (time char(30),event char(70))":
>> Error NIL: ERROR: amcreate: eventlog relation already exists
>> has occurred.
>>
>> Restarts:
>> 0: [ABORT] Return to Top-Level.
>>
>> Debug (type H for help)
>>
>> (CLSQL-POSTGRESQL::|(PCL::FAST-METHOD DATABASE-EXECUTE-COMMAND (T POSTGRESQL-DATABASE))|
>> #<unused-arg>
>> #<unused-arg>
>> #<unavailable-arg>
>> #<unavailable-arg>)
>> Source: (ERROR 'SQL-DATABASE-ERROR :DATABASE DATABASE :EXPRESSION ...)
>> 0] 0

(execute-command "drop table eventlog")
=>

129

Side Effects
Whatever effects the execution of the SQL statement has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL statement leads to any errors, an error of type sql-database-error is signalled.

See Also

query

Notes
None.

EXECUTE-COMMAND

130

Name
QUERY -- Execute an SQL query and return the tuples as a list.

Syntax

query query-expression &key database result-types flatp field-names => result

Arguments and Values

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set.

database A database object. This will default to the value of *default-database*.

flatp A Boolean whose default value is NIL.

result-types A field type specifier. The default is NIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields
into numeric Lisp objects rather than strings. This reduces the cost of allocat-
ing a temporary string and the CLSQL users' inconvenience of converting
number strings into number objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a nu-
meric format where applicable. The default value of NIL causes all fields to
be returned as strings regardless of the SQL type. Otherwise a list is expected
which has a element for each field that specifies the conversion. Valid type
identifiers are:

:int Field is imported as a signed integer, from 8-bits to 64-bits depending
upon the field type.
:double Field is imported as a double-float number.
t Field is imported as a string.
If the list is shorter than the number of fields, the a value of t is assumed for
the field. If the list is longer than the number of fields, the extra elements are
ignored.

field-names A boolean with a default value of T. When T, this function returns a second
value of a list of field names. When NIL, this function only returns one value
- the list of rows.

result A list representing the result set obtained. For each tuple in the result set,
there is an element in this list, which is itself a list of all the attribute values in
the tuple.

Description
Executes the SQL query expression query-expression, which may be an SQL expression or a
string, on the supplied database which defaults to *default-database*. result-types is a list of

131

symbols which specifies the lisp type for each field returned by query-expression.

If result-types is NIL all results are returned as strings whereas the default value of :auto means
that the lisp types are automatically computed for each field.

field-names is T by default which means that the second value returned is a list of strings represent-
ing the columns selected by query-expression. If field-names is NIL, the list of column
names is not returned as a second value.

flatp has a default value of NIL which means that the results are returned as a list of lists.If FLATP is
T and only one result is returned for each record selected by query-expression, the results are re-
turned as elements of a list.

Examples

(query "select emplid,first_name,last_name,height from employee where emplid = 1")
=> ((1 "Vladimir" "Lenin" 1.5564661d0)),

("emplid" "first_name" "last_name" "height")

(query "select emplid,first_name,last_name,height from employee where emplid = 1"
:field-names nil)

=> ((1 "Vladimir" "Lenin" 1.5564661d0))

(query "select emplid,first_name,last_name,height from employee where emplid = 1"
:field-names nil
:result-types nil)

=> (("1" "Vladimir" "Lenin" "1.5564661"))

(query "select emplid,first_name,last_name,height from employee where emplid = 1"
:field-names nil
:result-types '(:int t t :double))

=> ((1 "Vladimir" "Lenin" 1.5564661))

(query "select last_name from employee where emplid > 5" :flatp t)
=> ("Andropov" "Chernenko" "Gorbachev" "Yeltsin" "Putin"),

("last_name")

(query "select last_name from employee where emplid > 10"
:flatp t
:field-names nil)

=> NIL

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also

QUERY

132

execute-command
print-query
do-query
map-query
loop
select

Notes
The field-names and result-types keyword arguments are a CLSQL extension.

QUERY

133

Name
PRINT-QUERY -- Prints a tabular report of query results.

Syntax

print-query query-expression &key titles formats sizes stream database =>

Arguments and Values

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set.

database A database object. This will default to the value of *default-database*.

titles A list of strings or NIL which is the default value.

formats A list of strings, NIL or T which is the default value.

sizes A list of numbers, NIL or T which is the default value.

stream An output stream or T which is the default value.

Description
Prints a tabular report of the results returned by the SQL query query-expression, which may be a
symbolic SQL expression or a string, in database which defaults to *default-database*. The report is
printed onto stream which has a default value of T which means that *standard-output* is used. The
title argument, which defaults to NIL, allows the specification of a list of strings to use as column
titles in the tabular output. sizes accepts a list of column sizes, one for each column selected by
query-expression, to use in formatting the tabular report. The default value of T means that min-
imum sizes are computed. formats is a list of format strings to be used for printing each column selec-
ted by query-expression. The default value of formats is T meaning that ~A is used to format
all columns or ~VA if column sizes are used.

Examples

(print-query [select [emplid] [first-name] [last-name] [email]
:from [employee]
:where [< [emplid] 5]]

:titles '("ID" "FORENAME" "SURNAME" "EMAIL"))
ID FORENAME SURNAME EMAIL
1 Vladimir Lenin lenin@soviet.org
2 Josef Stalin stalin@soviet.org
3 Leon Trotsky trotsky@soviet.org
4 Nikita Kruschev kruschev@soviet.org
=>

(print-query "select emplid,first_name,last_name,email from employee where emplid >= 5"
:titles '("ID" "FORENAME" "SURNAME" "EMAIL"))

134

ID FORENAME SURNAME EMAIL
5 Leonid Brezhnev brezhnev@soviet.org
6 Yuri Andropov andropov@soviet.org
7 Konstantin Chernenko chernenko@soviet.org
8 Mikhail Gorbachev gorbachev@soviet.org
9 Boris Yeltsin yeltsin@soviet.org
10 Vladimir Putin putin@soviet.org
=>

Side Effects
None.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also
query
do-query
map-query
loop
select

Notes
None.

PRINT-QUERY

135

Name
SELECT -- Executes a query given the supplied constraints.

Syntax

select &rest identifiers &key all distinct from group-by having order-by set-operation where result-types field-names flatp refresh caching database => result

Arguments and Values

identifiers A set of sql expressions each of which indicates a column to query.

all A Boolean.

distinct A Boolean.

from One or more SQL expression representing tables.

group-by An SQL expression.

having An SQL expression.

order-by An SQL expression.

set-operation An SQL expression.

where An SQL expression.

database A database object. This will default to the value of *default-database*.

flatp A Boolean whose default value is NIL.

result-types A field type specifier. The default is NIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields into
numeric Lisp objects rather than strings. This reduces the cost of allocating a tem-
porary string and the CLSQL users' inconvenience of converting number strings
into number objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a numeric
format where applicable. The default value of NIL causes all fields to be returned
as strings regardless of the SQL type. Otherwise a list is expected which has a ele-
ment for each field that specifies the conversion. Valid type identifiers are:

:int Field is imported as a signed integer, from 8-bits to 64-bits depending upon
the field type.
:double Field is imported as a double-float number.
t Field is imported as a string.
If the list is shorter than the number of fields, the a value of t is assumed for the
field. If the list is longer than the number of fields, the extra elements are ignored.

field-names A boolean with a default value of T. When T, this function returns a second value

136

of a list of field names. When NIL, this function only returns one value - the list
of rows.

refresh This value is only considered when CLOS objects are being selected. A boolean
with a default value of NIL. When the value of the caching keyword is T, a
second equivalent select call will return the same view class instance objects.
When refresh is T, then slots of the existing instances are updated as necessary.
In such cases, you may wish to override the hook instance-refresh.

caching This value is only considered when CLOS objects are being selected. A boolean
with a default value of *default-caching*. CLSQL caches objects in ac-
cordance with the CommonSQL interface: a second equivalent select call will
return the same view class instance objects.

result A list representing the result set obtained. For each tuple in the result set, there is
an element in this list, which is itself a list of all the attribute values in the tuple.

Description
Executes a query on database, which has a default value of *default-database*, specified by the SQL
expressions supplied using the remaining arguments in args. The select function can be used to
generate queries in both functional and object oriented contexts.

In the functional case, the required arguments specify the columns selected by the query and may be
symbolic SQL expressions or strings representing attribute identifiers. Type modified identifiers indicate
that the values selected from the specified column are converted to the specified lisp type. The keyword
arguments all, distinct, from, group-by, having, order-by, set-operation and
where are used to specify, using the symbolic SQL syntax, the corresponding components of the SQL
query generated by the call to select.

result-types is a list of symbols which specifies the lisp type for each field returned by the query.
If result-types is NIL all results are returned as strings whereas the default value of :auto means
that the lisp types are automatically computed for each field. field-names is T by default which
means that the second value returned is a list of strings representing the columns selected by the query.
If field-names is NIL, the list of column names is not returned as a second value.

In the object oriented case, the required arguments to select are symbols denoting View Classes
which specify the database tables to query. In this case, select returns a list of View Class instances
whose slots are set from the attribute values of the records in the specified table. Slot-value is a legal op-
erator which can be employed as part of the symbolic SQL syntax used in the where keyword argu-
ment to select. refresh is NIL by default which means that the View Class instances returned are
retrieved from a cache if an equivalent call to select has previously been issued. If refresh is true,
the View Class instances returned are updated as necessary from the database and the generic function
instance-refreshed is called to perform any necessary operations on the updated instances.

In both object oriented and functional contexts, flatp has a default value of NIL which means that the
results are returned as a list of lists. If flatp is t and only one result is returned for each record selected
in the query, the results are returned as elements of a list.

Examples

(select [first-name] :from [employee] :flatp t :distinct t
:field-names nil
:result-types nil
:order-by [first-name])

SELECT

137

=> ("Boris" "Josef" "Konstantin" "Leon" "Leonid" "Mikhail" "Nikita" "Vladimir"
"Yuri")

(select [first-name] [count [*]] :from [employee]
:result-types nil
:group-by [first-name]
:order-by [first-name]
:field-names nil)

=> (("Boris" "1") ("Josef" "1") ("Konstantin" "1") ("Leon" "1") ("Leonid" "1")
("Mikhail" "1") ("Nikita" "1") ("Vladimir" "2") ("Yuri" "1"))

(select [last-name] :from [employee]
:where [like [email] "%org"]
:order-by [last-name]
:field-names nil
:result-types nil
:flatp t)

=> ("Andropov" "Brezhnev" "Chernenko" "Gorbachev" "Kruschev" "Lenin" "Putin"
"Stalin" "Trotsky" "Yeltsin")

(select [max [emplid]] :from [employee]
:flatp t
:field-names nil
:result-types :auto)

=> (10)

(clsql:select [avg [height]] :from [employee] :flatp t :field-names nil)
=> (1.58999584d0)

(select [emplid] [last-name] :from [employee] :where [= [emplid] 1])
=> ((1 "Lenin")),

("emplid" "last_name")

(select [emplid :string] :from [employee]
:where [= 1 [emplid]]
:field-names nil
:flatp t)

=> ("1")

(select [emplid] :from [employee] :order-by [emplid]
:where [not [between [* [emplid] 10] [* 5 10] [* 10 10]]]
:field-names nil
:flatp t)

=> (1 2 3 4)

(clsql:select [emplid] :from [employee]
:where [in [emplid] '(1 2 3 4)]
:flatp t
:order-by [emplid]
:field-names nil)

=> (1 2 3 4)

(select [first-name] [last-name] :from [employee]
:field-names nil
:order-by '(([first-name] :asc) ([last-name] :desc)))

=> (("Boris" "Yeltsin") ("Josef" "Stalin") ("Konstantin" "Chernenko")
("Leon" "Trotsky") ("Leonid" "Brezhnev") ("Mikhail" "Gorbachev")
("Nikita" "Kruschev") ("Vladimir" "Putin") ("Vladimir" "Lenin")
("Yuri" "Andropov"))

(select [last-name] :from [employee]
:set-operation [union [select [first-name] :from [employee]

:order-by [last-name]]]
:flatp t

SELECT

138

:result-types nil
:field-names nil)

=> ("Andropov" "Boris" "Brezhnev" "Chernenko" "Gorbachev" "Josef" "Konstantin"
"Kruschev" "Lenin" "Leon" "Leonid" "Mikhail" "Nikita" "Putin" "Stalin"
"Trotsky" "Vladimir" "Yeltsin" "Yuri")

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also
query
print-query
do-query
map-query
loop
instance-refreshed

Notes
The select function is actually implemented in CLSQL with a single &rest parameter (which is sub-
sequently destructured) rather than the keyword parameters presented here for the purposes of exposi-
tion. This means that incorrect or missing keywords or values may not trigger errors in the way that they
would if select had been defined using keyword arguments.

