
CLSQL Users' Guide

Kevin M. Rosenberg
Pierre R. Mai

onShore Development, Inc.

CLSQL Users' Guide
by Kevin M. Rosenberg, Pierre R. Mai, and onShore Development, Inc.

• CLSQL is Copyright © 2002-2004 by Kevin M. Rosenberg, Copyright © 1999-2001 by Pierre R. Mai, and Copyright ©
1999-2003 onShore Development, Inc.

• Allegro CL® is a registered trademark of Franz Inc.

• Common SQL, LispWorks and Xanalys are trademarks or registered trademarks of Xanalys Inc.

• Oracle® is a registered trademark of Oracle Inc.

• Microsoft Windows® is a registered trademark of Microsoft Inc.

• Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents
Preface ... vi
1. Introduction .. 1

Purpose ... 1
History .. 1
Prerequisites .. 1

ASDF ... 1
UFFI .. 1
MD5 ... 1
Supported Common Lisp Implementation .. 2
Supported SQL Implementation ... 2

Installation ... 2
Ensure ASDF is loaded .. 2
Build C helper libraries .. 2
Load UFFI ... 3
Load MD5 module .. 3
Load CLSQL modules ... 3
Run test suite .. 4

2. CommonSQL Tutorial .. 5
Introduction ... 5
Data Modeling with CLSQL ... 5
Class Relations ... 7
Object Creation .. 9
Finding Objects .. 11
Deleting Objects ... 12
Conclusion .. 12

I. CLSQL ...
SQL-CONDITION .. 14
SQL-ERROR ... 15
SQL-WARNING .. 16
CLSQL-USER-ERROR ... 17
SQL-CONNECTION-ERROR .. 18
SQL-DATABASE-ERROR .. 19
DEFAULT-DATABASE-TYPE ... 20
INITIALIZED-DATABASE-TYPES .. 21
INITIALIZE-DATABASE-TYPE .. 22
CONNECT-IF-EXISTS .. 24
CONNECTED-DATABASES ... 25
DEFAULT-DATABASE .. 27
DATABASE .. 29
CLOSED-DATABASE .. 30
DATABASE-NAME ... 31
FIND-DATABASE ... 33
CONNECT .. 35
DISCONNECT ... 38
DISCONNECT-POOLED .. 40
CREATE-DATABASE .. 41
DESTROY-DATABASE ... 43
PROBE-DATABASE .. 45
DATABASE-NAME-FROM-SPEC ... 46
EXECUTE-COMMAND .. 48
QUERY .. 50
MAP-QUERY .. 52
DO-QUERY .. 54

iv

LOOP-FOR-AS-TUPLES ... 56
II. CLSQL-SYS ...

DATABASE-INITIALIZE-DATABASE-TYPE ... 59
A. Database Back-ends .. 61

PostgreSQL ... 61
Libraries .. 61
Initialization ... 61
Connection Specification .. 61

PostgreSQL Socket ... 62
Libraries .. 62
Initialization ... 62
Connection Specification .. 62

MySQL ... 63
Libraries .. 63
Initialization ... 63
Connection Specification .. 63

ODBC .. 63
Libraries .. 63
Initialization ... 63
Connection Specification .. 64

AODBC .. 64
Libraries .. 64
Initialization ... 64
Connection Specification .. 64

SQLite .. 65
Libraries .. 65
Initialization ... 65
Connection Specification .. 65

Oracle ... 65
Libraries .. 65
Initialization ... 65
Connection Specification .. 66

Glossary .. 67

CLSQL Users' Guide

v

Preface
This guide provides reference to the features of CLSQL. The first chapter provides an introduction to
CLSQL and installation instructions. The reference sections document all user accessible symbols with
examples of usage. There is a glossary of commonly used terms with their definitions.

vi

Chapter 1. Introduction
Purpose

CLSQL is a Common Lisp interface to SQL databases. A number of Common Lisp implementations and
SQL databases are supported. The general structure of CLSQL is based on the CommonSQL package by
Xanalys.

History
The CLSQL project was started by Kevin M. Rosenberg in 2001 to support SQL access on multiple
Common Lisp implementations using the UFFI library. The initial code was based substantially on
Pierre R. Mai's excellent MaiSQL package. In late 2003, the UncommonSQL library was orphaned by
its author, onShore Development, Inc. In April 2004, Marcus Pearce ported the UncommonSQL library
to CLSQL. The UncommonSQL library provides a CommonSQL-compatible API for CLSQL.

The main changes from MaiSQL and UncommonSQL are:

• Port from the CMUCL FFI to UFFI which provide compatibility with the major Common Lisp im-
plementations.

• Optimized loading of integer and floating-point fields.

• Additional database backends: ODBC, AODBC, and SQLite.

• A compatibility layer for CMUCL specific code.

