CLSQL Users' Guide

Kevin M. Rosenberg
Pierre R. Mai

CLSQL Users' Guide
by Kevin M. Rosenberg and Pierre R. Mai

¢ CLSQL isCopyright © 2002-2003 by Kevin M. Rosenberg and Copyright © 1999-2001 by Pierre R. Mai.
¢ Allegro CL® isaregistered trademark of Franz Inc.

« Common SQL, LispWorks and Xanalys are trademarks or registered trademarks of Xanalys Inc.

¢ Microsoft Windows® is aregistered trademark of Microsoft Inc.

¢ Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents

P e aCE e Vi
O 1 1o o [N 1o o 1
PUINDOSE .. et 1
LS 0] Y/ 1
1= 1= 0 (811 =S 1
A D e 1
L0 1
L R PR 1
Supported Common Lisp Implementationcooeeiiiiiiiiiiiie e 2
Supported SQL IMplementationcooeuieiiiiiie e 2
FatS = = o) o PSPPI 2
Ensure ASDF iS10a0edcooouuiiiiiiiiieii e 2
Build C helper [IDrariesooouueiiiiiii e 2
[0 =0 I U] PR 3
Load MDS5 MOAUIE ... e 3
Load CLSQL MOAUIESceeiiieiie e e 3
[(S S U = PR 3

7 S OO SPPR
CLSQL-CONDITION L.ttt e e e e e e e e e e e e et eaneens 6
CLSQL-ERRORuuiiiiiiiiiet ettt e e e e e e e e e e e e et e e e et e e e eaan s 7
CLSQL-SIMPLE-ERRORcuuiiiiiiiiiteiiieeeie e e e s e e e e e e eatn s e e eatn e e aeaenens 8
CLSQL-WARNING ...ttt e e e e e e e e et e e e et e e e eaen s 9
CLSQL-SIMPLE-WARNINGcciiiiiiiiiiiiieeeiis et e e eeeaans 10
CLSQL-INVALID-SPEC-ERRORccititiiiiiiiiie et 11
CLSQL-CONNECT-ERRORuiiiiiiiiieiee e e e e e e e e e e e e 12
CLSQL-SQL-ERRORuuiiiiiiiiieiii ettt e e e e e e et e e et e e aanans 13
CLSQL-EXISTS-CONDITION ...iiiiiiiieiiiiieeeiii e et e et e e e e e e e e e eeaa e e eenens 14
CLSQL-EXISTSWARNING ...ttt et e e e e e ennns 15
CLSQL-EXISTSERROR ..ottt ettt et et e et e e e e aennns 16
CLSQL-CLOSED-ERRORuuuiiiiitiiieiiiiine ettt e et e e e e et e e e eai e eennns 17
DEFAULT-DATABASE-TY PE .. 18
*INITIALIZED-DATABASE-TYPES® ..ottt 19
INITIALIZE-DATABASE-TYPE ... ittt 20
FCONNECT AT F-EX ST S ittt e 22
CONNECTED-DATABASES ...t e 23
*DEFAULT-DATABASE" .. oo e 25
DA T A B A SE .o e 27
CLOSED-DATABASE ..ottt ettt e e e e et e e et e e aaaans 28
DATABASE-NAME ...t e e e et e e e e et e e e aate e eaees 29
FIND-DATABASE ..ot e et e e eb e eeees 31
L0 |\ O PP 33
DISCONNERCT .ttt e e et e e e e et e e e e et e e e eeta e eaeateaeaees 36
DISCONNECT-POOLED ..ottt e e e e ans 38
DATABASE-NAME-FROM-SPECcciiiiiiiiiiiiiieeees e 39
EXECUTE-COMMANDuuiiiiiiiiiee et e et e et e e et aeeeatnaeaeaneaaeeees 41
L0 PP 43
MAP-QUERY ...ttt e et e et e et e e a e aae 45
DO-QUERY ittt et aae 47
LOOP-FOR-ASTUPLES ... oo 49

R O S) 2 SRR
DATABASE-INITIALIZE-DATABASE-TYPE ...t 52
A. Database BaCk-ENaSc.uiiiiiii e 54
7S | PPN 54

CLSQL Users Guide

[T o] = =SSP 54
INITAlTZAETON .. 54
ConNNECLion SPECITICALTIONcccuuiiiiiiii e 54
POSIOIESQL ...t 54
LIDEAITES e 54
INITTAIIZATON «..eiee e e 54
ConNNECtion SPECITICAIONivvi e e e 55
POStOrESQL SOCKELiitiiiii et ee e e e e e e e et e e e e e e e e 55
o =S 55

FaTN = 2= o o PR 55
ConNECtion SPECITICATIONccueiiii e 56
AODBC .t 56
[T o] = =SSP 56
INITAlTZAETON ..t 56
ConNNECLion SPECITICALTIONcccuuiiiiiiii e 56
GlOSSANY ..ttt et eaaas 58

Preface

This guide provides reference to the features of CLSQL. The first chapter provides an introduction to
CLSQL and installation instructions. Following that chapter is the reference section for all user access-
ible symbols of CLSQL with examples of usage, followed by the reference section for all accessible
symbols of the database back-end interface. At the end there you will find a glossary of commonly used
terms with their definitions.

Vi

Chapter 1. Introduction
Purpose

CLSQL isaCommon Lisp interface to SQL databases. A number of Common Lisp implementations and
SQL databases are supported. The general structure of CLSQL is based on the CommonSQL package by
Xanalys.

History

CLSQL iswritten by Kevin M. Rosenberg and based substantially on Pierre R. Mai's excellent Mai SQL
package. The main changes from MaiSQL are:

e Optimized loading of integer and floating-point fields.

e port from the CMUCL FFI to UFFI.

» new AllegroCL ODBC interface back-end.

» compatibility layer for CMUCL specific code.

» much improved robustness for the MySQL back-end.

* improved system loading.

» improved packages and symbol export.

» transaction support.

Prerequisites
ASDF

CLSQL uses ASDF to compile and load its components. ASDF is included in the CCLAN
[http://cclan.sourceforge.net] collection.

UFFI
CLSQL uses UFFI [http://uffi.med-info.com/] as a Foreign Function Interface (FFI) to support multiple
ANSI Common Lisp implementations.
Y ou can download UFFI from its FTP site [ftp://ftp.med-info.com/pub/uffi/]. There are zip files for Mi-
crosoft Windows systems and gzipped tar files for other systems.