The field-names and result-types keyword arguments are a CLSQL extension.

select is common across the functional and object-oriented data manipulation languages.

SELECT

139

Name
DO-QUERY -- Iterate over all the tuples of a query.

Syntax

do-query ((&rest args) query-expression &key database result-types &body body => result

Arguments and Values

args A list of variable names.

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set, where each tuple has as many attributes as func-
tion takes arguments.

database A database object. This will default to *default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of
this argument.

body A body of Lisp code, like in a destructuring-bind form.

result The result of executing body.

Description
Repeatedly executes body within a binding of args on the fields of each row selected by the SQL
query query-expression, which may be a string or a symbolic SQL expression, in database
which defaults to *default-database*.

The body of code is executed in a block named nil which may be returned from prematurely via re-
turn or return-from. In this case the result of evaluating the do-query form will be the one sup-
plied to return or return-from. Otherwise the result will be nil.

The body of code appears also is if wrapped in a destructuring-bind form, thus allowing declar-
ations at the start of the body, especially those pertaining to the bindings of the variables named in
args.

result-types is a list of symbols which specifies the lisp type for each field returned by query-
expression. If result-types is NIL all results are returned as strings whereas the default value
of :auto means that the lisp types are automatically computed for each field.

query-expression may be an object query (i.e., the selection arguments refer to View Classes), in
which case args are bound to the tuples of View Class instances returned by the object oriented query.

Examples

(do-query ((salary name) "select salary,name from simple")

140

(format t "~30A gets $~2,5$~%" name (read-from-string salary)))
>> Mai, Pierre gets $10000.00
>> Hacker, Random J. gets $08000.50
=> NIL

(do-query ((salary name) "select salary,name from simple")
(return (cons salary name)))

=> ("10000.00" . "Mai, Pierre")

(let ((result '()))
(do-query ((name) [select [last-name] :from [employee]

:order-by [last-name]])
(push name result))

result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"

"Chernenko" "Brezhnev" "Andropov")

(let ((result '()))
(do-query ((e) [select 'employee :order-by [last-name]])
(push (slot-value e 'last-name) result))

result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"

"Chernenko" "Brezhnev" "Andropov")

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

If the number of variable names in args and the number of attributes in the tuples in the result set don't
match up, an error is signalled.

See Also
query
map-query
print-query
loop
select

Notes
The result-types keyword argument is a CLSQL extension.

do-query is common across the functional and object-oriented data manipulation languages.

DO-QUERY

141

Name
LOOP -- Extension to Common Lisp Loop to iterate over all the tuples of a query via a loop clause.

Syntax
{as | for} var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} query [from database]

Arguments and Values

var A d-var-spec, as defined in the grammar for loop-clauses in the ANSI Standard for
Common Lisp. This allows for the usual loop-style destructuring.

type-spec An optional type-spec either simple or destructured, as defined in the grammar for
loop-clauses in the ANSI Standard for Common Lisp.

query An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as function takes argu-
ments.

database An optional database object. This will default to the value of *default-database*.

Description
This clause is an iteration driver for loop, that binds the given variable (possibly destructured) to the
consecutive tuples (which are represented as lists of attribute values) in the result set returned by execut-
ing the SQL query expression on the database specified.

query may be an object query (i.e., the selection arguments refer to View Classes), in which case the
supplied variable is bound to the tuples of View Class instances returned by the object oriented query.

Examples

(defvar *my-db* (connect '("dent" "newesim" "dent" "dent"))
"My database"
=> *MY-DB*
(loop with time-graph = (make-hash-table :test #'equal)

with event-graph = (make-hash-table :test #'equal)
for (time event) being the tuples of "select time,event from log"
from *my-db*
do
(incf (gethash time time-graph 0))
(incf (gethash event event-graph 0))

finally
(flet ((show-graph (k v) (format t "~40A => ~5D~%" k v)))
(format t "~&Time-Graph:~%===========~%")
(maphash #'show-graph time-graph)
(format t "~&~%Event-Graph:~%============~%")
(maphash #'show-graph event-graph))

(return (values time-graph event-graph)))
>> Time-Graph:

142

>> ===========
>> D => 53000
>> X => 3
>> test-me => 3000
>>
>> Event-Graph:
>> ============
>> CLOS Benchmark entry. => 9000
>> Demo Text... => 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000
=> #<EQUAL hash table, 3 entries {48350A1D}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

(loop for (forename surname)
being each tuple in
[select [first-name] [last-name] :from [employee]

:order-by [last-name]]
collect (concatenate 'string forename " " surname))

=> ("Yuri Andropov" "Leonid Brezhnev" "Konstantin Chernenko" "Mikhail Gorbachev"
"Nikita Kruschev" "Vladimir Lenin" "Vladimir Putin" "Josef Stalin"
"Leon Trotsky" "Boris Yeltsin")

(loop for (e) being the records in
[select 'employee :where [< [emplid] 4] :order-by [emplid]]

collect (slot-value e 'last-name))
=> ("Lenin" "Stalin" "Trotsky")

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

Otherwise, any of the exceptional situations of loop applies.

See Also

query
map-query
do-query
print-query
select

Notes
The database loop keyword is a CLSQL extension.

LOOP

143

The extended loop syntax is common across the functional and object-oriented data manipulation lan-
guages.

LOOP

144

Name
MAP-QUERY -- Map a function over all the tuples from a query

Syntax
map-query output-type-spec function query-expression &key database result-types => result

Arguments and Values

output-type-spec A sequence type specifier or nil.

function A function designator. function takes a single argument which is the atom
value for a query single with a single column or is a list of values for a multi-
column query.

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set.

database A database object. This will default to the value of *default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of
this argument.

result If output-type-spec is a type specifier other than nil, then a sequence of
the type it denotes. Otherwise nil is returned.

Description
Applies function to the successive tuples in the result set returned by executing the SQL query-
expression. If the output-type-spec is nil, then the result of each application of function is
discarded, and map-query returns nil. Otherwise the result of each successive application of func-
tion is collected in a sequence of type output-type-spec, where the jths element is the result of
applying function to the attributes of the jths tuple in the result set. The collected sequence is the res-
ult of the call to map-query.

If the output-type-spec is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element type
specified for the result-type, the element type of the resulting array is the result of upgrading that
element type; or, if the implementation can determine that the element type is unspecified (or *), the ele-
ment type of the resulting array is t; otherwise, an error is signaled.

If result-types is NIL all results are returned as strings whereas the default value of :auto means
that the lisp types are automatically computed for each field.

query-expression may be an object query (i.e., the selection arguments refer to View Classes), in
which case the supplied function is applied to the tuples of View Class instances returned by the object
oriented query.

Examples

145

(map-query 'list #'(lambda (tuple)
(multiple-value-bind (salary name) tuple

(declare (ignorable name))
(read-from-string salary)))

"select salary,name from simple where salary > 8000")
=> (10000.0 8000.5)

(map-query '(vector double-float)
#'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(declare (ignorable name))
(let ((*read-default-float-format* 'double-float))
(coerce (read-from-string salary) 'double-float))

"select salary,name from simple where salary > 8000")))
=> #(10000.0d0 8000.5d0)
(type-of *)
=> (SIMPLE-ARRAY DOUBLE-FLOAT (2))

(let (list)
(values (map-query nil #'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(push (cons name (read-from-string salary)) list))

"select salary,name from simple where salary > 8000"))
list))

=> NIL
=> (("Hacker, Random J." . 8000.5) ("Mai, Pierre" . 10000.0))

(map-query 'vector #'identity
[select [last-name] :from [employee] :flatp t

:order-by [last-name]])
=> #("Andropov" "Brezhnev" "Chernenko" "Gorbachev" "Kruschev" "Lenin" "Putin"

"Stalin" "Trotsky" "Yeltsin")

(map-query 'list #'identity
[select [first-name] [last-name] :from [employee]

:order-by [last-name]])
=> (("Yuri" "Andropov") ("Leonid" "Brezhnev") ("Konstantin" "Chernenko")

("Mikhail" "Gorbachev") ("Nikita" "Kruschev") ("Vladimir" "Lenin")
("Vladimir" "Putin") ("Josef" "Stalin") ("Leon" "Trotsky")
("Boris" "Yeltsin"))

(map-query 'list #'last-name [select 'employee :order-by [emplid]])
=> ("Lenin" "Stalin" "Trotsky" "Kruschev" "Brezhnev" "Andropov" "Chernenko"

"Gorbachev" "Yeltsin" "Putin")

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

An error of type type-error must be signaled if the output-type-spec is not a recognizable subtype

MAP-QUERY

146

of list, not a recognizable subtype of vector, and not nil.

An error of type type-error should be signaled if output-type-spec specifies the number of ele-
ments and the size of the result set is different from that number.

See Also
query
do-query
print-query
loop
select

Notes
The result-types keyword argument is a CLSQL extension.

map-query is common across the functional and object-oriented data manipulation languages.

MAP-QUERY

147

Transaction Handling
This section describes the interface provided by CLSQL for handling database transactions. The inter-
face allows for opening transaction blocks, committing or rolling back changes made and controlling
autocommit behaviour.

Note

In contrast to CommonSQL, CLSQL, by default, starts in transaction AUTOCOMMIT mode (see set-
autocommit). To begin a transaction in autocommit mode, start-transaction has to be called
explicitly.

148

Name
START-TRANSACTION -- Open a transaction block.

Syntax

start-transaction &key database => NIL

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
Starts a transaction block on database which defaults to *default-database* and which continues until
rollback or commit are called.

Examples

(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))
(rollback)
=> NIL
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL

Side Effects
Autocommit mode is disabled and if database is currently within the scope of a transaction, all com-
mit and rollback hooks are removed and the transaction level associated with database is modified.

Affected by
None.

149

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object.

See Also
commit
rollback
in-transaction-p
set-autocommit
with-transaction

Notes
start-transaction is a CLSQL extension.

START-TRANSACTION

150

Name
COMMIT -- Commit modifications made in the current transaction.

Syntax

commit &key database => NIL

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
If database, which defaults to *default-database*, is currently within the scope of a transaction, com-
mits changes made since the transaction began.