• Much improved robustness for the MySQL back-end along with version 4 client library support.

• Improved library loading and installation documentation.

• Improved packages and symbol export.

• Pooled connections.

• Integrated transaction support for the classic MaiSQL iteration macros.

Prerequisites
ASDF

CLSQL uses ASDF to compile and load its components. ASDF is included in the CCLAN
[http://cclan.sourceforge.net] collection.

UFFI
CLSQL uses UFFI [http://uffi.b9.com/] as a Foreign Function Interface (FFI) to support multiple ANSI
Common Lisp implementations.

MD5

1

http://cclan.sourceforge.net
http://uffi.b9.com/

CLSQL's postgresql-socket interface uses Pierre Mai's md5 [ftp://clsql.b9.com/] module.

Supported Common Lisp Implementation
The implementations that support CLSQL is governed by the supported implementations of UFFI. The
following implementations are supported:

• AllegroCL v6.2 and 7.0b on Debian Linux x86 & x86_64 & PowerPC, FreeBSD 4.5, and Microsoft
Windows XP.

• Lispworks v4.3 on Debian Linux and Microsoft Windows XP.

• CMUCL 18e on Debian Linux, FreeBSD 4.5, and Solaris 2.8.

• SBCL 0.8.5 on Debian Linux.

• SCL 1.1.1 on Debian Linux.

• OpenMCL 0.14 on Debian Linux PowerPC.

Supported SQL Implementation
Currently, CLSQL supports the following databases:

• MySQL v3.23.51 and v4.0.18.

• PostgreSQL v7.4 with both direct API and TCP socket connections.

• SQLite.

• Direct ODBC interface.

• Oracle

• Allegro's DB interface (AODBC).

Installation
Ensure ASDF is loaded

Simply load the file asdf.lisp.

(load "asdf.lisp")

Build C helper libraries
CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL
implementations do not support 64-bit integers. Thus, C helper libraries are required to break these
64-bit integers into two compatible 32-bit integers. The helper libraries reside in the directories uffi

Introduction

2

ftp://clsql.b9.com/

and db-mysql.

Microsoft Windows

Files named Makefile.msvc are supplied for building the libraries under Microsoft Windows. Since
Microsoft Windows does not come with that compiler, compiled DLL and LIB library files are supplied
with CLSQL.

UNIX

Files named Makefile are supplied for building the libraries under UNIX. Loading the .asd files
automatically invokes make when necessary. So, manual building of the helper libraries is not necessary
on most UNIX systems. However, the location of the MySQL library files and include files may need to
adjusted in db-mysql/Makefile on non-Debian systems.

Load UFFI
Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to
ASDF's asdf:*central-registry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the UFFI files reside in the /
usr/share/lisp/uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)
(asdf:operate 'asdf:load-op :uffi)

Load MD5 module
If you plan to use the clsql-postgresql-socket interface, you must load the md5 module. Unzip or untar
the cl-md5 distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf:*central-registry*. You can do that by pushing the pathname of the directory onto this
variable. The following example code assumes the cl-md5 files reside in the /
usr/share/lisp/cl-md5/ directory.

(push #P"/usr/share/lisp/cl-md5/" asdf:*central-registry*)
(asdf:operate 'asdf:load-op :md5)

Load CLSQL modules
Unzip or untar the CLSQL distribution which creates a directory for the CLSQL files. Add that directory
to ASDF's asdf:*central-registry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the CLSQL files reside in the /
usr/share/lisp/clsql/ directory. You need to load, at a minimum, the main clsql system and at
least one interface system. The below example show loading all CLSQL systems.

(push #P"/usr/share/lisp/clsql/" asdf:*central-registry*)
(asdf:operate 'asdf:load-op 'clsql) ; main CLSQL package
(asdf:operate 'asdf:load-op 'clsql-mysql) ; MySQL interface
(asdf:operate 'asdf:load-op 'clsql-postgresql) ; PostgreSQL interface
(asdf:operate 'asdf:load-op 'clsql-postgresql-socket) ; Socket PGSQL interface
(asdf:operate 'asdf:load-op 'clsql-odbc) ; ODBC interface
(asdf:operate 'asdf:load-op 'clsql-sqlite) ; SQLite interface

Introduction

3

(asdf:operate 'asdf:load-op 'clsql-aodbc) ; Allegro ODBC interface

Run test suite
After loading CLSQL, you can execute the test suite. A configuration file named
.clsql-test.config must be created in your home directory. There are instructures on the format
of that file in the tests/README. After creating .clsql-test.config, you can run the test suite
with ASDF:

(asdf:operate 'asdf:test-op 'clsql)

Introduction

4

1 Philip Greenspun's "SQL For Web Nerds" - Data Modeling [http://www.arsdigita.com/books/sql/data-modeling.html]

Chapter 2. CommonSQL Tutorial
Based on the UncommonSQL Tutorial

Introduction
The goal of this tutorial is to guide a new developer thru the process of creating a set of CLSQL classes
providing a Object-Oriented interface to persistent data stored in an SQL database. We will assume that
the reader is familiar with how SQL works, how relations (tables) should be structured, and has created
at least one SQL application previously. We will also assume a minor level of experience with Common
Lisp.