CLSQL's postgresgl-socket interface uses Pierre Mai's md5 [ftp://clsgl.b9.com/] module. If you plan to
use thisinterface please download the md5 module from ftp://clsgl.b9.com.

http://cclan.sourceforge.net
http://uffi.med-info.com/
ftp://ftp.med-info.com/pub/uffi/
ftp://clsql.b9.com/

Introduction

Supported Common Lisp Implementation

The implementations that support CLSQL is governed by the supported implementations of UFFI. The
following implementations are supported:

» AllegroCL v6.2 on Debian Linux, FreeBSD 4.5, and Microsoft Windows XP.

e Lispworksv4.3 on Debian Linux and Microsoft Windows XP.

* CMUCL 18eo0n Debian Linux, FreeBSD 4.5, and Solaris 2.8.

» SBCL 0.8.5 on Debian Linux.

* SCL 1.2 on Debian Linux.

e OpenMCL 0.14 on Debian Linux PowerPC.

Supported SQL Implementation

Currently, CLSQL supports the following databases:

e MySQL v3.23.51.
» PostgreSQL v7.2 with both direct APl and TCP socket connections.

* Allegro's ODBC interface (AODBC) using iODBC ODBC manager.

Installation
Ensure ASDF is loaded

Simply load thefileasdf . | i sp.

(load "asdf.lisp")

Build C helper libraries

CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL
implementations do not support 64-bit integers. Thus, C helper libraries are required to break these
64-bit integersinto two compatible 32-bit integers.

Makefiles for Microsoft Windows and GNU/Solaris systems are supplied to build the libraries. Since
many Microsoft Windows users don't have access to a compiler, the DLL and LIB files for Microsoft
Windows are supplied with the distribution.

To build the libraries on a GNU or Solaris, use the shell and change to the root directory of CLSQL. You
may need to edit the filei nt er f aces/ mysql / Makef i | e to specify the location of your MySQL
installation. The default Makefiles are setup for shared library linking on Linux. If you are using
FreeBSD or Solaris, you will need to change the linker setting as instructed in the Makefile. Then, you
can give the command

Introduction

make |i bs

in the root directory of CLSQL to build the librariesi nt er f aces/ mysql / cl sql - nysql . so and
interfaces/clsqgl-uffi/clsqgl-uffi.so.

Load UFFI

Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to
ASDFsasdf: *central -regi stry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the UFFI files reside in the /
usr/share/ |l i sp/uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)
(asdf: operate 'asdf:load-op :uffi)

Load MD5 module

If you plan to use the clsgl-postgresql-socket interface, you must load the md5 module. Unzip or untar
the cl-md5 distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf: *central -regi stry*. You can do that by pushing the pathname of the directory onto this
variadble. The following example code assumes the cl-md5 files reside in the /
usr/share/lisp/cl-nd5/ directory.

(push #P"/usr/share/lisp/cl-md5/" asdf:*central-registry*)
(asdf : operate 'asdf: | oad-op : nd5)

Load CLSQL modules

Unzip or untar the CLSQL distribution which creates a directory for the CLSQL files. Add that directory
to ASDF'sasdf: *central -regi stry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the CLSQL files reside in the /

usr/share/lisp/clsqgl/ directory. You need to load, at a minimum, the main :clsgl system and at
least one interface system.

(push #P"/usr/sharel/lisp/clsql/" asdf:*central-repository*)

(asdf: operate 'asdf:|oad-op 'clsqgl-base) ; base clsql package

(asdf: operate 'asdf:load-op 'clsqgl-nmysql) ; MySQL interface
(asdf:operate 'asdf:load-op 'clsqgl-postgresql) ; PostgreSQ interface
(asdf:operate 'asdf:|oad-op 'clsqgl-postgresql-socket) ; Socket PGSQ interface
(asdf: operate 'asdf:load-op 'clsql-aodbc) ; Allegro ODBC interface
(asdf: operate 'asdf:|oad-op 'clsql) ; main clsqgl package

Run test suite

After loading CLSQL, you can execute the test suite. A configuration file named
.cl sql -test. confi g must becreated in your home directory. There are instructures on the format
of that fileinthet est s/t ests. | i sp fileinthe CLSQL source directory. After creating that file, you

3

Introduction

can run the test suite with ASDF:

(asdf:operate 'asdf:test-op 'clsql)

CLSQL

This part gives a reference to all the symbols exported from the package CLSQL-SY' S, which are also
re-exported from the package CLSQL. These symbols constitute the normal user-interface of CLSQL.

Name
CLSQL-CONDITION -- the super-type of al CLSQL-specific conditions
CLSQL-CONDITION

Class Precedence List

clsgl-condition, condition, t

Description

Thisisthe super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specif-
ic interfaces. There are no defined initialization arguments nor any accessors.

Name

CLSQL-ERROR -- the super-type of all CLSQL-specific errors
CLSQL-ERROR

Class Precedence List

clsql-error, error, serious-condition, clsgl-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or
any of it's database-specific interfaces. There are no defined initialization arguments nor any accessors.

Name
CLSQL-SIMPLE-ERROR -- Unspecific simple CLSQL errors
CLSQL-SIMPLE-ERROR

Class Precedence List

clsgl-simple-error, simple-condition, clsgl-error, error, serious-condition, clsgl-condition, condition, t

Description

This condition is used in all instances of errors, where there exists no CLSQL-specific condition that is
more specific. The valid initialization arguments and accessors are the same as for simple-condition.

Name
CLSQL-WARNING -- the super-type of all CLSQL-specific warnings
CLSQL-WARNING

Class Precedence List

clsgl-warning, warning, clsgl-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL,
or any of it's database-specific interfaces. There are no defined initialization arguments nor any ac-
CESSors.

Name
CLSQL-SIMPLE-WARNING -- Unspecific simple CLSQL warnings
CLSQL-SIMPLE-WARNING

Class Precedence List

clsgl-simple-warning, simple-condition, clsgl-warning, warning, clsgl-condition, condition, t

Description

This condition is used in al instances of warnings, where there exists no CLSQL-specific condition that
is more specific. The valid initialization arguments and accessors are the same as for simple-condition.

10

Name

CLSQL-INVALID-SPEC-ERROR -- condition representing errors because of invalid connection spe-
cifications

CLSQL-INVALID-SPEC-ERROR

Class Precedence List

clsgl-invalid-spec-error, clsgl-error, error, serious-condition, clsgl-condition, condition, t

Description

This condition represents errors that occur because the user supplies an invalid connection specification
to either dat abase- nanme- f r om spec or connect . Thefollowing initialization arguments and ac-
Cessors exist:

I nitarg: :connection-spec

Accessor: cl sqgl -i nval i d- spec-error-connection-spec

Description: Theinvalid connection specification used.

I nitarg: :database-type

Accessor: cl sqgl -i nval i d-spec-error-database-type

Description: The Database type used in the attempt.

Initarg: :template

Accessor: ¢l sqgl -inval i d-spec-error-tenpl ate

Description: An argument describing the template that a valid connection specification must match for
this database type.