Examples

(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))
(commit)
=> NIL
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))

Side Effects
Changes made within the scope of the current transaction are committed in the underlying database and
the transaction level of database is reset.

Affected by
The transaction level of database which indicates whether a transaction has been initiated by a call to
start-transaction since the last call to rollback or commit.

151

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object. A warning of type sql-
warning is signalled if there is no transaction in progress.

See Also
start-transaction
rollback
in-transaction-p
add-transaction-commit-hook
set-autocommit
with-transaction

Notes
None.

COMMIT

152

Name
ROLLBACK -- Roll back modifications made in the current transaction.

Syntax

rollback &key database => NIL

Arguments and Values

database A database object. This will default to the value of *default-database*.

Description
If database, which defaults to *default-database*, is currently within the scope of a transaction, rolls
back changes made since the transaction began.

Examples

(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))
=>
(select [*] :from [foo] :field-names nil)
=> ((1 "one"))
(rollback)
=> NIL
(in-transaction-p)
=> NIL
(select [*] :from [foo] :field-names nil)
=> NIL

Side Effects
Changes made within the scope of the current transaction are reverted in the underlying database and the
transaction level of database is reset.

Affected by
The transaction level of database which indicates whether a transaction has been initiated by a call to
start-transaction since the last call to rollback or commit.

153

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object. A warning of type sql-
warning is signalled if there is no transaction in progress.

See Also
start-transaction
commit
in-transaction-p
add-transaction-rollback-hook
set-autocommit
with-transaction

Notes
None.

ROLLBACK

154

Name
IN-TRANSACTION-P -- A predicate for testing whether a transaction is currently in progress.

Syntax

in-transaction-p &key database => result

Arguments and Values

database A database object. This will default to the value of *default-database*.

result A Boolean.

Description
A predicate to test whether database, which defaults to *default-database*, is currently within the
scope of a transaction.

Examples

(in-transaction-p)
=> NIL
(start-transaction)
=> NIL
(in-transaction-p)
=> T
(commit)
=> NIL
(in-transaction-p)
=> NIL

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

See Also

155

start-transaction
commit
rollback
set-autocommit

Notes
in-transaction-p is a CLSQL extension.

IN-TRANSACTION-P

156

Name
ADD-TRANSACTION-COMMIT-HOOK -- Specify hooks to be run when committing changes.

Syntax

add-transaction-commit-hook commit-hook &key database => result

Arguments and Values

commit-hook A designator for a function with no required arguments.

database A database object. This will default to the value of *default-database*.

result The list of currently defined commit hooks for database.

Description
Adds commit-hook, which should a designator for a function with no required arguments, to the list
of hooks run when commit is called on database which defaults to *default-database*.

Examples

(start-transaction)
=> NIL
(add-transaction-commit-hook #'(lambda () (print "Successfully committed.")))
=> (#<Interpreted Function (LAMBDA # #) {48E2E689}>)
(commit)
"Successfully committed."
=> NIL

Side Effects
commit-hook is added to the list of commit hooks for database.

Affected by
None.

Exceptional Situations
If commit-hook has one or more required arguments, an error will be signalled when commit is
called.

See Also

157

commit
rollback
add-transaction-rollback-hook
with-transaction

Notes
add-transaction-commit-hook is a CLSQL extension.

ADD-TRANSAC-
TION-COMMIT-HOOK

158

Name
ADD-TRANSACTION-ROLLBACK-HOOK -- Specify hooks to be run when rolling back changes.

Syntax

add-transaction-rollback-hook rollback-hook &key database => result

Arguments and Values

rollback-hook A designator for a function with no required arguments.

database A database object. This will default to the value of *default-database*.

result The list of currently defined rollback hooks for database.

Description
Adds rollback-hook, which should a designator for a function with no required arguments, to the
list of hooks run when rollback is called on database which defaults to *default-database*.

Examples

(start-transaction)
=> NIL
(add-transaction-rollback-hook #'(lambda () (print "Successfully rolled back.")))
=> (#<Interpreted Function (LAMBDA # #) {48E37C31}>)
(rollback)
"Successfully rolled back."
=> NIL

Side Effects
rollback-hook is added to the list of rollback hooks for database.

Affected by
None.

Exceptional Situations
If rollback-hook has one or more required arguments, an error will be signalled when rollback
is called.

See Also

159

commit
rollback
add-transaction-commit-hook

Notes
add-transaction-rollback-hook is a CLSQL extension.

ADD-TRANSAC-
TION-ROLLBACK-HOOK

160

Name
SET-AUTOCOMMIT -- Turn on or off autocommit for a database.

Syntax

set-autocommit value &key database => result

Arguments and Values

value A Boolean specifying the desired autocommit behaviour for database.

database A database object. This will default to the value of *default-database*.

result The previous autocommit value for database.

Description
Turns autocommit off for database if value is NIL, and otherwise turns it on. Returns the old value
of autocommit flag.

For RDBMS (such as Oracle) which don't automatically commit changes, turning autocommit on has the
effect of explicitly committing changes made whenever SQL statements are executed.

Autocommit is turned on by default.

Examples

Side Effects
database is associated with the specified autocommit mode.

Affected by
None.

Exceptional Situations
None.

See Also

161

start-transaction
commit
add-transaction-commit-hook
with-transaction

Notes
set-autocommit is a CLSQL extension.

SET-AUTOCOMMIT

162

Name
WITH-TRANSACTION -- Execute a body of code within a transaction.

Syntax

with-transaction &key database &rest body => result

Arguments and Values

database A database object. This will default to the value of *default-database*.

body A body of Lisp code.

result The result of executing body.

Description
Starts a transaction in the database specified by database, which is *default-database* by default, and
executes body within that transaction. If body aborts or throws, database is rolled back and other-
wise the transaction is committed.

Examples

(in-transaction-p)
=> NIL
(select [email] :from [employee] :where [= [emplid] 1] :flatp t :field-names nil)
=> ("lenin@soviet.org")
(with-transaction ()

(update-records [employee]
:av-pairs '((email "lenin-nospam@soviet.org"))
:where [= [emplid] 1]))

=> NIL
(select [email] :from [employee] :where [= [emplid] 1] :flatp t :field-names nil)
=> ("lenin-nospam@soviet.org")
(in-transaction-p)
=> NIL

Side Effects
Changes specified in body may be made to the underlying database if body completes successfully.

Affected by
None.

163

Exceptional Situations
Signals an error of type sql-database-error if database is not a database object.

See Also
start-transaction
commit
rollback
add-transaction-commit-hook
add-transaction-rollback-hook

Notes
None.

WITH-TRANSACTION

164

Object Oriented Data Definition
Language (OODDL)

The Object Oriented Data Definition Language (OODDL) provides access to relational SQL tables us-
ing Common Lisp Object System (CLOS) objects. SQL tables are mapped to CLOS objects with the
SQL columns being mapped to slots of the CLOS object.

The mapping between SQL tables and CLOS objects is defined with the macro def-view-class.
SQL tables are created with create-view-from-class and SQL tables can be deleted with
drop-view-from-class.

Note

The above functions refer to the Lisp view of the SQL table. This Lisp view should not be confused with
SQL VIEW statement.

165

Name
STANDARD-DB-OBJECT -- Superclass for all CLSQL View Classes.

Class Precedence List
standard-db-object, standard-object, t,

Description
This class is the superclass of all CLSQL View Classes.

Class details
(defclass STANDARD-DB-OBJECT ()(...))

Slots

slot VIEW-DATABASE is of type (OR NULL DATABASE) which stores the associated database for
the instance.

166

Name
DEFAULT-STRING-LENGTH -- Default length of SQL strings.

Value Type
Fixnum

Initial Value
255

Description
If a slot of a class defined by def-view-class is of the type string or varchar and does not
have a length specified, then the value of this variable is used as SQL length.

Examples

(let ((*default-string-length* 80))
(def-view-class s80 ()
((a :type string)
(b :type (string 80))
(c :type varchar))))

=> #<Standard-Db-Class S80 {480A431D}>

(create-view-from-class 's80)
=>
(table-exists-p [s80])
=> T

The above code causes a SQL table to be created with the SQL command

CREATE TABLE (A VARCHAR(80), B CHAR(80), C VARCHAR(80))

Affected By
Some SQL backends do not support varchar lengths greater than 255.

See Also
None.

Notes
This is a CLSQL extension to the CommonSQL API.

167

Name
CREATE-VIEW-FROM-CLASS -- Create a SQL table from a View Class.

Syntax

create-view-from-class view-class-name &key database transactions =>

Arguments and Values

view-class-name The name of a View Class that has been defined with def-view-class.

database The database in which to create the SQL table. This will default to the value of
default-database.

transactions When NIL specifies that a table type which does not support transactions
should be used.

Description
Creates a table as defined by the View Class view-class-name in database.

Examples

(def-view-class foo () ((a :type (string 80))))
=> #<Standard-Db-Class FOO {4807F7CD}>
(create-view-from-class 'foo)
=>
(list-tables)
=> ("FOO")

Side Effects
Causes a table to be created in the SQL database.

Affected by
Most SQL database systems will signal an error if a table creation is attempted when a table with the
same name already exists. The SQL user, as specified in the database connection, must have sufficient
permission for table creation.

Exceptional Situations
A condition will be signaled if the table can not be created in the SQL database.

168

See Also

def-view-class
drop-view-from-class

Notes
Currently, only MySQL supports transactionless tables. CLSQL provides the ability to create such tables
for applications which would benefit from faster table access and do not require transaction support.

The case of the table name is determined by the type of the database. MySQL, for example, creates data-
bases in upper-case while PostgreSQL uses lowercase.

CREATE-VIEW-FROM-CLASS

169

Name
DEF-VIEW-CLASS -- Defines CLOS classes with mapping to SQL database.

Syntax

def-view-class name superclasses slots &rest class-options => class

Arguments and Values

name The class name.

superclasses The superclasses for the defined class.

slots The class slot definitions.

class options The class options.

class The defined class.

Slot Options

• :db-kind - specifies the kind of database mapping which is performed for this slot and defaults to
:base which indicates that the slot maps to an ordinary column of the database table. A
:db-kind value of :key indicates that this slot is a special kind of :base slot which maps onto a
column which is one of the unique keys for the database table, the value :join indicates this slot
represents a join onto another View Class which contains View Class objects, and the value
:virtual indicates a standard CLOS slot which does not map onto columns of the database table.

• :db-info - if a slot is specified with :db-kind :join, the slot option :db-info contains a
property list which specifies the nature of the join. The valid members of the list are:

• :join-class class-name - the name of the class to join on.

• :home-key slot-name - the name of the slot of this class for joining

• :foreign-key slot-name - the name of the slot of the :join-class for joining

• :target-slot target-slot - this is an optional parameter. If specified, then the join slot of the
defining class will contain instances of this target slot rather than of the join class. This can be
useful when the :join-class is an intermediate class in a many-to-many relationship and the
application is actually interested in the :target-slot.

• :retrieval time - The default value is :deferred, which defers filling this slot until the
value is accessed. The other valid value is :immediate which performs the SQL query when
the instance of the class is created. In this case, the :set is automatically set to NIL

• :set set - This controls what is stored in the join slot. The default value is T. When set is T and
target-slot is undefined, the join slot will contain a list of instances of the join class. Whereas, if
target-slot is defined, then the join slot will contain a list of pairs of (target-value join-instance).

170

When set is NIL, the join slot will contain a single instances.