CLSQL provides two different interfaces to SQL databases, a Functional interface, and an Object-Ori-
ented interface. The Functional interface consists of a special syntax for embedded SQL expressions in
Lisp, and provides lisp functions for SQL operations like SELECT and UPDATE. The object-oriented
interface provides a way for mapping Common Lisp Objects System (CLOS) objects into databases and
includes functions for inserting new objects, querying objects, and removing objects. Most applications
will use a combination of the two.

CLSQL is based on the CommonSQL package from Xanalys, so the documentation that Xanalys makes
available online is useful for CLSQL as well. It is suggested that developers new to CLSQL read their
documentation as well, as any differences between CommonSQL and CLSQL are minor. Xanalys makes
the following documents available:

• Xanalys Lispworks User Guide - The CommonSQL Package
[http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm]

• Xanalys Lispworks Reference Manual - The SQL Package
[http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm]

• CommonSQL Tutorial by Nick Levine [http://www.ravenbrook.com/doc/2002/09/13/common-sql/]

Data Modeling with CLSQL
Before we can create, query and manipulate CLSQL objects, we need to define our data model as noted
by Philip Greenspun 1

When data modeling, you are telling the relational database management system (RDBMS) the follow-
ing:

• What elements of the data you will store.

• How large each element can be.

• What kind of information each element can contain.

• What elements may be left blank.

• Which elements are constrained to a fixed range.

• Whether and how various tables are to be linked.

5

http://www.lispworks.com/reference/lw43/LWUG/html/lwuser-167.htm
http://www.lispworks.com/reference/lw43/LWRM/html/lwref-383.htm
http://www.ravenbrook.com/doc/2002/09/13/common-sql/
http://www.arsdigita.com/books/sql/data-modeling.html

With SQL database one would do this by defining a set of relations, or tables, followed by a set of quer-
ies for joining the tables together in order to construct complex records. However, with CLSQL we do
this by defining a set of CLOS classes, specifying how they will be turned into tables, and how they can
be joined to one another via relations between their attributes. The SQL tables, as well as the queries for
joining them together are created for us automatically, saving us from dealing with some of the tedium
of SQL.

Let us start with a simple example of two SQL tables, and the relations between them.

CREATE TABLE EMPLOYEE (emplid NOT NULL number(38),
first_name NOT NULL varchar2(30),
last_name NOT NULL varchar2(30),
email varchar2(100),
companyid NOT NULL number(38),
managerid number(38))

CREATE TABLE COMPANY (companyid NOT NULL number(38),
name NOT NULL varchar2(100),
presidentid NOT NULL number(38))

This is of course the canonical SQL tutorial example, "The Org Chart".

In CLSQL, we would have two "view classes" (a fancy word for a class mapped into a database). They
would be defined as follows:

(clsql:def-view-class employee ()
((emplid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :emplid)
(first-name
:accessor first-name
:type (string 30)
:initarg :first-name)
(last-name
:accessor last-name
:type (string 30)
:initarg :last-name)
(email
:accessor employee-email
:type (string 100)
:nulls-ok t
:initarg :email)
(companyid
:type integer
:initarg :companyid)
(managerid
:type integer
:nulls-ok t
:initarg :managerid))

(:base-table employee))

(clsql:def-view-class company ()
((companyid
:db-kind :key
:db-constraints :not-null
:type integer
:initarg :companyid)
(name

CommonSQL Tutorial

6

:type (string 100)
:initarg :name)
(presidentid
:type integer
:initarg :presidentid))

(:base-table company))

The DEF-VIEW-CLASS macro is just like the normal CLOS DEFCLASS macro, except that it handles
several slot options that DEFCLASS doesn't. These slot options have to do with the mapping of the slot
into the database. We only use a few of the slot options in the above example, but there are several oth-
ers.

• :column - The name of the SQL column this slot is stored in. Defaults to the slot name. If the slot
name is not a valid SQL identifier, it is escaped, so foo-bar becomes foo_bar.

• :db-kind - The kind of database mapping which is performed for this slot. :base indicates the slot
maps to an ordinary column of the database view. :key indicates that this slot corresponds to part of
the unique keys for this view, :join indicates a join slot representing a relation to another view and
:virtual indicates that this slot is an ordinary CLOS slot. Defaults to :base.