11

Name

CLSQL-CONNECT-ERROR -- condition representing errors during connection
CLSQL-CONNECT-ERROR

Class Precedence List

clsgl-connect-error, clsgl-error, error, serious-condition, clsgl-condition, condition, t

Description

This condition represents errors that occur while trying to connect to a database. The following initializ-
ation arguments and accessors exist:

I nitarg: :database-type

Accessor: ¢l sqgl - connect - error - dat abase-t ype

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: cl sqgl - connect - error-connecti on-spec

Description: The connection specification used in the connection attempt.

Initarg: :errno

Accessor: cl sql - connect-error-errno

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :error

Accessor: cl sqgl - connect-error-error

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

12

Name

CLSQL-SQL-ERROR -- condition representing errors during query or command execution

CLSQL-SQL-ERROR

Class Precedence List

clsql-sgl-error, clsgl-error, error, serious-condition, clsgl-condition, condition, t

Description

This condition represents errors that occur while executing SQL statements, either as part of query oper-
ations or command execution, either explicitly or implicitly, as caused e.g. by wi t h-transacti on.
The following initialization arguments and accessors exist:

Initarg: :database

Accessor: cl sql -sql - error-dat abase

Description: The database object that was involved in the incident.

Initarg: :expression

Accessor: cl sql -sql -error-expression

Description: The SQL expression whose execution caused the error.

Initarg: :errno

Accessor: ¢l sql -sql -error-errno

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :error

Accessor: cl sql -sql -error-error

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

13

Name

CLSQL-EXISTS-CONDITION -- condition indicating situations arising because of existing connections

CLSQL-EXISTS-CONDITION

Class Precedence List

clsqgl-exists-condition, clsgl-condition, condition, t

Description

This condition is the super-type of al conditions which represents problems that occur during calls to
connect , if aconnection to the database exists already. Depending on thevalue of i f - exi st s tothe
call of connect , either a warning, an error or no condition at al is signaled. If a warning or error is
signalled, either clsgl-exists-warning or clsgl-exists-error is signalled, which are subtypes of clsgl-ex-
ists-condition and clsgl-warning or clsqgl-error. clsgl-exists-condition is never signalled itself.

The following initialization arguments and accessors exist:

Initarg: :old-db

Accessor: cl sql - exi sts-condi tion-ol d-db

Description: The database object that represents the existing connection. Thisslot is always filled.
Initarg: :new-db

Accessor: cl sql - exi sts-condi ti on- new db

Description: The database object that will be used and returned by this call to connect, if execution con-
tinues normally. This can be either nil, indicating that a new database object is to be created on continu-
ation, or a database object representing the newly created continuation, or the same database object as
old-db, indicating that the existing database object will be reused. This dlot is always filled and defaults
to nil.

14

Name

CLSQL-EXISTS-WARNING -- condition representing warnings arising because of existing connec-
tions

CLSQL-EXISTSWARNING

Class Precedence List

clsgl-exists-warning, clsgl-exists-condition, clsgl-warning, warning, clsgl-condition, condition, t

Description

This condition is a subtype of clsgl-exists-condition, and is signalled during calls to connect when
there is an existing connection, and i f - exi st s is either :warn-new or :warn-old. In the former case,
new-db will be the newly created database object, in the latter case it will be the existing old database
object.

Theinitialization arguments and accessors are the same as for clsgl-exists-condition.

15

Name

CLSQL-EXISTS-ERROR -- condition representing errors arising because of existing connections

CLSQL-EXISTS-ERROR

Class Precedence List

clsgl-exists-error, clsgl-exists-condition, clsgl-error, error, serious-condition, clsgl-condition, condition, t

Description

This condition is a subtype of clsgl-exists-condition, and is signalled during calls to connect when
there is an existing connection, and i f - exi st s is:error. In this case, new-db will be nil, indicating
that the database object to be returned by connect depends on user action in continuing from this cor-
rectable error.

Theinitialization arguments and accessors are the same as for clsgl-exists-condition.

16

Name

CLSQL-CLOSED-ERROR -- condition representing errors because the database has already been
closed

CLSQL-CLOSED-ERROR

Class Precedence List

clsgl-closed-error, clsgl-error, error, serious-condition, clsgl-condition, condition, t

Description

This condition represents errors that occur because the user invokes an operation on the given database
object, although the database is invalid because di sconnect has aready been called on this database
object.

Functions which signal this error when called with a closed database will usually provide a continue re-
start, that will just return nil from the function.

The following initialization arguments and accessors exist:

Initarg: :database

Accessor: cl sql - cl osed- error-dat abase

Description: The database object that was involved in the incident.

17

Name

DEFAULT-DATABASE-TYPE -- The default database type to use

DEFAULT-DATABASE-TYPE

Value Type

Any keyword representing a valid database back-end of CLSQL, or nil.

Initial Value
nil
Description

The value of this variableisused in callstoi ni ti al i ze- dat abase-t ype and connect as the
default value of the dat abase- t ype parameter.

Caution

If the value of this variableisnil, then al callstoi niti al i ze- dat abase-t ype or con-
nect will have to specify the dat abase-t ype to use, or ageneral-purpose error will be sig-
nalled.

Examples

(setf *default-database-type* :nysql)
=> :nysql

(initialize-database-type)

=> t

Affected By

None.

See Also

None.

Notes

None.

18

Name
INITIALIZED-DATABASE-TYPES -- List of al initialized database types

INITIALIZED-DATABASE-TY PES

Value Type

A list of al initialized database types, each of which represented by it's corresponding keyword.

Initial Value
nil
Description

This variable is updated whenever i niti al i ze- dat abase-type is caled for a database type
which hasn't already been initialized before, as determined by this variable. In that case the keyword
representing the database type is pushed onto the list stored in *INITIALIZED-DATABASE-TY PES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :nysql)
=> :mysql

(initialize-database-type)

=> t

initialized-database-types

=> (1 MYSQ)

Affected By

initialize-database-type
See Also

None.

Notes

Direct access to this variable is primarily provided because of compatibility with Harlequin's Common

SQL.

19

Name

INITIALIZE-DATABASE-TY PE -- Initializes a database type

INITIALIZE-DATABASE-TYPE

Syntax

initialize-database-type &key database-type => result

Arguments and Values

dat abase-type The database type to initialize, i.e. a keyword symbol denoting a known database
back-end. Defaults to the value of * default-database-type*.

result Either nil if theinitialization attempt fails, or t otherwise.

Description

If the back-end specified by dat abase-type has not aready been initialized, as seen from
initialized-database-types, an attempt is made to initialize the database. If this attempt succeeds, or the
back-end has aready been initialized, the function returns t, and places the keyword denocting the data-
base type onto the list stored in *initialized-database-types*, if not already present.

If initialization fails, the function returns nil, and/or signals an error of type clsgl-error. The kind of ac-
tion taken depends on the back-end and the cause of the problem.