• :type - for slots of :db-kind :base or :key, the :type slot option has a special interpreta-
tion such that Lisp types, such as string, integer and float are automatically converted into appropri-
ate SQL types for the column onto which the slot maps. This behaviour may be overridden using the
:db-type slot option. The valid values are:

string - a variable length character field up to *default-string-length* characters.
(string n) - a fixed length character field n characters long.
varchar - a variable length character field up to *default-string-length* characters.
(varchar n) - a variable length character field up to n characters in length.
char - a single character field
integer - signed integer at least 32-bits wide
(integer n)
float
(float n)
long-float
number
(number n)
(number n p)
tinyint - An integer column 8-bits wide. [not supported by all database backends]
smallint - An integer column 16-bits wide. [not supported by all database backends]
bigint - An integer column 64-bits wide. [not supported by all database backends]
universal-time - an integer field sufficiently wide to store a universal-time. On most databases,
a slot of this type assigned a SQL type of BIGINT
wall-time - a slot which stores a date and time in a SQL timestamp column. CLSQL provides a
number of time manipulation functions to support objects of type wall-time.
date - a slot which stores the date (without any time of day resolution) in a column. CLSQL
provides a number of time manipulation functions that operate on date values.
duration - stores a duration structure. CLSQL provides routines for wall-time and duration pro-
cessing.
boolean - stores a T or NIL value.
generalized-boolean - similar to a boolean in that either a T or NIL value is stored in the
SQL database. However, any Lisp object can be stored in the Lisp object. A Lisp value of NIL is
stored as FALSE in the database, any other Lisp value is stored as TRUE.
keyword - stores a keyword
symbol - stores a symbol
list - stores a list by writing it to a string. The items in the list must be able to be readable written.
vector - stores a vector similarly to list
array - stores a array similarly to list

• :column - specifies the name of the SQL column which the slot maps onto, if :db-kind is not
:virtual, and defaults to the slot name. If the slot name is used for the SQL column name, any
hypens in the slot name are converted to underscore characters.

• :void-value - specifies the value to store in the Lisp instance if the SQL value is NULL and de-
faults to NIL.

• :db-constraints - is a keyword symbol representing an SQL column constraint expression or a
list of such symbols. The following column constraints are supported: :not-null, :primary-key,
:unique, :unsigned (MySQL specific), :zerofill (MySQL specific) and :auto-increment (MySQL spe-
cific).

• :db-type - a string to specify the SQL column type. If specified, this string overrides the SQL
column type as computed from the :type slot value.

DEF-VIEW-CLASS

171

Class Options

• :base-table - specifies the name of the SQL database table. The default value is the class name.
Like slot names, hypens in the class name are converted to underscore characters.

Description
Creates a View Class called name whose slots slots can map onto the attributes of a table in a data-
base. If superclasses is NIL then the superclass of class will be standard-db-object, oth-
erwise superclasses is a list of superclasses for class which must include standard-
db-object or a descendent of this class.

Examples
The following examples are from the CLSQL test suite.

(def-view-class person (thing)
((height :db-kind :base :accessor height :type float

:initarg :height)
(married :db-kind :base :accessor married :type boolean

:initarg :married)
(birthday :type clsql:wall-time :initarg :birthday)
(bd-utime :type clsql:universal-time :initarg :bd-utime)
(hobby :db-kind :virtual :initarg :hobby :initform nil)))

(def-view-class employee (person)
((emplid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :emplid)
(groupid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :groupid)
(first-name
:accessor first-name
:type (varchar 30)
:initarg :first-name)
(last-name
:accessor last-name
:type (varchar 30)
:initarg :last-name)
(email
:accessor employee-email
:type (varchar 100)
:initarg :email)
(ecompanyid
:type integer
:initarg :companyid)
(company
:accessor employee-company
:db-kind :join
:db-info (:join-class company

:home-key ecompanyid
:foreign-key companyid

DEF-VIEW-CLASS

172

:set nil))
(managerid
:type integer
:initarg :managerid)
(manager
:accessor employee-manager
:db-kind :join
:db-info (:join-class employee

:home-key managerid
:foreign-key emplid
:set nil))

(addresses
:accessor employee-addresses
:db-kind :join
:db-info (:join-class employee-address

:home-key emplid
:foreign-key aemplid
:target-slot address
:set t)))

(:base-table employee))

(def-view-class company ()
((companyid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :companyid)
(groupid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :groupid)
(name
:type (varchar 100)
:initarg :name)
(presidentid
:type integer
:initarg :presidentid)
(president
:reader president
:db-kind :join
:db-info (:join-class employee

:home-key presidentid
:foreign-key emplid
:set nil))

(employees
:reader company-employees
:db-kind :join
:db-info (:join-class employee

:home-key (companyid groupid)
:foreign-key (ecompanyid groupid)
:set t))))

(def-view-class address ()
((addressid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :addressid)
(street-number
:type integer
:initarg :street-number)
(street-name
:type (varchar 30)

DEF-VIEW-CLASS

173

:void-value ""
:initarg :street-name)
(city
:column "city_field"
:void-value "no city"
:type (varchar 30)
:initarg :city)
(postal-code
:column zip
:type integer
:void-value 0
:initarg :postal-code))

(:base-table addr))

;; many employees can reside at many addressess
(def-view-class employee-address ()
((aemplid :type integer :initarg :emplid)
(aaddressid :type integer :initarg :addressid)
(verified :type boolean :initarg :verified)
(address :db-kind :join

:db-info (:join-class address
:home-key aaddressid
:foreign-key addressid
:retrieval :immediate)))

(:base-table "ea_join"))

(def-view-class deferred-employee-address ()
((aemplid :type integer :initarg :emplid)
(aaddressid :type integer :initarg :addressid)
(verified :type boolean :initarg :verified)
(address :db-kind :join

:db-info (:join-class address
:home-key aaddressid
:foreign-key addressid
:retrieval :deferred
:set nil)))

(:base-table "ea_join"))

Side Effects
Creates a new CLOS class.

Affected by
Nothing.

Exceptional Situations
None.

See Also

create-view-from-class
standard-db-object
drop-view-from-class

DEF-VIEW-CLASS

174

Notes
The actual SQL type for a column depends up the database type in which the SQL table is stored. As an
example, the view class type (varchar 100) specifies a SQL column type VARCHAR(100) in
MySQL and a column type VARCHAR2(100) in Oracle

The actual lisp type for a slot may be different than the value specified by the :type attribute. For ex-
ample, a slot declared with ":type (string 30)" actually sets the slots Lisp type as (or null
string). This is to allow a NIL value or a string shorter than 30 characters to be stored in the slot.

DEF-VIEW-CLASS

175

Name
DROP-VIEW-FROM-CLASS -- Delete table from SQL database.

Syntax

drop-view-from-class view-class-name &key database =>

Arguments and Values

view-class-name The name of the View Class.

database database object. This will default to the value of *default-database*.

Description
Removes a table defined by the View Class view-class-name from database which defaults to
default-database.

Examples

(list-tables)
=> ("FOO" "BAR")
(drop-view-from-class 'foo)
=>
(list-tables)
=> ("BAR")

Side Effects
Deletes a table from the SQL database.

Affected by
Whether the specified table exists in the SQL database.

Exceptional Situations
A condition may be signalled if the table does not exist in the SQL database or if the SQL connection
does not have sufficient permissions to delete tables.

See Also

create-view-from-class

176

def-view-class

Notes
None.

DROP-VIEW-FROM-CLASS

177

Name
LIST-CLASSES -- List classes for tables in SQL database.

Syntax

list-classes &key test root-class database => classes

Arguments and Values

test a function used to filter the search. By default, identity is used which will return all
classes.

root-class specifies the root class to the search. By default, standard-db-object is used
which is the root for all view classes.

database The database to search for view classes. This will default to the value of
default-database.

classes List of view classes.

Description
Returns a list of all the View Classes which have been defined in the Lisp session and are connected to
database and which descended from the class root-class and which satisfy the function test.

Examples

(list-classes)
=> (#<clsql-sys::standard-db-class big> #<clsql-sys::standard-db-class employee-address>

#<clsql-sys::standard-db-class address> #<clsql-sys::standard-db-class company>
#<clsql-sys::standard-db-class employee>)

(list-classes :test #'(lambda (c) (> (length (symbol-name (class-name c))) 3)))
=> (#<clsql-sys::standard-db-class employee-address> #<clsql-sys::standard-db-class address>

#<clsql-sys::standard-db-class company> #<clsql-sys::standard-db-class employee>)

Side Effects
None.

Affected by

Which view classes have been defined in the Lisp session.

178

Exceptional Situations
None.

See Also

def-view-class

Notes
None.

LIST-CLASSES

179

Object Oriented Data Manipulation
Language (OODML)

Object Oriented Data Manipulation Language (OODML) provides a Common Lisp Object System
(CLOS) interface to SQL databases. View classes are defined with the OODDL interface and objects are
read and written with the OODML.

The main function for reading data with the OODML is the select function. The select is also used
in the FDML. However, when select is given a view class name, it returns a list of instances of view
classes.

View class instances can be updated to reflect any changes in the database with the functions update-
slot-from-record and update-instance-from-records.

To update the database to reflect changes made to instances of view classes, use the functions update-
records-from-instance, update-record-from-slot, and update-re-
cord-from-slots.

The function delete-instance-records deletes the records corresponding to an instance of a
view class.

180

Name
DB-AUTO-SYNC -- Enables SQL storage during Lisp object creation.

Value Type
Boolean

Initial Value
NIL

Description
When this variable is T an instance is stored in the SQL database when the instance is created by make-
instance. Furthermore, the appropriate database records are updated whenever the slots of a View
Class instance are modified.

When this variable is NIL, which is the default value, CLSQL behaves like CommonSQL: instances of
view classes are stored or updated in the SQL database only when update-re-
cord-from-instance, update-record-from-slot or update-record-from-slots
are called.

Examples

(let ((instance (make-instance 'foo)))
(update-records-from-instance instance))

;; is equivalent to

(let ((*db-auto-sync* t))
(make-instance 'foo))

;; and

(progn
(setf (slot-value instance 'bar) "baz")
(update-record-from-slot instance 'bar))

;; is equivalent to

(let ((*db-auto-sync* t))
(setf (slot-value instance 'bar) "baz"))

Affected By
None.

See Also
update-records-from-instance

181

update-record-from-slot
update-record-from-slots

Notes
This is a CLSQL extension to the CommonSQL API.

DB-AUTO-SYNC

182

Name
DEFAULT-CACHING -- Controls the default caching behavior.

Value Type
Boolean

Initial Value
T

Description
This variable stores the default value of the CACHING keyword for the select.

Examples

(let ((*default-caching* nil)))
(select 'foo))

;; is equivalent to

(select 'foo :caching nil)

Affected By
None.

See Also
select

Notes
This is a CLSQL extension to the CommonSQL API. CommonSQL has caching on at all times.

183

Name
DEFAULT-UPDATE-OBJECTS-MAX-LEN -- The default maximum number of objects each query
to perform a join

Value Type
(or null integer)

Initial Value
NIL

Description
This special variable provides the default value for the max-len argument of the function update-
object-joins.

Examples

(setq *default-update-objects-max-len* 100)

Affected By
None.

See Also
update-object-joins

Notes
None.

184

Name
INSTANCE-REFRESHED -- User hook to call on object refresh.

Syntax

instance-refreshed object =>

Arguments and Values

object The View Class object which is being refreshed.