• :db-reader - If a string, then when reading values from the database, the string will be used for a
format string, with the only value being the value from the database. The resulting string will be
used as the slot value. If a function then it will take one argument, the value from the database, and
return the value that should be put into the slot.

• :db-writer - If a string, then when reading values from the slot for the database, the string will be
used for a format string, with the only value being the value of the slot. The resulting string will be
used as the column value in the database. If a function then it will take one argument, the value of
the slot, and return the value that should be put into the database.

• :column- - A string which will be used as the type specifier for this slots column definition in the
database.

• :void-value - The Lisp value to return if the field is NULL. The default is NIL.

• :db-info - A join specification.

In our example each table as a primary key attribute, which is required to be unique. We indicate that a
slot is part of the primary key (CLSQL supports multi-field primary keys) by specifying the :db-kind key
slot option.

The SQL type of a slot when it is mapped into the database is determined by the :type slot option. The
argument for the :type option is a Common Lisp datatype. The CLSQL framework will determine the ap-
propriate mapping depending on the database system the table is being created in. If we really wanted to
determine what SQL type was used for a slot, we could specify a :db-type option like "NUMBER(38)"
and we would be guaranteed that the slot would be stored in the database as a NUMBER(38). This is not
recomended because it could makes your view class unportable across database systems.

DEF-VIEW-CLASS also supports some class options, like :base-table. The :base-table option specifies
what the table name for the view class will be when it is mapped into the database.

Class Relations
In an SQL only application, the EMPLOYEE and COMPANY tables can be queried to determine things
like, "Who is Vladamir's manager?", "What company does Josef work for?", and "What employees work

CommonSQL Tutorial

7

for Widgets Inc.". This is done by joining tables with an SQL query.

Who works for Widgets Inc.?

SELECT first_name, last_name FROM employee, company
WHERE employee.companyid = company.companyid

AND company.company_name = "Widgets Inc."

Who is Vladamir's manager?

SELECT managerid FROM employee
WHERE employee.first_name = "Vladamir"

AND employee.last_name = "Lenin"

What company does Josef work for?

SELECT company_name FROM company, employee
WHERE employee.first_name = "Josef"

AND employee.last-name = "Stalin"
AND employee.companyid = company.companyid

With CLSQL however we do not need to write out such queries because our view classes can maintain
the relations between employees and companies, and employees to their managers for us. We can then
access these relations like we would any other attribute of an employee or company object. In order to
do this we define some join slots for our view classes.

What company does an employee work for? If we add the following slot definition to the employee class
we can then ask for it's COMPANY slot and get the appropriate result.

;; In the employee slot list
(company
:accessor employee-company
:db-kind :join
:db-info (:join-class company

:home-key companyid
:foreign-key companyid
:set nil))

Who are the employees of a given company? And who is the president of it? We add the following slot
definition to the company view class and we can then ask for it's EMPLOYEES slot and get the right
result.

;; In the company slot list
(employees
:reader company-employees
:db-kind :join
:db-info (:join-class employee

:home-key companyid
:foreign-key companyid
:set t))

(president
:reader president

CommonSQL Tutorial

8

:db-kind :join
:db-info (:join-class employee

:home-key presidentid
:foreign-key emplid
:set nil))

And lastly, to define the relation between an employee and their manager:

;; In the employee slot list
(manager
:accessor employee-manager
:db-kind :join
:db-info (:join-class employee

:home-key managerid
:foreign-key emplid
:set nil))

CLSQL join slots can represent one-to-one, one-to-many, and many-to-many relations. Above we only
have one-to-one and one-to-many relations, later we will explain how to model many-to-many relations.
First, let's go over the slot definitions and the available options.

In order for a slot to be a join, we must specify that it's :db-kind :join, as opposed to :base or :key. Once
we do that, we still need to tell CLSQL how to create the join statements for the relation. This is what the
:db-info option does. It is a list of keywords and values. The available keywords are:

• :join-class - The view class to which we want to join. It can be another view class, or the same view
class as our object.

• :home-key - The slot(s) in the immediate object whose value will be compared to the foreign-key
slot(s) in the join-class in order to join the two tables. It can be a single slot-name, or it can be a list
of slot names.

• :foreign-key - The slot(s) in the join-class which will be compared to the value(s) of the home-key.

• :set - A boolean which if false, indicates that this is a one-to-one relation, only one object will be re-
turned. If true, than this is a one-to-many relation, a list of objects will be returned when we ask for
this slots value.

There are other :join-info options available in CLSQL, but we will save those till we get to the many-
to-many relation examples.

Object Creation
Now that we have our model laid out, we should create some object. Let us assume that we have a data-
base connect set up already. We first need to create our tables in the database:

Note: the file examples/clsql-tutorial.lisp contains view class definitions which you can
load into your list at this point in order to play along at home.