Examples

initialized-database-types

=> N L

(setf *default-database-type* :nysql)
=> MYSQL

(initialize-database-type)

>> Conpil i ng LAVBDA (#: G897 #: G898 #: (GB01 #: (3002):
>> Conpiling Top-Level Form

>>

= T

initialized-database-types

=> (1 MYSQ)
(initialize-database-type)

= T

initialized-database-types

=> (: MYSQL)

Side Effects

The database back-end corresponding to the database type specified is initialized, unless it has already
been initialized. This can involve any number of other side effects, as determined by the back-end im-

20

INITIALIZE-DATABASE-TYPE

plementation (like e.g. loading of foreign code, calling of foreign code, networking operations, etc.). If
initialization is attempted and succeeds, the dat abase-type is pushed onto the list stored in
initialized-database-types.

Affected by

* default-database-type*
initialized-database-types

Exceptional Situations

If an error is encountered during the initialization attempt, the back-end may signal errors of kind clsgl-
error.

See Also

None.

Notes

None.

21

Name

CONNECT-IF-EXISTS -- Default value for thei f - exi st s parameter of connect .

CONNECT-IF-EXISTS

Value Type

A valid argument to the i f - exi st s parameter of connect, i.e. one of :new, :warn-new, :error,
:warn-old, :old.

Initial Value

.error

Description

The value of thisvariableisused in callsto connect asthe default value of thei f - exi st s paramet-
er. Seeconnect for the semantics of the valid values for this variable.

Examples

None.

Affected By

None.

See Also

connect

Notes

None.

22

Name

CONNECTED-DATABASES -- Return the list of active database objects.

CONNECTED-DATABASES

Syntax

connect ed- dat abases => dat abases

Arguments and Values

databases Thelist of active database objects.

Description

This function returns the list of active database objects, i.e. al those database objects created by calls to
connect , which have not been closed by calling di sconnect on them.

Caution

The consequences of modifying the list returned by connect ed- dat abases are undefined.

Examples

(connect ed- dat abases)
=> NL
(connect '(nil "tenplatel" "dent" nil) :database-type :postgresqgl)
=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {4830BC65} >
(connect '("dent" "newesim "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE { 4830C5AD} >
(connect ed- dat abases)
=> (#<CLSQL- MYSQL: MYSQL- DATABASE { 4830C5AD} >
#<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 4830BC65} >)
(di sconnect)
= T
(connect ed- dat abases)
=> (#<CLSQL- POSTGRESQ.: POSTGRESQL- DATABASE {4830BC65} >)
(di sconnect)
= T
(connect ed- dat abases)
=> N L

Side Effects

None.

Affected By

23

CONNECTED-DATABASES

connect
di sconnect

Exceptional Situations

None.

See Also

None.

Notes

None.

24

Name

DEFAULT-DATABASE -- The default database object to use

DEFAULT-DATABASE

Value Type

Any object of type database, or nil to indicate no default database.

Initial Value
nil
Description

Any function or macro in CLSQL that operates on a database uses the value of this variable as the de-
fault value for it'sdat abase parameter.

The value of this parameter is changed by callsto connect , which sets *default-database* to the data
base object it returns. It is aso changed by callsto di sconnect , when the database object being dis-
connected is the same as the value of *default-database*. In this case di sconnect sets
default-database to the first database that remains in the list of active databases as returned by con-

nect ed- dat abases, or nil if no further active databases exist.

The user may change * default-database* at any time to avalid value of his choice.

Caution

If the value of *default-database* is nil, then all calls to CLSQL functions on databases must
provide a suitable dat abase parameter, or an error will be signalled.

Examples

(connect ed- dat abases)

=> NL

(connect '("dent" "newesin "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48385F55} >

(connect '(nil "tenplatel” "dent" nil) :database-type :postgresql)
=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 483868FD} >
(connect '("dent" "newesim' "dent" "dent") :database-type :nmysql :if-exists

=> #<CLSQ.- MYSQL: MYySQL- DATABASE {48387265} >
def aul t - dat abase

=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48387265} >
(di sconnect)

= T

def aul t - dat abase

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 483868FD} >
(di sconnect)

= T

def aul t - dat abase

=> #<CLSQ.- MYSQL: MYySQL- DATABASE {48385F55} >
(di sconnect)

== T

def aul t - dat abase

25

I new)

DEFAULT-DATABASE

=> N L
(connect ed- dat abases)
=> N L

Affected By

connect
di sconnect

See Also

connect ed- dat abases

Notes
Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-
level loop, and because of this, connect and di sconnect provide some fairly complex be-
haviour to keep *default-database* set to useful values. Programmatic use of CLSQL should
never depend on the value of *default-database* and should provide correct database objects
viathe dat abase parameter to functions called.

26

Name

DATABASE -- The super-type of all CLSQL databases
DATABASE

Class Precedence List

database, standard-object, t

Description

This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses
of this class to implement their databases. No instances of this class are ever created by CLSQL.

27

Name

CLOSED-DATABASE -- The class representing all closed CLSQL databases
CLOSED-DATABASE

Class Precedence List

closed-database, standard-object, t

Description

CLSQL database instances are changed to this classviachange- cl ass after they areclosed viadi s-
connect . All functions and generic functions that take database objects as arguments will signal errors
of type clsgl-closed-error when they are called on instances of closed-database, with the exception of
dat abase- name, which will continue to work as for instances of database.

28

Name

DATABASE-NAME -- Get the name of a database object

DATABASE-NAME

Syntax

dat abase- nane dat abase => nane

Arguments and Values

dat abase A database object, either of type database or of type closed-database.

name A string describing the identity of the database to which this database object is connected
to.
Description

This function returns the database name of the given database. The database name is a string which
somehow describes the identity of the database to which this database object is or has been connected.
The database name of a database object is determined at connect time, when a call to dat abase-
nanme- f r om spec derives the database name from the connection specification passed to connect
intheconnect i on- spec parameter.

The database nameis used viaf i nd- dat abase inconnect to determine whether database connec-
tions to the specified database exist already.

Usually the database name string will include indications of the host, database name, user, or port that
where used during the connection attempt. The only important thing is that this string shall try to identi-
fy the database at the other end of the connection. Connection specifications parts like passwords and
credentials shall not be used as part of the database name.

Examples

(dat abase- nane-fromspec ' ("dent" "newesini' "dent" "dent") :nysql)
=> "dent/ newesi ni dent"

(connect '("dent" "newesin "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE { 48391DCD} >

(dat abase- nanme *def aul t - dat abase*)

=> "dent/ newesi nf dent"

(dat abase- name-fromspec '(nil "tenplatel” "dent" nil) :postgresql)
=> "/tenpl atel/ dent"
(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase- nane *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- nane-from spec ' ("ww. pnsf.de" "tenplatel” "dent" nil) :postgresql)
=> "www. pnsf. de/tenpl at el/ dent™

29

DATABASE-NAME

Side Effects

None.