Description
Provides a hook which is called within an object oriented call to select with a non-nil value of re-
fresh when the View Class instance object has been updated from the database. A method special-
ised on standard-db-object is provided which has no effects. Methods specialised on particular View
Classes can be used to specify any operations that need to be made on View Classes instances which
have been updated in calls to select.

Examples

(slot-value employee1 'email)
=> "lenin@soviet.org"
(defmethod instance-refreshed ((e employee))

(format t "~&Details for ~A ~A have been updated from the database."
(slot-value e 'first-name)
(slot-value e 'last-name)))

=> #<Standard-Method INSTANCE-REFRESHED (EMPLOYEE) {48174D9D}>
(select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t)
=> (#<EMPLOYEE {48149995}>)
(slot-value (car *) 'email)
=> "lenin@soviet.org"
(update-records [employee] :av-pairs '(([email] "v.lenin@soviet.org"))

:where [= [emplid] 1])
=>
(select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t)
=> (#<EMPLOYEE {48149995}>)
(slot-value (car *) 'email)
=> "lenin@soviet.org"
(select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t :refresh t)
Details for Vladimir Lenin have been updated from the database.
=> (#<EMPLOYEE {48149995}>)
(slot-value (car *) 'email)
=> "v.lenin@soviet.org"

Side Effects

185

The user hook function may cause side effects.

Exceptional Situations
None.

See Also

select

Notes
None.

INSTANCE-REFRESHED

186

Name
DELETE-INSTANCE-RECORDS -- Delete SQL records represented by a View Class object.

Syntax

delete-instance-records object =>

Arguments and Values

object An instance of a View Class.

Description
Deletes the records represented by object in the appropriate table of the database associated with ob-
ject. If object is not yet associated with a database, an error is signalled.

Examples

(def-view-class tab ()
((a :initarg :a :type integer :db-kind :key)
(b :initarg :b :type string)))

=> #<Standard-Db-Class TAB {49B01845}>
(create-view-from-class 'tab)
=>
(defvar obj (let ((*db-auto-sync* t))

(make-instance 'tab :a 5 :b "the string")))
=> OBJ
(start-sql-recording :type :both)
=>
(delete-instance-records obj)
;; 2004-07-17 11:07:19 foo/bar/baz => DELETE FROM tab WHERE tab.a = 5
;; 2004-07-17 11:07:19 foo/bar/baz <= T
=>

Side Effects
Deletes data from the SQL database.

Affected by
Permissions granted by the SQL database to the user in the database connection.

Exceptional Situations
An exception may be signaled if the database connection user does not have sufficient privileges to

187

modify the database. An error of type sql-database-error is signalled if object is not associated with
an active database.

See Also
update-records
delete-records
update-records-from-instance

Notes
Instances are referenced in the database by values stored in the key slots. If delete-re-
cords-from-instance is called with an instance of a class that does not contain any keys, then all
records in that table will be deleted.

DELETE-INSTANCE-RECORDS

188

Name
UPDATE-RECORDS-FROM-INSTANCE -- Update database from view class object.

Syntax

update-records-from-instance object &key database =>

Arguments and Values

object An instance of a View Class.

database database object. This will default to the value of *default-database*.

Description
Using an instance of a View Class, object, update the table that stores its instance data. database
specifies the database in which the update is made only if object is not associated with a database. In
this case, a record is created in the appropriate table of database using values from the slot values of
object, and object becomes associated with database.

Examples

(select [email] :from [employee] :where [= [emplid] 1] :field-names nil :flatp t)
=> ("lenin@soviet.org")
(defvar *e1* (car (select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t)))
=> *E1*
(slot-value *e1* 'email)
=> "lenin@soviet.org"
(setf (slot-value *e1* 'email) "v.lenin@soviet.org")
=> "v.lenin@soviet.org"
(update-records-from-instance *e1*)
=>
(select [email] :from [employee] :where [= [emplid] 1] :field-names nil :flatp t)
=> ("v.lenin@soviet.org")

Side Effects
Modifies the database.

Affected by
Nothing.

Exceptional Situations

189

Database errors.

See Also
update-record-from-slot
update-record-from-slots
update-records

Notes
None.

UPDATE-RE-
CORDS-FROM-INSTANCE

190

Name
UPDATE-RECORD-FROM-SLOT -- Updates database from slot value.

Syntax

update-record-from-slot object slot &key database =>

Arguments and Values

object An instance of a View Class.

slot The name of a slot in object.

database A database object. This will default to the value of *default-database*.

Description
Updates the value stored in the column represented by the slot, specified by the CLOS slot name slot,
of View Class instance object. database specifies the database in which the update is made only if
object is not associated with a database. In this case, a record is created in database and the attrib-
ute represented by slot is initialised from the value of the supplied slots with other attributes having
default values. Furthermore, object becomes associated with database.

Examples

(select [email] :from [employee] :where [= [emplid] 1] :field-names nil :flatp t)
=> ("lenin@soviet.org")
(defvar *e1* (car (select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t)))
=> *E1*
(slot-value *e1* 'email)
=> "lenin@soviet.org"
(setf (slot-value *e1* 'email) "v.lenin@soviet.org")
=> "v.lenin@soviet.org"
(update-record-from-slot *e1* 'email)
=>
(select [email] :from [employee] :where [= [emplid] 1] :field-names nil :flatp t)
=> ("v.lenin@soviet.org")

Side Effects
Modifies database.

Affected By
Nothing.

191

Exceptional Situations
Database errors.

See Also
update-record-from-slots
update-records-from-instance

Notes
None.

UPDATE-RECORD-FROM-SLOT

192

Name
UPDATE-RECORD-FROM-SLOTS -- Update database from slots of view class object.

syntax

update-record-from-slots object slots &key database =>

Arguments and Values

object An instance of a View Class.

slots A list of slot names in object.

database A database object. This will default to the value of *default-database*.

Description
Updates the values stored in the columns represented by the slots, specified by the clos slot names
slots, of View Class instance object. database specifies the database in which the update is
made only if object is not associated with a database. In this case, a record is created in the appropri-
ate table of database and the attributes represented by slots are initialised from the values of the
supplied slots with other attributes having default values. Furthermore, object becomes associated
with database.

Examples

(select [last-name] [email] :from [employee] :where [= [emplid] 1] :field-names nil)
=> (("Lenin" "lenin@soviet.org"))
(defvar *e1* (car (select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t)))
=> *E1*
(slot-value *e1* 'last-name)
=> "Lenin"
(slot-value *e1* 'email)
=> "lenin@soviet.org"
(setf (slot-value *e1* 'last-name) "Ivanovich")
=> "Ivanovich"
(setf (slot-value *e1* 'email) "v.ivanovich@soviet.org")
=> "v.ivanovich@soviet.org"
(update-record-from-slots *e1* '(email last-name))
=>
(select [last-name] [email] :from [employee] :where [= [emplid] 1] :field-names nil)
=> (("Ivanovich" "v.ivanovich@soviet.org"))

Side Effects
Modifies the SQL database.

193

Affected by
Nothing.

Exceptional Situations
Database errors.

See Also

update-record-from-slot
update-records-from-instance

Notes
None.

UPDATE-RECORD-FROM-SLOTS

194

Name
UPDATE-INSTANCE-FROM-RECORDS -- Update slot values from database.

Syntax

update-instance-from-records object &key database => object

Arguments and Values

object An instance of a View Class.

database A database object. This will default to the value of *default-database*.

Description
Updates the slot values of the View Class instance object using the attribute values of the appropriate
table of database which defaults to the database associated with object or, if object is not asso-
ciated with a database, *default-database*. Join slots are updated but instances of the class on
which the join is made are not updated.

Examples

(defvar *e1* (car (select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t)))
=> *E1*
(slot-value *e1* 'email)
=> "lenin@soviet.org"
(update-records [employee]

:av-pairs '(([email] "v.lenin@soviet.org"))
:where [= [emplid] 1])

=>
(update-instance-from-records *e1*)
=> #<EMPLOYEE {4806B53D}>
(slot-value *e1* 'email)
=> "v.lenin@soviet.org"

Side Effects
Slot values of object may be modified.

Affected by

Data in SQL database.

Exceptional Situations

195

If database is not able to be read.

See Also
update-slot-from-record
update-objects-joins

Notes
None.

UPDATE-IN-
STANCE-FROM-RECORDS

196

Name
UPDATE-SLOT-FROM-RECORD -- Update objects slot from database.

Syntax

update-slot-from-record object slot &key database => object

Arguments and Values

object An instance of a View Class.

slot The name of a slot in object.

database A database object. This will default to the value of *default-database*.

Description
Updates the slot value, specified by the CLOS slot name slot, of the View Class instance object us-
ing the attribute values of the appropriate table of database which defaults to the database associated
with object or, if object is not associated with a database, *default-database*. Join slots are
updated but instances of the class on which the join is made are not updated.

Examples

(defvar *e1* (car (select 'employee :where [= [slot-value 'employee 'emplid] 1] :flatp t)))
=> *E1*
(slot-value *e1* 'email)
=> "lenin@soviet.org"
(update-records [employee]

:av-pairs '(([email] "v.lenin@soviet.org"))
:where [= [emplid] 1])

=>
(update-slot-from-record *e1* 'email)
=> #<EMPLOYEE {4806B53D}>
(slot-value *e1* 'email)
=> "v.lenin@soviet.org"

Side Effects
Modifies the slot value of the object.

Affected by

Data in SQL database.

197

Exceptional Situations
Database errors.

See Also
update-instance-from-records
update-objects-joins

Notes
None.

UPDATE-SLOT-FROM-RECORD

198

Name
UPDATE-OBJECTS-JOINS -- Updates joined slots of objects.

Syntax

update-objects-joins objects &key slots force-p class-name max-len =>

Arguments and Values

objects A list of instances of a View Class.

slots A list of slot names in object or T.

force-p A Boolean, defaulting to T.

class-name A list of instances of a View Class.

max-len A non-negative integer or NIL defaulting to *default-update-objects-max-len*.

Description
Updates from the records of the appropriate database tables the join slots specified by slots in the sup-
plied list of View Class instances objects. slots when T means that all join slots with :retrieval
:immediate are updated. class-name is used to specify the View Class of all instance in objects,
when NIL then the class of the first instance in objects is used. force-p when T means that all join
slots are updated whereas a value of NIL means that only unbound join slots are updated. max-len
when non-nil specifies that update-object-joins may issue multiple database queries with a
maximum of max-len instances updated in each query.

Examples

(defvar *addresses* (select 'deferred-employee-address :order-by [ea_join aaddressid] :flatp t))
=> *ADDRESSES*
(slot-boundp (car *addresses*) 'address)
=> NIL
(update-objects-joins *addresses*)
=>
(slot-boundp (car *addresses*) 'address)
=> T
(slot-value (car *addresses*) 'address)
=> #<ADDRESS {480B0F1D}>

Side Effects
The slot values of objects are modified.

199

Affected by

default-update-objects-max-len

Exceptional Situations
Database errors.

See Also
default-update-objects-max-len
update-instance-from-records
update-slot-from-record

Notes
None.

UPDATE-OBJECTS-JOINS

200

SQL I/O Recording
CLSQL provides a facility for recording SQL commands sent to and/or results returned from the under-
lying RDBMS to user sprecified streams. This is useful for monitoring CLSQL activity and for debug-
ging applications.

This section documents the functions provided for enabling and disabling SQL recording as well as for
manipulating the streams on to which SQL commands and results are recorded.

201

Name
START-SQL-RECORDING -- Start recording SQL commands or results.