(clsql:create-view-from-class 'employee)
(clsql:create-view-from-class 'company)

Then we will create our objects. We create them just like you would any other CLOS object:

CommonSQL Tutorial

9

(defvar company1 (make-instance 'company
:companyid 1
:presidentid 1
:name "Widgets Inc."))

(defvar employee1 (make-instance 'employee
:emplid 1
:first-name "Vladamir"
:last-name "Lenin"
:email "lenin@soviet.org"
:companyid 1))

(defvar employee2 (make-instance 'employee
:emplid 2
:first-name "Josef"
:last-name "Stalin"
:email "stalin@soviet.org"
:companyid 1
:managerid 1))

In order to insert an objects into the database we use the UPDATE-RECORDS-FROM-INSTANCE func-
tion as follows:

(clsql:update-records-from-instance employee1)
(clsql:update-records-from-instance employee2)
(clsql:update-records-from-instance company1)

After you make any changes to an object, you have to specifically tell CLSQL to update the SQL data-
base. The UPDATE-RECORDS-FROM-INSTANCE method will write all of the changes you have made
to the object into the database.

Since CLSQL objects are just normal CLOS objects, we can manipulate their slots just like any other ob-
ject. For instance, let's say that Lenin changes his email because he was getting too much spam from the
German Socialists.

;; Print Lenin's current email address, change it and save it to the
;; database. Get a new object representing Lenin from the database
;; and print the email

;; This lets us use the functional CLSQL interface with [] syntax
(clsql:locally-enable-sql-reader-syntax)

(format t "The email address of ~A ~A is ~A"
(first-name employee1)
(last-name employee1)
(employee-email employee1))

(setf (employee-email employee1) "lenin-nospam@soviets.org")

;; Update the database
(clsql:update-records-from-instance employee1)

(let ((new-lenin (car (clsql:select 'employee
:where [= [slot-value 'employee 'emplid] 1]))))

(format t "His new email is ~A"
(employee-email new-lenin)))

CommonSQL Tutorial

10

Everything except for the last LET expression is already familiar to us by now. To understand the call to
CLSQL:SELECT we need to discuss the Functional SQL interface and it's integration with the Object
Oriented interface of CLSQL.

Finding Objects
Now that we have our objects in the database, how do we get them out when we need to work with
them? CLSQL provides a functional interface to SQL, which consists of a special Lisp reader macro and
some functions. The special syntax allows us to embed SQL in lisp expressions, and lisp expressions in
SQL, with ease.

Once we have turned on the syntax with the expression:

(clsql:locally-enable-sql-reader-syntax)

We can start entering fragments of SQL into our lisp reader. We will get back objects which represent
the lisp expressions. These objects will later be compiled into SQL expressions that are optimized for
the database backed we are connected to. This means that we have a database independent SQL syntax.
Here are some examples:

;; an attribute or table name
[foo] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO>

;; a attribute identifier with table qualifier
[foo bar] => #<CLSQL-SYS::SQL-IDENT-ATTRIBUTE FOO.BAR>

;; a attribute identifier with table qualifier
[= "Lenin" [first_name]] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP ('Lenin' = FIRST_NAME)>

[< [emplid] 3] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLID < 3)>

[and [< [emplid] 2] [= [first_name] "Lenin"]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP ((EMPLID < 2) AND

(FIRST_NAME = 'Lenin'))>

;; If we want to reference a slot in an object we can us the
;; SLOT-VALUE sql extension
[= [slot-value 'employee 'emplid] 1] =>

#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = 1)>

[= [slot-value 'employee 'emplid]
[slot-value 'company 'presidentid]] =>
#<CLSQL-SYS::SQL-RELATIONAL-EXP (EMPLOYEE.EMPLID = COMPANY.PRESIDENTID)>

The SLOT-VALUE operator is important because it let's us query objects in a way that is robust to any
changes in the object->table mapping, like column name changes, or table name changes. So when you
are querying objects, be sure to use the SLOT-VALUE SQL extension.

Since we can now formulate SQL relational expression which can be used as qualifiers, like we put after
the WHERE keyword in SQL statements, we can start querying our objects. CLSQL provides a function
SELECT which can return use complete objects from the database which conform to a qualifier, can be
sorted, and various other SQL operations.

CommonSQL Tutorial

11

The first argument to SELECT is a class name. it also has a set of keyword arguments which are covered
in the documentation. For now we will concern ourselves only with the :where keyword. Select returns a
list of objects, or nil if it can't find any. It's important to remember that it always returns a list, so even if
you are expecting only one result, you should remember to extract it from the list you get from SE-
LECT.

;; all employees
(clsql:select 'employee)
;; all companies
(clsql:select 'company)

;; employees named Lenin
(clsql:select 'employee :where [= [slot-value 'employee 'last-name]

"Lenin"])

(clsql:select 'company :where [= [slot-value 'company 'name]
"Widgets Inc."])