Affected By

dat abase- name-from spec

Exceptional Situations

Will signal an error if the object passed as the dat abase parameter is neither of type database nor of
type closed-database.

See Also

connect
fi nd- dat abase

Notes

None.

30

Name

FIND-DATABASE -- Locate a database object through it's name.

FIND-DATABASE

Syntax

find- dat abase database &optional errorp => result

Arguments and Values

dat abase A database object or a string, denoting a database name.
errorp A generalized boolean. Defaultsto t.

result Either a database object, or, if er r or p isnil, possibly nil.

Description

fi nd- dat abase locates an active database object given the specification in dat abase. If dat a-

base is an object of type database, f i nd- dat abase returns this. Otherwise it will search the active
databases as indicated by the list returned by connect ed- dat abases for a database whose name (as
returned by dat abase- nane is equa as per st ri ng= to the string passed as dat abase. If it suc-
ceeds, it returns the first database found.

If it fails to find a matching database, it will signal an error of type clsql-error if er r or p istrue. If er -
ror p isnil, it will return nil instead.

Examples

(dat abase- nanme-from spec ' ("dent" "newesini' "dent" "dent") :nysql)
=> "dent/ newesi nl dent"

(connect '("dent" "newesinm "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48391DCD} >

(dat abase- nane *def aul t - dat abase*)

=> "dent/ newesi ni dent"

(dat abase-nanme-fromspec '(nil "tenplatel” "dent™ nil) :postgresql)
=> "/tenpl atel/ dent"
(connect '(nil "tenplatel” "dent" nil) :database-type :postgresql)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase- name *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- nane-from spec ' ("ww. pnsf.de" "tenplatel” "dent" nil) :postgresql)
=> "www. pnsf . de/tenpl atel/ dent"

(find-dat abase "dent/newesi nf dent")

=> #<CLSQ.- MYSQL: MYSQL- DATABASE { 484E91C5} >
(find-database "/tenpl atel/ dent")

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(find-dat abase "ww. pnsf. de/tenpl atel/dent” nil)

31

FIND-DATABASE

=> N L
(find-dat abase **)
=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >

Side Effects

None.

Affected By

connect ed- dat abases

Exceptional Situations

Will signal an error of type clsgl-error if no matching database can be found, and er r or p is true. Will
signal an error if the value of dat abase isneither an abject of type database nor a string.

See Also

dat abase- nane
dat abase- nanme-from spec

Notes

None.

32

Name
CONNECT -- create a connection to a database

CONNECT

Syntax

connect connection-spec &key if-exists database-type pool => database

Arguments and Values

connecti on-spec A connection specification

i f-exists This indicates the action to take if a connection to the same database exists
aready. See below for the legal values and actions. It defaults to the value of
* connect-if-exists*.

dat abase-type A database type specifier, i.e. a keyword. This defaults to the value of
* default-database-type*

pool A boolean flag. If T, acquire connection from a pool of open connections. If the
pool is empty, a new connection is created. The default isNIL.

database The database object representing the connection.

Description

This function takes a connection specification and a database type and creates a connection to the data-
base specified by those. The type and structure of the connection specification depend on the database

type.

The parameter i f - exi st s specifieswhat to do if a connection to the database specified exists already,
which is checked by calling fi nd- dat abase on the database name returned by dat abase-
nane- f rom spec when called with the connecti on- spec and dat abase-t ype parameters.
The possible valuesof i f - exi st s are;

:new Go ahead and create a new connection.

‘warn-new Thisisjust like :new, but aso signals a warning of type clsgl-exists-warning, indicating
the old and newly created databases.

.error This will cause connect to signal a correctable error of type clsgl-exists-error. The
user may choose to proceed, either by indicating that a new connection shall be created,
viathe restart create-new, or by indicating that the existing connection shall be used, via
the restart use-old.

:old Thiswill causeconnect to use an old connection if one exists.

‘warn-old Thisis just like :old, but also signals a warning of type clsgl-exists-warning, indicating
the old database used, via the slots old-db and new-db

33

CONNECT

The database name of the returned database object will be the same under st ri ng= as that which
would be returned by a call to dat abase- nane-from spec with the given connecti on- spec
and dat abase- t ype parameters.

Examples

(dat abase- nanme-from spec ' ("dent" "newesini "dent" "dent") :nysql)
=> "dent/ newesi nl dent"

(connect '("dent" "newesinm "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48036F6D} >

(dat abase- nane *)

=> "dent/ newesi ni dent"

(connect '("dent" "newesin "dent" "dent") :database-type :nysql)

>> | n call to CONNECT:

>> There is an existing connection #<CLSQL- MYSQL: MYSQL- DATABASE {48036F6D}> to d
>>

>> Restarts:

>> 0: [CREATE-NEW Create a new connecti on.

>> 1: [USE-OLD] Use the existing connection.

>> 2: [ABORT] Return to Top-Level.
>>

>> Debug (type H for help)

>>

>> (CONNECT ("dent" "newesint "dent" "dent") :IF-EXI STS NIL : DATABASE- TYPE .. .)
>> Source:

>> ; File: [prj/CLSQ/sqgl/sql.cl

>> (RESTART- CASE (ERRCR ' CLSQL- EXI STS- ERRCR : OLD- DB OLD- DB)

>> (CREATE-NEW NI L : REPORT "Create a new connection.”
>> (SETQ RESULT #))

>> (USE-OLD NIL : REPORT "Use the existing connection."
>> (SETQ RESULT OLD-DB)))

>> 0] O

=> #<CLSQL- MYSQL: MYSQL- DATABASE { 480451F5} >

Side Effects

A database connection is established, and the resultant database object is registered, so as to appear in
thelist returned by connect ed- dat abases.

Affected by

* default-database-type*
* connect-if-exists®

Exceptional Situations

If the connection specification is not syntactically or semantically correct for the given database type, an
error of type clsgl-invalid-spec-error is signalled. If during the connection attempt an error is detected
(e.g. because of permission problems, network trouble or any other cause), an error of type clsgl-con-
nect-error is signalled.

If a connection to the database specified by connect i on- spec exists aready, conditions are sig-

34

CONNECT

nalled according to thei f - exi st s parameter, as described above.

See Also

connect ed- dat abases
di sconnect

Notes

None.

35

Name
DISCONNECT -- close a database connection
DISCONNECT

Syntax

di sconnect &key dat abase pool =>t

Arguments and Values

pool A boolean flag indicating whether to put the database into a pool of opened databases. If
T, rather than terminating the database connection, the connection is left open and the
connection is placed into a pool of connections. Subsequent calls to connect can then
reuse this connection. The default isNIL.

dat abase The database to disconnect, which defaults to the database indicated by
default-database .