Syntax

start-sql-recording &key type database =>

Arguments and Values

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

database A database object. This will default to *default-database*.

Description
Starts recording of SQL commands sent to and/or results returned from database which defaults to
default-database. The SQL is output on one or more broadcast streams, initially just
standard-output, and the functions add-sql-stream and delete-sql-stream may be used to
add or delete command or result recording streams. The default value of type is :commands which
means that SQL commands sent to database are recorded. If type is :results then SQL results re-
turned from database are recorded. Both commands and results may be recorded by passing type
value of :both.

Examples

(start-sql-recording :type :both)
=>
(select [last-name] :from [employee]

:where [= [emplid] 1]
:field-names nil
:flatp t)

;; 2004-07-02 16:42:12 dent/test/dent => SELECT last_name FROM employee WHERE (emplid = 1)
;; 2004-07-02 16:42:12 dent/test/dent <= (Lenin)
=> ("Lenin")

Side Effects
The command and result recording broadcast streams associated with database are reinitialised with
only *standard-output* as their component streams.

Affected by
None.

202

Exceptional Situations
None.

See Also
stop-sql-recording
sql-recording-p
sql-stream
add-sql-stream
delete-sql-stream
list-sql-streams

Notes
None.

START-SQL-RECORDING

203

Name
STOP-SQL-RECORDING -- Stop recording SQL commands or results.

Syntax

stop-sql-recording &key type database =>

Arguments and Values

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

database A database object. This will default to *default-database*.

Description
Stops recording of SQL commands sent to and/or results returned from database which defaults to
default-database. The default value of type is :commands which means that SQL commands sent to
database will no longer be recorded. If type is :results then SQL results returned from database
will no longer be recorded. Recording may be stopped for both commands and results by passing type
value of :both.

Examples

(start-sql-recording :type :both)
=>
(select [last-name] :from [employee]

:where [= [emplid] 1]
:field-names nil
:flatp t)

;; 2004-07-02 16:42:12 dent/test/dent => SELECT last_name FROM employee WHERE (emplid = 1)
;; 2004-07-02 16:42:12 dent/test/dent <= (Lenin)
=> ("Lenin")
(stop-sql-recording :type :results)
=>
(select [last-name] :from [employee]

:where [= [emplid] 1]
:field-names nil
:flatp t)

;; 2004-07-02 16:44:11 dent/test/dent => SELECT last_name FROM employee WHERE (emplid = 1)
=> ("Lenin")

Side Effects
The command and result recording broadcast streams associated with database are reinitialised to
NIL.

204

Affected by
None.

Exceptional Situations
None.

See Also
start-sql-recording
sql-recording-p

Notes
None.

STOP-SQL-RECORDING

205

Name
SQL-RECORDING-P -- Tests whether SQL commands or results are being recorded.

Syntax

sql-recording-p &key type database => result

Arguments and Values

type One of the following keyword symbols: :commands, :results, :both or :either defaulting to
:commands.

database A database object. This will default to *default-database*.

result A Boolean.

Description
Predicate to test whether the SQL recording specified by type is currently enabled for database
which defaults to *default-database*. type may be one of :commands, :results, :both or :either, default-
ing to :commands, otherwise NIL is returned.

Examples

(start-sql-recording :type :commands)
=>
(sql-recording-p :type :commands)
=> T
(sql-recording-p :type :both)
=> NIL
(sql-recording-p :type :either)
=> T

Side Effects
None.

Affected by
start-sql-recording
stop-sql-recording

Exceptional Situations
None.

206

See Also
start-sql-recording
stop-sql-recording

Notes
The :both and :either values for the type keyword argument are CLSQL extensions.

SQL-RECORDING-P

207

Name
SQL-STREAM -- Returns the broadcast stream used for recording SQL commands or results.

Syntax

sql-stream &key type database => result

Arguments and Values

type One of the following keyword symbols: :commands or :results, defaulting to :commands.

database A database object. This will default to *default-database*.

result A broadcast stream or NIL.

Description
Returns the broadcast stream used for recording SQL commands sent to or results returned from data-
base which defaults to *default-database*. type must be one of :commands or :results, defaulting to
:commands, and determines whether the stream returned is that used for recording SQL commands or
results.

Examples

(start-sql-recording :type :commands)
=>
(sql-stream :type :commands)
=> #<Broadcast Stream>
(sql-stream :type :results)
=> NIL

Side Effects
None.

Affected by
None.

Exceptional Situations
An error is signalled if type is not one of :commands or :results.

See Also

208

start-sql-recording
add-sql-stream
delete-sql-stream
list-sql-streams

Notes
None.

SQL-STREAM

209

Name
ADD-SQL-STREAM -- Add a component to the broadcast streams used for recording SQL commands
or results.

Syntax

add-sql-stream stream &key type database => result

Arguments and Values

stream A stream or T.

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

database A database object. This will default to *default-database*.

result The added stream.

Description
Adds the supplied stream stream (or T for *standard-output*) as a component of the recording broad-
cast stream for the SQL recording type specified by type on database which defaults to
default-database. type must be one of :commands, :results, or :both, defaulting to :commands, de-
pending on whether the stream is to be added for recording SQL commands, results or both.

Examples

(start-sql-recording :type :commands)
=>
(with-output-to-string (s)
(add-sql-stream s :type :commands)
(print-query [select [emplid] [first-name] [last-name] [email] :from [employee]]

:stream s))

;; 2004-07-02 17:38:45 dent/test/dent => SELECT emplid,first_name,last_name,email FROM employee
=>
";; 2004-07-02 17:38:45 dent/test/dent => SELECT emplid,first_name,last_name,email FROM employee
1 Vladimir Lenin lenin@soviet.org
2 Josef Stalin stalin@soviet.org
3 Leon Trotsky trotsky@soviet.org
4 Nikita Kruschev kruschev@soviet.org
5 Leonid Brezhnev brezhnev@soviet.org
6 Yuri Andropov andropov@soviet.org
7 Konstantin Chernenko chernenko@soviet.org
8 Mikhail Gorbachev gorbachev@soviet.org
9 Boris Yeltsin yeltsin@soviet.org
10 Vladimir Putin putin@soviet.org "

210

Side Effects
The specified broadcast stream(s) associated with database are modified.

Affected by
None.

Exceptional Situations
None.

See Also
start-sql-recording
sql-stream
delete-sql-stream
list-sql-streams

Notes
None.

ADD-SQL-STREAM

211

Name
DELETE-SQL-STREAM -- Remove a component from the broadcast streams used for recording SQL
commands or results.

Syntax

delete-sql-stream stream &KEY type database => result

Arguments and Values

stream A stream or T.

stream A stream or T.

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

database A database object. This will default to *default-database*.

result The added stream.

Description
Removes the supplied stream stream from the recording broadcast stream for the SQL recording type
specified by type on database which defaults to *default-database*. type must be one of
:commands, :results, or :both, defaulting to :commands, depending on whether the stream is to be added
for recording SQL commands, results or both.

Examples

(list-sql-streams :type :both)
=> (#<Stream for descriptor 7> #<Stream for descriptor 7>)
(delete-sql-stream *standard-output* :type :results)
=> #<Stream for descriptor 7>
(list-sql-streams :type :both)
=> (#<Stream for descriptor 7>)

Side Effects
The specified broadcast stream(s) associated with database are modified.

Affected by
None.

212

Exceptional Situations
None.

See Also
start-sql-recording
stop-sql-recording
sql-recording-p
sql-stream
add-sql-stream
delete-sql-stream
list-sql-streams

Notes
None.

DELETE-SQL-STREAM

213

Name
LIST-SQL-STREAMS -- List the components of the broadcast streams used for recording SQL com-
mands or results.

Syntax

list-sql-streams &key type database => result

Arguments and Values

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

database A database object. This will default to *default-database*.

result A list.

Description
Returns the list of component streams for the broadcast stream recording SQL commands sent to and/or
results returned from database which defaults to *default-database*. type must be one of
:commands, :results, or :both, defaulting to :commands, and determines whether the listed streams con-
tain those recording SQL commands, results or both.

Examples

(list-sql-streams :type :both)
=> NIL
(start-sql-recording :type :both)
=>
(list-sql-streams :type :both)
=> (#<Stream for descriptor 7> #<Stream for descriptor 7>)

Side Effects
None.

Affected by

add-sql-stream
delete-sql-stream

Exceptional Situations

214

An error is signalled if type is passed a value other than :commands, :results or :both.

See Also
sql-stream
add-sql-stream
delete-sql-stream

Notes
None.

LIST-SQL-STREAMS

215

CLSQL Condition System
CLSQL provides and uses a condition system in which all errors and warnings are of type sql-condition.
This section describes the various subclasses of sql-condition defined by CLSQL. Details are also
provided for how they are used in CLSQL and intended to be signalled in user code. Finally, slot ac-
cessors for some of the condition types are described.

216

Name
BACKEND-WARNING-BEHAVIOR -- Controls behaviour on warnings from underlying RDBMS.

Value Type
Meaningful values are :warn, :error, :ignore and NIL.

Initial Value
:warn

Description
Action to perform on warning messages from backend. Default is to :warn. May also be set to :error to
signal an error or :ignore or NIL to silently ignore the warning.

Examples

Affected By
None.

See Also
None.

Notes
backend-warning-behaviour is a CLSQL extension.

217

Name
SQL-CONDITION -- the super-type of all CLSQL-specific conditions

Class Precedence List
sql-condition, condition, t,

Description
This is the super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specif-
ic interfaces. There are no defined initialization arguments nor any accessors.

Notes
sql-condition is a CLSQL extension.

218

Name
SQL-ERROR -- the super-type of all CLSQL-specific errors

Class Precedence List
sql-error, simple-error, simple-condition, error, serious-condition, sql-condition, condition, t,

Description
This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or
any of it's database-specific interfaces. There are no defined initialization arguments nor any accessors.

Notes
sql-error is a CLSQL extension.

219

Name
SQL-WARNING -- the super-type of all CLSQL-specific warnings

Class Precedence List
sql-warning, warning, sql-condition, condition, t,

Description
This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL,
or any of it's database-specific interfaces. There are no defined initialization arguments nor any ac-
cessors.

Notes
sql-warning is a CLSQL extension.

220

Name
SQL-DATABASE-WARNING -- Used to warn while accessing a CLSQL database.

Class Precedence List
sql-database-warning, sql-warning, warning, sql-condition, condition, t,

Description
This condition represents warnings signalled while accessing a database.

The following initialization arguments and accessors exist:
Initarg: :database
Accessor: sql-warning-database
Description: The database object that was involved in the incident.

Notes
sql-database-warning is a CLSQL extension.

221

Name
SQL-USER-ERROR -- condition representing errors because of invalid parameters from the library
user.

Class Precedence List
sql-user-error, sql-error, simple-error, simple-condition, error, serious-condition, sql-condition, condi-
tion, t,

Description
This condition represents errors that occur because the user supplies invalid data to CLSQL. This in-
cludes errors such as an invalid format connection specification or an error in the syntax for the LOOP
macro extensions.

The following initialization arguments and accessors exist:
Initarg: :message
Accessor: sql-user-error-message
Description: The error message.

Notes
The slot accessor sql-user-error-message is a CLSQL extension.

222

Name
SQL-DATABASE-ERROR -- condition representing errors during query or command execution

Class Precedence List
sql-database-error, sql-error, simple-error, simple-condition, error, serious-condition, sql-condition, con-
dition, t,

Description
This condition represents errors that occur while executing SQL statements, either as part of query oper-
ations or command execution, either explicitly or implicitly, as caused e.g. by with-transaction.