;; Employees of Widget's Inc.
(clsql:select 'employee

:where [and [= [slot-value 'employee 'companyid]
[slot-value 'company 'companyid]]

[= [slot-value 'company 'name]
"Widgets Inc."]])

;; Same thing, except that we are using the employee
;; relation in the company view class to do the join for us,
;; saving us the work of writing out the SQL!
(company-employees company1)

;; President of Widgets Inc.
(president company1)

;; Manager of Josef Stalin
(employee-manager employee2)

Deleting Objects
Now that we know how to create objects in our database, manipulate them and query them (including
using our predefined relations to save us the trouble writing alot of SQL) we should learn how to clean
up after ourself. It's quite simple really. The function DELETE-INSTANCE-RECORDS will remove an
object from the database. However, when we remove an object we are responsible for making sure that
the database is left in a correct state.

For example, if we remove a company record, we need to either remove all of it's employees or we need
to move them to another company. Likewise if we remove an employee, we should make sure to update
any other employees who had them as a manager.

Conclusion
There are many nooks and crannies to CLSQL, some of which are covered in the Xanalys documents we
refered to earlier, some are not. The best documentation at this time is still the source code for CLSQL
itself and the inline documentation for its various functions.

CommonSQL Tutorial

12

CLSQL
This part gives a reference to the symbols exported from the CLSQL package. These symbols constitute
the normal user-interface of CLSQL. Currently, the symbols of the CommonSQL-API are not docu-
mented here.

13

Name
SQL-CONDITION -- the super-type of all CLSQL-specific conditions

SQL-CONDITION

Class Precedence List
sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specif-
ic interfaces. There are no defined initialization arguments nor any accessors.

14

Name
SQL-ERROR -- the super-type of all CLSQL-specific errors

SQL-ERROR

Class Precedence List
sql-error, error, serious-condition, sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or
any of it's database-specific interfaces. There are no defined initialization arguments nor any accessors.

15

Name
SQL-WARNING -- the super-type of all CLSQL-specific warnings

SQL-WARNING

Class Precedence List
sql-warning, warning, sql-condition, condition, t

Description
This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL,
or any of it's database-specific interfaces. There are no defined initialization arguments nor any ac-
cessors.

16

Name
CLSQL-USER-ERROR -- condition representing errors because of invalid parameters from the library
user.

CLSQL-USER-ERROR

Class Precedence List
sql-error, sql-condition, condition, t

Description
This condition represents errors that occur because the user supplies invalid data to CLSQL. This in-
cludes errors such as an invalid format connection specification or an error in the syntax for the LOOP
macro extensions.

17

Name
SQL-CONNECTION-ERROR -- condition representing errors during connection

SQL-CONNECTION-ERROR

Class Precedence List
sql-connection-error, sql-database-error, sql-error, sql-condition, condition, t

Description
This condition represents errors that occur while trying to connect to a database. The following initializ-
ation arguments and accessors exist:
Initarg: :database-type
Accessor: sql-connection-error-database-type
Description: Database type for the connection attempt
Initarg: :connection-spec
Accessor: sql-connection-error-connection-spec
Description: The connection specification used in the connection attempt.
Initarg: :errno
Accessor: sql-connection-error-errno
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :error
Accessor: sql-connection-error-error
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

18

Name
SQL-DATABASE-ERROR -- condition representing errors during query or command execution

SQL-DATABASE-ERROR

Class Precedence List
sql-database-error, sql-error, error, serious-condition, sql-condition, condition, t

Description
This condition represents errors that occur while executing SQL statements, either as part of query oper-
ations or command execution, either explicitly or implicitly, as caused e.g. by with-transaction.
The following initialization arguments and accessors exist:
Initarg: :database
Accessor: sql-database-error-database
Description: The database object that was involved in the incident.
Initarg: :expression
Accessor: sql-database-error-expression
Description: The SQL expression whose execution caused the error.
Initarg: :errno
Accessor: sql-database-error-errno
Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.
Initarg: :error
Accessor: sql-database-error-error
Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

19

Name
DEFAULT-DATABASE-TYPE -- The default database type to use

DEFAULT-DATABASE-TYPE

Value Type
Any keyword representing a valid database back-end of CLSQL, or nil.

Initial Value
nil

Description
The value of this variable is used in calls to initialize-database-type and connect as the
default value of the database-type parameter.

Caution

If the value of this variable is nil, then all calls to initialize-database-type or con-
nect will have to specify the database-type to use, or a general-purpose error will be sig-
nalled.

Examples

(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t

Affected By
None.

See Also
None.

Notes
None.