Description

This function takes a database object as returned by connect , and closes the connection. The class of
the object passed is changed to closed-database after the disconnection succeeds, thereby preventing fur-
ther use of the object as an argument to CLSQL functions, with the exception of dat abase- nane. If
the user does pass a closed database object to any other CLSQL function, an error of type clsql-
closed-error is signalled.

Examples

(di sconnect :database (find-database "dent/newesinident"))
= T

Side Effects

The database connection is closed, and the database object is removed from the list of connected data
bases as returned by connect ed- dat abases.

The class of the database object is changed to closed-database.
If the database object passed is the same under eq as the value of *default-database*, then

default-database is set to the first remaining database from connect ed- dat abases or to nil if no
further active database exists.

Affected by

36

DISCONNECT

* default-database*

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type clsgl-error might be signalled.

See Also

connect
cl osed- dat abase

Notes

None.

37

Name

DISCONNECT-POOLED -- closes al pooled database connections

DISCONNECT-POOLED

Syntax

di sconnect - pool =>t

Description

This function disconnects all database connections that have been placed into the pool. Connections are
placed in the pool by calling di sconnecti on.

Examples

(di sconnect - pool)
= T

Side Effects

Database connections will be closed and entries in the pool are removed.

Affected by

di sconnect

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type clsgl-error might be signalled.

See Also

connect
cl osed- dat abase

Notes

None.

38

Name

DATABASE-NAME-FROM-SPEC -- Return the database name string corresponding to the given con-
nection specification.

DATABASE-NAME-FROM-SPEC

Syntax

dat abase- name-fr om spec connecti on-spec dat abase-type => nane

Arguments and Values

connecti on-spec A connection specification, whose structure and interpretation are dependent on
thedat abase-t ype.

dat abase-type A database type specifier, i.e. akeyword.

name A string denoting a database name.

Description

This generic function takes a connection specification and a database type and returns the database name
of the database object that would be created had connect been called with the given connection spe-
cification and database types.

This function is useful in determining a database name from the connection specification, since the way
the connection specification is converted into a database name is dependent on the database type.

Examples

(dat abase- nanme-from spec ' ("dent" "newesini' "dent" "dent") :nysql)
=> "dent/ newesi nl dent"

(connect '("dent" "newesinm "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48391DCD} >

(dat abase- nane *def aul t - dat abase*)

=> "dent/ newesi nf dent"

(dat abase- name-fromspec '(nil "tenplatel” "dent"” nil) :postgresql)
=> "/tenpl atel/ dent"
(connect '(nil "tenplatel"” "dent" nil) :database-type :postgresql)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase- name *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- nane-from spec ' ("ww. pnsf.de" "tenplatel” "dent" nil) :postgresql)
=> "www. pnsf . de/tenpl atel/ dent"

(find-dat abase "dent/newesi nf dent")

=> #<CLSQ.- MYSQL: MYSQL- DATABASE {484E91C5} >
(find-database "/tenpl atel/dent")

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >

39

DATABASE-NAME-FROM-SPEC

(find-database "ww. pnsf.de/tenplatel/dent” nil)

=> N L

(find-dat abase **)

=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >

Side Effects

None.

Affected by

None.

Exceptional Situations

If the value of connect i on- spec isnot avalid connection specification for the given database type,
an error of type clsgl-invalid-spec-error might be signalled.

See Also

connect

Notes

None.

40

Name

EXECUTE-COMMAND -- Execute an SQL command which returns no values.

EXECUTE-COMMAND

Syntax

execut e-command sql - expressi on &ey dat abase => t

Arguments and Values

sql - expressi on Ansgl expression that represents an SQL statement which will return no values.

dat abase A database object. Thiswill default to the value of * default-database* .

Description

Thiswill execute the command given by sgl - expr essi on inthedat abase specified. If the execu-
tion succeeds it will return t, otherwise an error of type clsql-sql-error will be signalled.

Examples

(execute-command "create table eventlog (time char(30), event char(70))")

=>

T

(execute-command "create table eventlog (time char(30),event char(70))")

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Wi | e accessi ng dat abase #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {480B2B6D} >

with expression "create table eventlog (time char(30),event char(70))":
Error NIL: ERROR antreate: eventlog relation already exists
has occurred.
Restarts:
0: [ABORT] Return to Top-Level.
Debug (type H for hel p)

(CLSQL- POSTGRESQL: : | (PCL: : FAST- METHOD DATABASE- EXECUTE- COWWAND (T POSTGRESQL- DA
#<unused- ar g>
#<unused- ar g>
#<unavai | abl e-arg>
#<unavai | abl e- ar g>)
S]our ce: (ERROR ' CLSQL- SQL- ERROR : DATABASE DATABASE : EXPRESSI ON .. .)
0] 0

(execut e- conmmand "drop table eventl og")

=>

T

Side Effects

41

EXECUTE-COMMAND

Whatever effects the execution of the SQL statement has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL statement leads to any errors, an error of type clsgl-sgl-error is signalled.

See Also

query

Notes

None.

42

Name

QUERY -- Execute an SQL query and return the tuplesas alist

QUERY

Syntax

guery query-expressi on & ey database types => result

Arguments and Values

guery-expressi on An sgl expression that represents an SQL query which is expected to return a
(possibly empty) result set.

dat abase A database object. Thiswill default to the value of * default-database*.
types A field type specififier. The default is NIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields
into numeric Lisp objects rather than strings. This reduces the cost of allocat-
ing a temporary string and the CLSQL users inconvenience of converting
number strings into number objects.

A value of :auto causes CLSQL to automatically convert SQL fieldsinto anu-
meric format where applicable. The default value of NIL causes dl fields to
be returned as strings regardless of the SQL type. Otherwise alist is expected
which has a element for each field that specifies the conversion. If the list is
shorter than the number of fields, the a value of t is assumed for the field. If
thelist islonger than the number of fields, the extra elements are ignored.

;int Field is imported as a signed integer, from 8-bits to 64-bits depending
upon the field type.

:double Field isimported as a double-float number.

t Field isimported as a string.

result A list representing the result set obtained. For each tuple in the result set,
thereis an element in thislist, which isitself alist of all the attribute valuesin
the tuple.

Description

This will execute the query given by quer y- expr essi on in the dat abase specified. If the execu-
tion succeeds it will return the result set returned by the database, otherwise an error of type clsgl-
sql-error will be signalled.