The following initialization arguments and accessors exist:
Initarg: :database
Accessor: sql-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes
The slot accessor sql-error-database is a CLSQL extension.

223

Name
SQL-CONNECTION-ERROR -- condition representing errors during connection

Class Precedence List
sql-connection-error, sql-database-error, sql-error, simple-error, simple-condition, error, serious-con-
dition, sql-condition, condition, t,

Description
This condition represents errors that occur while trying to connect to a database.

The following initialization arguments and accessors exist:
Initarg: :database-type
Accessor: sql-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-database-error-error
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes
The slot accessors sql-error-database, sql-error-database-type and sql-er-
ror-connection-spec are CLSQL extensions.

224

Name
SQL-DATABASE-DATA-ERROR -- Used to signal an error with the SQL data passed to a database.

Class Precedence List
sql-database-data-error, sql-database-error, sql-error, simple-error, simple-condition, error, serious-
condition, sql-condition, condition, t,

Description
This condition represents errors that occur while executing SQL statements, specifically as a result of
malformed SQL expressions.

The following initialization arguments and accessors exist:
Initarg: :expression
Accessor: sql-error-expression
Description: The SQL expression whose execution caused the error.
Initarg: :database
Accessor: sql-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes
The slot accessors sql-error-database and sql-error-expression are CLSQL extensions.

225

Name
SQL-TEMPORARY-ERROR -- Used to signal a temporary error in the database backend.

Class Precedence List
sql-temporary-error, sql-database-error, sql-error, simple-error, simple-condition, error, serious-condi-
tion, sql-condition, condition, t,

Description
This condition represents errors occurring when the database cannot currently process a valid interaction
because, for example, it is still executing another command possibly issued by another user.

The following initialization arguments and accessors exist:
Initarg: :database
Accessor: sql-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes
The slot accessor sql-error-database is a CLSQL extension.

226

Name
SQL-TIMEOUT-ERROR -- condition representing errors when a connection times out.

Class Precedence List
sql-connection-error, sql-database-error, sql-error, simple-error, simple-condition, error, serious-con-
dition, sql-condition, condition, t,

Description
This condition represents errors that occur when the database times out while processing some opera-
tion. The following initialization arguments and accessors exist:
Initarg: :database-type
Accessor: sql-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes
The slot accessors sql-error-database, sql-error-database-type and sql-er-
ror-connection-spec are CLSQL extensions.

227

Name
SQL-FATAL-ERROR -- condition representing a fatal error in a database connection

Class Precedence List
sql-connection-error, sql-database-error, sql-error, simple-error, simple-condition, error, serious-con-
dition, sql-condition, condition, t,

Description
This condition represents errors occurring when the database connection is no longer usable.

The following initialization arguments and accessors exist:
Initarg: :database-type
Accessor: sql-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :database
Accessor: sql-error-database
Description: The database object that was involved in the incident.
Initarg: :error-id
Accessor: sql-error-error-id
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :secondary-error-id
Accessor: sql-error-secondary-error-id
Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.
Initarg: :message
Accessor: sql-error-database-message
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes
The slot accessors sql-error-database, sql-error-database-type and sql-er-
ror-connection-spec are CLSQL extensions.

228

Index

229

Name
Alphabetical Index for package CLSQL -- Clickable index of all symbols

BACKEND-WARNING-BEHAVIOR LIST-SEQUENCES
CACHE-TABLE-QUERIES-DEFAULT LIST-SQL-STREAMS
CONNECT-IF-EXISTS LIST-TABLES
DB-AUTO-SYNC LIST-VIEWS
DEFAULT-DATABASE LOCALLY-DIS-

ABLE-SQL-READER-SYNTAX
DEFAULT-DATABASE-TYPE LOCALLY-EN-

ABLE-SQL-READER-SYNTAX
*DEFAULT-UPDATE-OBJECTS-MAX-LE
N*

LOOP-FOR-AS-TUPLES

DEFAULT-STRING-LENGTH MAP-QUERY
INITIALIZED-DATABASE-TYPES PROBE-DATABASE
ADD-SQL-STREAM QUERY
ADD-TRANSACTION-COMMIT-HOOK RECONNECT
ADD-TRANSACTION-ROLLBACK-HOOK RESTORE-

SQL-READER-SYNTAX-STATE
ATTRIBUTE-TYPE ROLLBACK
CACHE-TABLE-QUERIES SELECT
COMMIT SEQUENCE-EXISTS-P
CONNECT SEQUENCE-LAST
CONNECTED-DATABASES SEQUENCE-NEXT
CREATE-DATABASE SET-AUTOCOMMIT
CREATE-INDEX SET-SEQUENCE-POSITION
CREATE-SEQUENCE SQL
CREATE-TABLE SQL-CONDITION
CREATE-VIEW SQL-CONNECTION-ERROR
CREATE-VIEW-FROM-CLASS SQL-DATABASE-DATA-ERROR
DATABASE SQL-DATABASE-ERROR
DATABASE-NAME SQL-DATABASE-WARNING
DATABASE-NAME-FROM-SPEC SQL-ERROR
DATABASE-TYPE SQL-EXPRESSION
DEF-VIEW-CLASS SQL-FATAL-ERROR
DELETE-INSTANCE-RECORDS SQL-OPERATION
DELETE-RECORDS SQL-OPERATOR
DELETE-SQL-STREAM SQL-RECORDING-P
DESTROY-DATABASE SQL-STREAM
DISABLE-SQL-READER-SYNTAX SQL-TEMPORARY-ERROR
DISCONNECT SQL-TIMEOUT-ERROR
DISCONNECT-POOLED SQL-USER-ERROR
DO-QUERY SQL-WARNING
DROP-INDEX START-SQL-RECORDING
DROP-SEQUENCE START-TRANSACTION
DROP-TABLE STATUS
DROP-VIEW STOP-SQL-RECORDING
DROP-VIEW-FROM-CLASS TABLE-EXISTS-P
ENABLE-SQL-READER-SYNTAX TRUNCATE-DATABASE
EXECUTE-COMMAND UPDATE-INSTANCE-FROM-RECORDS
FIND-DATABASE UPDATE-OBJECTS-JOINS
IN-TRANSACTION-P UPDATE-RECORD-FROM-SLOT
INDEX-EXISTS-P UPDATE-RECORD-FROM-SLOTS
INITIALIZE-DATABASE-TYPE UPDATE-RECORDS

230

INSERT-RECORDS UPDATE-RECORDS-FROM-INSTANCE
INSTANCE-REFRESHED UPDATE-SLOT-FROM-RECORD
LIST-ATTRIBUTE-TYPES VIEW-EXISTS-P
LIST-ATTRIBUTES WITH-DATABASE
LIST-CLASSES WITH-DEFAULT-DATABASE
LIST-DATABASES WITH-TRANSACTION
LIST-INDEXES

Alphabetical Index for package
CLSQL

231

Appendix A. Database Back-ends
How CLSQL finds and loads foreign libraries

For some database types CLSQL has to load external foreign libaries. These are usually searched for in
the standard locations the operating system uses but you can tell CLSQL to look into other directories as
well by using the function CLSQL:PUSH-LIBRARY-PATH or by directly manipulating the special
variable CLSQL:*FOREIGN-LIBRARY-SEARCH-PATHS*. If, say, the shared library libpq.so
needed for PostgreSQL support is located in the directory /opt/foo/ on your machine you'd use

(clsql:push-library-path "/opt/foo/")

before loading the CLSQL-POSTGRESQL module. (Note the trailing slash above!) If you want to com-
bine this with fully automatic loading of libraries via ASDF a technique like the following works:

(defmethod asdf:perform :after ((o asdf:load-op)
(c (eql (asdf:find-system 'clsql))))

(funcall (find-symbol (symbol-name '#:push-library-path)
(find-package 'clsql))

#p"/opt/foo/"))

Additionally, site-specific initialization can be done using an initialization file. If the file /
etc/clsql-init.lisp exists, this file will be read after the CLSQL ASDF system is loaded. This
file can contain forms to set site-specific paths as well as change CLSQL default values.

PostgreSQL
Libraries

The PostgreSQL back-end requires the PostgreSQL C client library (libpq.so). The location of this
library is specified via *postgresql-so-load-path*, which defaults to /usr/lib/libpq.so. Addition-
al flags to ld needed for linking are specified via *postgresql-so-libraries*, which defaults to ("-lcrypt" "-
lc").

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-postgresql)

to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresql.

Connection Specification

Syntax of connection-spec

232

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment vari-
ables (see PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the
C client library are used.

host String representing the hostname or IP address the PostgreSQL server resides on. Use the
empty string to indicate a connection to localhost via Unix-Domain sockets instead of
TCP/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

port String representing the port to use for communication with the PostgreSQL server.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.

Notes
None.

PostgreSQL Socket
Libraries

The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it commu-
nicates directly with the PostgreSQL server using the published frontend/backend protocol, version 2.0.
This eases installation and makes it possible to dump CMU CL images containing CLSQL and this
backend, contrary to backends which require FFI code.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-postgresql-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is
:postgresql-socket.

Connection Specification

Database Back-ends

233

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host If this is a string, it represents the hostname or IP address the PostgreSQL server resides
on. In this case communication with the server proceeds via a TCP connection to the giv-
en host and port.

If this is a pathname, then it is assumed to name the directory that contains the server's
Unix-Domain sockets. The full name to the socket is then constructed from this and the
port number passed, and communication will proceed via a connection to this unix-do-
main socket.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication. This can be the
empty string if no password is required for authentication.

port Integer representing the port to use for communication with the PostgreSQL server. This
defaults to 5432.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.

Notes
None.

MySQL
Libraries

The MySQL back-end requires the MySQL C client library (libmysqlclient.so). The location of
this library is specified via *mysql-so-load-path*, which defaults to /
usr/lib/libmysqlclient.so. Additional flags to ld needed for linking are specified via
mysql-so-libraries, which defaults to ("-lc").

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-mysql)

Database Back-ends

234

to load the MySQL back-end. The database type for the MySQL back-end is :mysql.

Connection Specification

Syntax of connection-spec

(host db user password &optional port)

Description of connection-spec

host String representing the hostname or IP address the MySQL server resides on, or nil to in-
dicate the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix
user ID.

password String representing the unencrypted password to use for authentication, or nil if the au-
thentication record has an empty password field.

port String representing the port to use for communication with the MySQL server.

Notes

FDDL

• drop-index requires a table to be specified with the :on keyword parameter.

• views are not supported by MySQL.

• The :transactions keyword argument to create-table controls whether or not the created table is
an InnoDB table which supports transactions.

• The :owner keyword argument to the FDDL functions for listing and testing for database objects is
ignored.

FDML

• Prior to version 4.1, MySQL does not support nested subqueries in calls to select.

Symbolic SQL Syntax

• MySQL does not support the || concatenation operator. Use concat instead.

• MySQL does not support the substr operator. Use substring instead.

• MySQL does not support the intersect and except set operations.

Database Back-ends

235

• MySQL (version 4.0 and later) does not support string table aliases unless the server is started with
ANSI_QUOTES enabled.