20

Name
INITIALIZED-DATABASE-TYPES -- List of all initialized database types

INITIALIZED-DATABASE-TYPES

Value Type
A list of all initialized database types, each of which represented by it's corresponding keyword.

Initial Value
nil

Description
This variable is updated whenever initialize-database-type is called for a database type
which hasn't already been initialized before, as determined by this variable. In that case the keyword
representing the database type is pushed onto the list stored in *INITIALIZED-DATABASE-TYPES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :mysql)
=> :mysql
(initialize-database-type)
=> t
initialized-database-types
=> (:MYSQL)

Affected By

initialize-database-type

See Also
None.

Notes
Direct access to this variable is primarily provided because of compatibility with Harlequin's Common
SQL.

21

Name
INITIALIZE-DATABASE-TYPE -- Initializes a database type

INITIALIZE-DATABASE-TYPE

Syntax
initialize-database-type &key database-type => result

Arguments and Values

database-type The database type to initialize, i.e. a keyword symbol denoting a known database
back-end. Defaults to the value of *default-database-type*.

result Either nil if the initialization attempt fails, or t otherwise.

Description
If the back-end specified by database-type has not already been initialized, as seen from
initialized-database-types, an attempt is made to initialize the database. If this attempt succeeds, or the
back-end has already been initialized, the function returns t, and places the keyword denoting the data-
base type onto the list stored in *initialized-database-types*, if not already present.

If initialization fails, the function returns nil, and/or signals an error of type clsql-error. The kind of ac-
tion taken depends on the back-end and the cause of the problem.

Examples

initialized-database-types
=> NIL
(setf *default-database-type* :mysql)
=> :MYSQL
(initialize-database-type)
>> Compiling LAMBDA (#:G897 #:G898 #:G901 #:G902):
>> Compiling Top-Level Form:
>>
=> T
initialized-database-types
=> (:MYSQL)
(initialize-database-type)
=> T
initialized-database-types
=> (:MYSQL)

Side Effects
The database back-end corresponding to the database type specified is initialized, unless it has already
been initialized. This can involve any number of other side effects, as determined by the back-end im-

22

plementation (like e.g. loading of foreign code, calling of foreign code, networking operations, etc.). If
initialization is attempted and succeeds, the database-type is pushed onto the list stored in
initialized-database-types.

Affected by

default-database-type
initialized-database-types

Exceptional Situations
If an error is encountered during the initialization attempt, the back-end may signal errors of kind clsql-
error.

See Also
None.

Notes
None.

INITIALIZE-DATABASE-TYPE

23

Name
CONNECT-IF-EXISTS -- Default value for the if-exists parameter of connect.

CONNECT-IF-EXISTS

Value Type
A valid argument to the if-exists parameter of connect, i.e. one of :new, :warn-new, :error,
:warn-old, :old.

Initial Value
:error

Description
The value of this variable is used in calls to connect as the default value of the if-exists paramet-
er. See connect for the semantics of the valid values for this variable.

Examples
None.

Affected By
None.

See Also

connect

Notes
None.

24

Name
CONNECTED-DATABASES -- Return the list of active database objects.

CONNECTED-DATABASES

Syntax
connected-databases => databases

Arguments and Values

databases The list of active database objects.

Description
This function returns the list of active database objects, i.e. all those database objects created by calls to
connect, which have not been closed by calling disconnect on them.

Caution

The consequences of modifying the list returned by connected-databases are undefined.

Examples

(connected-databases)
=> NIL
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>
(connected-databases)
=> (#<CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>

#<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)
(disconnect)
=> T
(connected-databases)
=> (#<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)
(disconnect)
=> T
(connected-databases)
=> NIL

Side Effects
None.

Affected By

25

connect
disconnect

Exceptional Situations
None.

See Also
None.

Notes
None.

CONNECTED-DATABASES

26

Name
DEFAULT-DATABASE -- The default database object to use

DEFAULT-DATABASE

Value Type
Any object of type database, or nil to indicate no default database.

Initial Value
nil

Description
Any function or macro in CLSQL that operates on a database uses the value of this variable as the de-
fault value for it's database parameter.

The value of this parameter is changed by calls to connect, which sets *default-database* to the data-
base object it returns. It is also changed by calls to disconnect, when the database object being dis-
connected is the same as the value of *default-database*. In this case disconnect sets
default-database to the first database that remains in the list of active databases as returned by con-
nected-databases, or nil if no further active databases exist.

The user may change *default-database* at any time to a valid value of his choice.

Caution

If the value of *default-database* is nil, then all calls to CLSQL functions on databases must
provide a suitable database parameter, or an error will be signalled.