Examples

(execute-command "create table sinple (nane char(50), salary numeric(10,2))")
= T
(execute-command "insert into sinple values ('Mai, Pierre',10000)")

43

QUERY

= T

(execute-command "insert into sinple values ('Hacker, Random J.', 8000.50)")
== T

(query "select * from sinple")

=> (("Mai, Pierre" "10000.00") ("Hacker, Random J." "8000.50"))
(query "select salary fromsinple")

=> (("10000.00") ("8000.50"))

(query "select salary fromsinple where salary > 10000")

=> NL

(query "sel ect salary,name fromsinple where salary > 10000")
=> N L

(query "sel ect salary,name from sinple where salary > 9000")

=> (("10000.00" "Mai, Pierre"))

qguery "sel ect salary,nane from sinple where salary > 8000")

=> (("10000. 00" "Mai, Pierre") ("8000.50" "Hacker, RandomJ."))

7, MySQL-specific:
(query "show tabl es")
=> (("demd") ("log") ("new og") ("sinple") ("spacetrial"))

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type clsgl-sgl-error is signalled.

See Also

execut e- conmand

Notes

None.

Name

MAP-QUERY -- Map afunction over al the tuples from a query
MAP-QUERY

Syntax

map- query out put-type-spec function query-expressi on & ey dat abase types => result

Arguments and Values

out put -t ype- spec A sequence type specifier or nil.

function A function designator. f unct i on must take as many arguments as are attrib-
utesin the result set returned by executing the SQL quer y- expr essi on.

guery-expressi on An sgl expression that represents an SQL query which is expected to return a
(possibly empty) result set, where each tuple has as many attributes asf unc-
t i on takes arguments.

dat abase A database object. Thiswill default to the value of * default-database*.

types A field type specififier. The default is NIL. See quer y for the semantics of
this argument.

result If out put - t ype- spec isatype specifier other than nil, then a sequence of

the type it denotes. Otherwise nil is returned.

Description

Appliesf unct i on to the attributes of successive tuplesin the result set returned by executing the SQL
guery-expression. If the out put -t ype- spec is nil, then the result of each application of
functi on isdiscarded, and map- quer y returns nil. Otherwise the result of each successive applica
tion of f unct i on iscollected in a sequence of type out put - t ype- spec, where the jths element is
the result of applying f unct i on to the attributes of the jths tuple in the result set. The collected se-
guence isthe result of the call to map- query.

If theout put -t ype- spec isasubtype of list, the result will be alist.

If ther esul t -t ype isasubtype of vector, then if the implementation can determine the element type
specified for ther esul t - t ype, the element type of the resulting array is the result of upgrading that
element type; or, if the implementation can determine that the element type is unspecified (or *), the ele-
ment type of the resulting array ist; otherwise, an error is signaled.

Examples

(map-query 'list # (lanbda (sal ary name)
(decl are (ignorable nane))
(read-fromstring salary))
"sel ect salary,nane from sinple where salary > 8000")
=> (110000. 0 8000. 5)

45

MAP-QUERY

(map-query ' (vector double-float)
#' (I anbda (sal ary nane)
(decl are (ignorable nane))
(let ((*read-default-float-format* 'double-float))
(coerce (read-fromstring salary) 'double-float))
"sel ect sal ary,nane from sinple where salary > 8000"))
=> #(10000. 0d0 8000. 5d0)
(type-of *)
=> (S| MPLE- ARRAY DOUBLE- FLOAT (2))

(let (list)
(val ues (map-query nil #' (lanbda (sal ary nane)

(push (cons nanme (read-fromstring salary))
"sel ect sal ary,nane from sinple where salary > 8000")
[ist))
=> N L
=> (("Hacker, RandomJ." . 8000.5) ("M, Pierre" . 10000.0))

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type clsgl-sql-error is signalled.

An error of type type-error must be signaled if the out put -t ype- spec is not a recognizable subtype
of list, not arecognizable subtype of vector, and not nil.

An error of type type-error should be signaled if out put -t ype- spec specifies the number of ele-
ments and the size of the result set is different from that number.

See Also

query
do- query

Notes

None.

46

Name

DO-QUERY -- Iterate over all the tuples of aquery
DO-QUERY

Syntax

do-query ((& est args) query-expression &ey database types) &body body => nil

Arguments and Values

args A list of variable names.

guery-expressi on An sgl expression that represents an SQL query which is expected to return a
(possibly empty) result set, where each tuple has as many attributesasf unc-
t i on takes arguments.

dat abase A database object. Thiswill default to *default-database* .

types A field type specififier. The default is NIL. See quer y for the semantics of
this argument.

body A body of Lisp code, likeinadest ruct uri ng- bi nd form.

Description

Executes the body of code repeatedly with the variable names in ar gs bound to the attributes of each
tuple in the result set returned by executing the SQL quer y- expr essi on on the dat abase spe-
cified.

The body of code is executed in a block named nil which may be returned from prematurely viar e-
turnorreturn-from lnthiscasethe result of evaluating the do- quer y form will be the one sup-
pliedtor et urnorr et ur n- f r om Otherwise the result will be nil.

The body of code appears also isif wrapped inadest r uct uri ng- bi nd form, thus allowing declar-

ations at the start of the body, especially those pertaining to the bindings of the variables named in
args.

Examples

(do-query ((salary nanme) "sel ect salary,name from sinple")
(format t "~30A gets $~2,5%~% nane (read-fromstring salary)))

>> Mai, Pierre gets $10000. 00
>> Hacker, Random J. gets $08000. 50
=> N L

(do-query ((salary nanme) "sel ect salary,name fromsinple")
(return (cons salary nane)))
=> ("10000.00" . "Mai, Pierre")

47

DO-QUERY

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leadsto any errors, an error of type clsgl-sql-error is signalled.

If the number of variable namesin ar gs and the number of attributes in the tuples in the result set don't
match up, an error is signalled.

See Also

query
map- query

Notes

None.

48

Name

LOOP-FOR-AS-TUPLES -- Iterate over al the tuples of a query viaaloop clause
LOOP-FOR-AS-TUPLES

Compatibility

Caution

| oop- for-as-tupl es only workswith CMUCL.

Syntax

var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} q

Arguments and Values

var A d- var - spec, as defined in the grammar for | oop-clausesin the ANSI Standard for
Common Lisp. Thisallowsfor the usual loop-style destructuring.

type-spec Anoptiona t ype- spec either smple or destructured, as defined in the grammar for
| oop-clausesin the ANSI Standard for Common Lisp.

query An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as f unct i on takes argu-
ments.

dat abase Anoptional database object. Thiswill default to the value of * default-database* .

Description

This clause is an iteration driver for | oop, that binds the given variable (possibly destructured) to the
consecutive tuples (which are represented as lists of attribute values) in the result set returned by execut-
ing the SQL quer y expression on the dat abase specified.