ODBC
Libraries

The ODBC back-end requires access to an ODBC driver manager as well as ODBC drivers for the un-
derlying database server. CLSQL has been tested with unixODBC ODBC Driver Manager as well as Mi-
crosoft's ODBC manager. These driver managers have been tested with the psqlODBC
[http://odbc.postgresql.org] driver for PostgreSQL and the MyODBC
[http://www.mysql.com/products/connector/odbc/] driver for MySQL.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-odbc)

to load the ODBC back-end. The database type for the ODBC back-end is :odbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

Notes

FDDL

• The :owner keyword argument to the FDDL functions for listing and testing for database objects is
ignored.

AODBC
Libraries

Database Back-ends

236

http://odbc.postgresql.org
http://www.mysql.com/products/connector/odbc/

The AODBC back-end requires access to the ODBC interface of AllegroCL named DBI. This interface
is not available in the trial version of AllegroCL

Initialization
Use

(require 'aodbc-v2)
(asdf:operate 'asdf:load-op 'clsql-aodbc)

to load the AODBC back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

Notes
None.

SQLite version 2
Libraries

The SQLite version 2 back-end requires the SQLite version 2 shared library file. Its default file name is
/usr/lib/libsqlite.so.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-sqlite)

to load the SQLite version 2 back-end. The database type for the SQLite version 2 back-end is :sqlite.

Database Back-ends

237

Connection Specification

Syntax of connection-spec

(filename)

Description of connection-spec

filename String representing the filename of the SQLite version 2 database file.

Notes

Connection

• Passing filename a value of :memory: will create a database in physical memory instead of us-
ing a file on disk.

• Some operations will be many times faster if database integrity checking is disabled by setting the
SYNCHRONOUS flag to OFF (see the SQLITE manual for details).

FDDL

• The :owner keyword argument to the FDDL functions for listing and testing for database objects is
ignored.

• The :column-list keyword argument to create-view is not supported by SQLite version 2.

Symbolic SQL Syntax

• SQLite version 2 does not support the all, some, any and exists subquery operations.

SQLite version 3
Libraries

The SQLite version 3 back-end requires the SQLite version 3 shared library file. Its default file name is
/usr/lib/libsqlite3.so.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-sqlite3)

Database Back-ends

238

to load the SQLite version 3 back-end. The database type for the SQLite version 3 back-end is :sqlite3.

Connection Specification

Syntax of connection-spec

(filename &optional init-function)

Description of connection-spec

filename String representing the filename of the SQLite version 3 database file.

init-function A function designator. init-function takes a single argument of type sql-
ite3:sqlite3-db, a foreign pointer to the C descriptor of the newly opened database.
init-function is called by the back-end immediately after SQLite version 3
sqlite3_open library function, and can be used to perform optional database
initializations by calling foreign functions in the SQLite version 3 library.

An example of an initialization function which defines a new collating sequence
for text columns is provided in ./examples/sqlite3/init-func/.

Notes

Connection

• Passing filename a value of :memory: will create a database in physical memory instead of us-
ing a file on disk.

• Some operations will be many times faster if database integrity checking is disabled by setting the
SYNCHRONOUS flag to OFF (see the SQLITE manual for details).

FDDL

• The :owner keyword argument to the FDDL functions for listing and testing for database objects is
ignored.

• The :column-list keyword argument to create-view is not supported by SQLite version 3.

Symbolic SQL Syntax

• SQLite version 3 does not support the all, some, any and exists subquery operations.

Oracle
Libraries

Database Back-ends

239

The Oracle back-end requires the Oracle OCI client library. (libclntsh.so). The location of this lib-
rary is specified relative to the ORACLE_HOME value in the operating system environment.

Library Versions
CLSQL has tested sucessfully using the client library from Oracle 9i and Oracle 10g server installations
as well as Oracle's 10g Instant Client library. For Oracle 8 and earlier versions, there is vestigial support
by pushing the symbol :oci7 onto cl:*features* prior to loading the clsql-oracle ASDF system.

(push :oci7 cl:*features*)
(asdf:operate 'asdf:load-op 'clsql-oracle)

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-oracle)

to load the Oracle back-end. The database type for the Oracle back-end is :oracle.

Connection Specification

Syntax of connection-spec

(global-name user password)

Description of connection-spec

global-name String representing the global name of the Oracle database. This is looked up through
the tnsnames.ora file.

user String representing the user name to use for authentication.

password String representing the password to use for authentication..

Notes

Symbolic SQL Syntax

• The userenv operator is Oracle specific.

• Oracle does not support the except operator. Use minus instead.

• Oracle does not support the all, some, any subquery operations.

Transactions

Database Back-ends

240

• By default, CLSQL starts in transaction AUTOCOMMIT mode (see set-autocommit). To begin
a transaction in autocommit mode, start-transaction has to be called explicitly.

Database Back-ends

241

Glossary
Note

This glossary is still very thinly populated, and not all references in the main text have been properly linked and co-
ordinated with this glossary. This will hopefully change in future revisions.

Attribute A property of objects stored in a database table. Attributes are represented as
columns (or fields) in a table.

Active database See Database Object.

Connection See Database Object.

Column See Attribute.

Data Definition Language
(DDL)

The subset of SQL used for defining and examining the structure of a database.

Data Manipulation Language
(DML)

The subset of SQL used for inserting, deleting, updating and fetching data in a
database.

database See Database Object.

Database Object An object of type database.

Field See Attribute.

Field Types Specifier A value that specifies the type of each field in a query.

Foreign Function Interface
(FFI)

An interface from Common Lisp to a external library which contains compiled
functions written in other programming languages, typically C.

Query An SQL statement which returns a set of results.

RDBMS A Relational DataBase Management System (RDBMS) is a software package
for managing a database in which the data is defined, organised and accessed as
rows and columns of a table.

Record A sequence of attribute values stored in a database table.

Row See Record.

Structured Query Language
(SQL)

An ANSI standard language for storing and retrieving data in a relational data-
base.

SQL Expression Either a string containing a valid SQL statement, or an object of type sql-
expression.

Table A collection of data which is defined, stored and accessed as tuples of attribute
values (i.e., rows and columns).

Transaction An atomic unit of one or more SQL statements of which all or none are success-
fully executed.

Tuple See Record.

View A table display whose structure and content are derived from an existing table
via a query.

242

View Class The class standard-db-object or one of its subclasses.

Glossary

243

	CLSQL Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	History
	Prerequisites
	ASDF
	UFFI
	MD5
	Supported Common Lisp Implementation
	Supported SQL Implementation

	Installation
	Ensure ASDF is loaded
	Build C helper libraries
	Microsoft Windows
	UNIX

	Add UFFI path
	Add MD5 path
	Add CLSQL path and load module
	Run test suite (optional)

	Chapter 2. CommonSQL Tutorial
	Introduction
	Data Modeling with CLSQL
	Class Relations
	Object Creation
	Finding Objects
	Deleting Objects
	Conclusion

	Connection and Initialisation
	DATABASE
	CONNECT-IF-EXISTS
	DEFAULT-DATABASE
	DEFAULT-DATABASE-TYPE
	INITIALIZED-DATABASE-TYPES
	CONNECT
	CONNECTED-DATABASES
	DATABASE-NAME
	DATABASE-NAME-FROM-SPEC
	DATABASE-TYPE
	DISCONNECT
	DISCONNECT-POOLED
	FIND-DATABASE
	INITIALIZE-DATABASE-TYPE
	RECONNECT
	STATUS
	CREATE-DATABASE
	DESTROY-DATABASE
	PROBE-DATABASE
	LIST-DATABASES
	WITH-DATABASE
	WITH-DEFAULT-DATABASE

	The Symbolic SQL Syntax
	ENABLE-SQL-READER-SYNTAX
	DISABLE-SQL-READER-SYNTAX
	LOCALLY-ENABLE-SQL-READER-SYNTAX
	LOCALLY-DISABLE-SQL-READER-SYNTAX
	RESTORE-SQL-READER-SYNTAX-STATE
	SQL
	SQL-EXPRESSION
	SQL-OPERATION
	SQL-OPERATOR

	Functional Data Definition Language (FDDL)
	CREATE-TABLE
	DROP-TABLE
	LIST-TABLES
	TABLE-EXISTS-P
	CREATE-VIEW
	DROP-VIEW
	LIST-VIEWS
	VIEW-EXISTS-P
	CREATE-INDEX
	DROP-INDEX
	LIST-INDEXES
	INDEX-EXISTS-P
	ATTRIBUTE-TYPE
	LIST-ATTRIBUTE-TYPES
	LIST-ATTRIBUTES
	CREATE-SEQUENCE
	DROP-SEQUENCE
	LIST-SEQUENCES
	SEQUENCE-EXISTS-P
	SEQUENCE-LAST
	SEQUENCE-NEXT
	SET-SEQUENCE-POSITION
	TRUNCATE-DATABASE

	Functional Data Manipulation Language (FDML)
	CACHE-TABLE-QUERIES-DEFAULT
	CACHE-TABLE-QUERIES
	INSERT-RECORDS
	UPDATE-RECORDS
	DELETE-RECORDS
	EXECUTE-COMMAND
	QUERY
	PRINT-QUERY
	SELECT
	DO-QUERY
	LOOP
	MAP-QUERY

	Transaction Handling
	START-TRANSACTION
	COMMIT
	ROLLBACK
	IN-TRANSACTION-P
	ADD-TRANSACTION-COMMIT-HOOK
	ADD-TRANSACTION-ROLLBACK-HOOK
	SET-AUTOCOMMIT
	WITH-TRANSACTION

	Object Oriented Data Definition Language (OODDL)
	STANDARD-DB-OBJECT
	DEFAULT-STRING-LENGTH
	CREATE-VIEW-FROM-CLASS
	DEF-VIEW-CLASS
	DROP-VIEW-FROM-CLASS
	LIST-CLASSES

	Object Oriented Data Manipulation Language (OODML)
	DB-AUTO-SYNC
	DEFAULT-CACHING
	DEFAULT-UPDATE-OBJECTS-MAX-LEN
	INSTANCE-REFRESHED
	DELETE-INSTANCE-RECORDS
	UPDATE-RECORDS-FROM-INSTANCE
	UPDATE-RECORD-FROM-SLOT
	UPDATE-RECORD-FROM-SLOTS
	UPDATE-INSTANCE-FROM-RECORDS
	UPDATE-SLOT-FROM-RECORD
	UPDATE-OBJECTS-JOINS

	SQL I/O Recording
	START-SQL-RECORDING
	STOP-SQL-RECORDING
	SQL-RECORDING-P
	SQL-STREAM
	ADD-SQL-STREAM
	DELETE-SQL-STREAM
	LIST-SQL-STREAMS

	CLSQL Condition System
	BACKEND-WARNING-BEHAVIOR
	SQL-CONDITION
	SQL-ERROR
	SQL-WARNING
	SQL-DATABASE-WARNING
	SQL-USER-ERROR
	SQL-DATABASE-ERROR
	SQL-CONNECTION-ERROR
	SQL-DATABASE-DATA-ERROR
	SQL-TEMPORARY-ERROR
	SQL-TIMEOUT-ERROR
	SQL-FATAL-ERROR

	Index
	Alphabetical Index for package CLSQL

	Appendix A. Database Back-ends
	How CLSQL finds and loads foreign libraries
	PostgreSQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes

	PostgreSQL Socket
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes

	MySQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	FDDL
	FDML
	Symbolic SQL Syntax

	ODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	FDDL

	AODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes

	SQLite version 2
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	Connection
	FDDL
	Symbolic SQL Syntax

	SQLite version 3
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	Connection
	FDDL
	Symbolic SQL Syntax

	Oracle
	Libraries
	Library Versions
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	Symbolic SQL Syntax
	Transactions

	Glossary