Examples

(defvar *my-db* (connect '("dent" "newesini "dent" "dent"))
"My dat abase”

=> *W_ [B*

(loop with tine-graph = (make-hash-table :test # equal)
wi th event-graph = (make-hash-table :test #' equal)
for (tinme event) being the tuples of "select tinme,event froml og"
from *ny- db*

do

(f (gethash time tine-graph 0))

(f (gethash event event-graph 0))

f [y

(t ((showgraph (k v) (format t "~40A => ~5D~% Kk v)))

ormat t " ~&Ti me- G aph: ~¥%F==========~0f)

i nc
i nc
i na
fle
(f

49

LOOP-FOR-AS-TUPLES

(maphash #' show graph ti me-graph)
(format t "~&%vent - G aph: ~¥%===========~0)
(rmaphash #' show graph event-graph))
(return (val ues tinme-graph event-graph)))
>> Ti me- Gr aph:

>> o=z

>> D => 53000
>> X => 3
>> test-ne => 3000
>>

>> Event - G aph:

>> oo —==

>> CLOS Benchmark entry. => 9000
>> Denmp Text... => 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000

=> #<EQUAL hash table, 3 entries {48350A10}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type clsgl-sgl-error is signalled.

Otherwise, any of the exceptional situations of | oop applies.

See Also

query
map- query
do- query

Notes

None.

50

CLSQL-SYS

This part gives a reference to all the symbols exported from the package CLSQL-SY S, which are not
also exported from CLSQL. These symbols are part of the interface for database back-ends, but not part
of the normal user-interface of CLSQL.

51

Name

DATABASE-INITIALIZE-DATABASE-TYPE - Back-end part of
initialize-database-type.

DATABASE-INITIALIZE-DATABASE-TYPE

Syntax

dat abase-initialize-database-type database-type => result

Arguments and Values

dat abase-type A keyword indicating the database type to initialize.

result Either t if theinitialization succeeds or nil if it fails.

Description

This generic function implements the main part of the database type initialization performed by i ni -

tialize-database-type. After i nitialize-dat abase-type has checked that the given
database type has not been initialized before, asindicated by *initialized-database-types*, it will call this
function with the database type as it's sole parameter. Database back-ends are required to define a meth-
od on this generic function which is specialized via an eql-specializer to the keyword representing their
database type.

Database back-ends shall indicate successful initialization by returning t from their method, and nil oth-
erwise. Methods for this generic function are allowed to signal errors of type clsgl-error or subtypes
thereof. They may also signal other types of conditions, if appropriate, but have to document this.

Examples

Side Effects

All necessary side effects to initialize the database instance.

Affected By

None.

Exceptional Situations

Conditions of type clsgl-error or other conditions may be signalled, depending on the database back-end.

See Also

52

DATABASE-INITIAL-
IZE-DATABASE-TYPE

initialize-database-type
initialized-database-types

Notes

None.

53

Appendix A. Database Back-ends
MySQL

Libraries
The MySQL back-end needs access to the MySQL C client library (1 i bnysql cl i ent . so). Theloc-
ation of this library is specified via *mysgl-so-load-path*, which defaults to /

usr/lib/libnysqglclient.so. Additional flags to Id needed for linking are specified via
mysql-so-libraries, which defaultsto ("-Ic").

Initialization

Use
(nk: 1 oad-system : cl sql - nysql)
to load the MySQL back-end. The database type for the MySQL back-end is :mysql.

Connection Specification

Syntax of connection-spec

(host db user password)

Description of connection-spec

host String representing the hostname or |P address the MySQL server resides on, or nil to in-
dicate the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix
user ID.

password String representing the unencrypted password to use for authentication, or nil if the au-
thentication record has an empty password field.

PostgreSQL

Libraries

The PostgreSQL back-end needs access to the PostgreSQL C client library (1 i bpg. so). The location
of this library is specified via * postgresgl-so-load-path*, which defaults to /usr/1i b/1i bpg. so.
Additional flags to Id needed for linking are specified via * postgresgl-so-librariest, which defaults to
("-lerypt" "-Ic").

Initialization

Database Back-ends

Use
(nk: | oad-system : cl sql - post gresql)
to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresql.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment vari-
ables (see PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the
Cclient library are used.

host String representing the hostname or 1P address the PostgreSQL server resides on. Use the
empty string to indicate a connection to localhost via Unix-Domain sockets instead of
TCP/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.
port String representing the port to use for communication with the PostgreSQL server.
options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.

PostgreSQL Socket

Libraries

The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it commu-
nicates directly with the PostgreSQL server using the published frontend/backend protocol, version 2.0.
This eases installation and makes it possible to dump CMU CL images containing CLSQL and this
backend, contrary to backends which require FFI code.

Initialization

Use
(nk: 1 oad-system : cl sql - post gresql - socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is
:postgresgl-socket.

55

Database Back-ends

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host

db
user

passwor d
port

options

tty

AODBC

Libraries

If thisis a string, it represents the hostname or |P address the PostgreSQL server resides
on. In this case communication with the server proceeds via a TCP connection to the giv-
en host and port.

If this is a pathname, then it is assumed to name the directory that contains the server's
Unix-Domain sockets. The full name to the socket is then constructed from this and the
port number passed, and communication will proceed via a connection to this unix-do-
main socket.

String representing the name of the database on the server to connect to.

String representing the user name to use for authentication.

String representing the unencrypted password to use for authentication. This can be the
empty string if no password is required for authentication.

Integer representing the port to use for communication with the PostgreSQL server. This
defaults to 5432.

String representing further runtime options for the PostgreSQL server.

String representing the tty or file to use for debugging messages from the PostgreSQL
server.

The AODBC back-end requires access to the ODBC interface of AllegroCL.

Initialization

Use

(nk: 1 oad-system : cl sql - aodbc)

to load the MySQL back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user

passwor d)

56

Database Back-ends

Description of connection-spec

dsn String representing the ODBC data source name.
user String representing the user name to use for authentication.

passwor d String representing the unencrypted password to use for authentication.

57

Glossary

Note

This glossary is till very thinly populated, and not all references in the main text have been
properly linked and coordinated with this glossary. This will hopefully change in future revi-

sions.

Active database
Connection

Closed Database

database

Foreign Function Interface

(FFI)

Database Object

Field Types Specifier

Structured Query Language
(SQL)

SQL Expression

Note

See Database Object.

See Database Object.

An object of type closed-database. This is in contrast to the terms
connection, database, active database or database object which don't
include objects which are closed database.

See Database Object.

An interface from Common Lisp to aexternal library which contains

compiled functions written in other programming languages, typic-
aly C.

An object of type database.

A vauethat specifies the type of each field in aquery.

An ANSI standard language for storing and retrieving datain arela
tional database.

Either a string containing avalid SQL statement, or an object of type
sgl-expression.

This has not been implemented yet, so only strings are valid SQL expressions for the moment.

58