Examples

(connected-databases)
=> NIL
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql :if-exists :new)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
(disconnect)
=> T
default-database
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(disconnect)
=> T
default-database
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>
(disconnect)
=> T
default-database

27

=> NIL
(connected-databases)
=> NIL

Affected By

connect
disconnect

See Also

connected-databases

Notes

Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-
level loop, and because of this, connect and disconnect provide some fairly complex be-
haviour to keep *default-database* set to useful values. Programmatic use of CLSQL should
never depend on the value of *default-database* and should provide correct database objects
via the database parameter to functions called.

DEFAULT-DATABASE

28

Name
DATABASE -- The super-type of all CLSQL databases

DATABASE

Class Precedence List
database, standard-object, t

Description
This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses
of this class to implement their databases. No instances of this class are ever created by CLSQL.

29

Name
CLOSED-DATABASE -- The class representing all closed CLSQL databases

CLOSED-DATABASE

Class Precedence List
closed-database, standard-object, t

Description
CLSQL database instances are changed to this class via change-class after they are closed via dis-
connect. All functions and generic functions that take database objects as arguments will signal errors
of type clsql-closed-error when they are called on instances of closed-database, with the exception of
database-name, which will continue to work as for instances of database.

30

Name
DATABASE-NAME -- Get the name of a database object

DATABASE-NAME

Syntax
database-name database => name

Arguments and Values

database A database object, either of type database or of type closed-database.

name A string describing the identity of the database to which this database object is connected
to.

Description
This function returns the database name of the given database. The database name is a string which
somehow describes the identity of the database to which this database object is or has been connected.
The database name of a database object is determined at connect time, when a call to database-
name-from-spec derives the database name from the connection specification passed to connect
in the connection-spec parameter.

The database name is used via find-database in connect to determine whether database connec-
tions to the specified database exist already.

Usually the database name string will include indications of the host, database name, user, or port that
where used during the connection attempt. The only important thing is that this string shall try to identi-
fy the database at the other end of the connection. Connection specifications parts like passwords and
credentials shall not be used as part of the database name.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

31

Side Effects
None.

Affected By

database-name-from-spec

Exceptional Situations
Will signal an error if the object passed as the database parameter is neither of type database nor of
type closed-database.

See Also

connect
find-database

Notes
None.

DATABASE-NAME

32

Name
FIND-DATABASE -- Locate a database object through it's name.

FIND-DATABASE

Syntax
find-database database &optional errorp => result

Arguments and Values

database A database object or a string, denoting a database name.

errorp A generalized boolean. Defaults to t.

result Either a database object, or, if errorp is nil, possibly nil.

Description
find-database locates an active database object given the specification in database. If data-
base is an object of type database, find-database returns this. Otherwise it will search the active
databases as indicated by the list returned by connected-databases for a database whose name (as
returned by database-name is equal as per string= to the string passed as database. If it suc-
ceeds, it returns the first database found.

If it fails to find a matching database, it will signal an error of type clsql-error if errorp is true. If er-
rorp is nil, it will return nil instead.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

(find-database "dent/newesim/dent")
=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/template1/dent")
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

33

(find-database "www.pmsf.de/template1/dent" nil)
=> NIL
(find-database **)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

Side Effects
None.

Affected By

connected-databases

Exceptional Situations
Will signal an error of type clsql-error if no matching database can be found, and errorp is true. Will
signal an error if the value of database is neither an object of type database nor a string.

See Also

database-name
database-name-from-spec

Notes
None.

FIND-DATABASE

34

Name
CONNECT -- create a connection to a database

CONNECT

Syntax
connect connection-spec &key if-exists database-type pool => database

Arguments and Values

connection-spec A connection specification

if-exists This indicates the action to take if a connection to the same database exists
already. See below for the legal values and actions. It defaults to the value of
connect-if-exists.

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

pool A boolean flag. If T, acquire connection from a pool of open connections. If the
pool is empty, a new connection is created. The default is NIL.

database The database object representing the connection.

Description
This function takes a connection specification and a database type and creates a connection to the data-
base specified by those. The type and structure of the connection specification depend on the database
type.

The parameter if-exists specifies what to do if a connection to the database specified exists already,
which is checked by calling find-database on the database name returned by database-
name-from-spec when called with the connection-spec and database-type parameters.
The possible values of if-exists are:

:new Go ahead and create a new connection.

:warn-new This is just like :new, but also signals a warning of type clsql-exists-warning, indicating
the old and newly created databases.

:error This will cause connect to signal a correctable error of type clsql-exists-error. The
user may choose to proceed, either by indicating that a new connection shall be created,
via the restart create-new, or by indicating that the existing connection shall be used, via
the restart use-old.

:old This will cause connect to use an old connection if one exists.

:warn-old This is just like :old, but also signals a warning of type clsql-exists-warning, indicating
the old database used, via the slots old-db and new-db

35

The database name of the returned database object will be the same under string= as that which
would be returned by a call to database-name-from-spec with the given connection-spec
and database-type parameters.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}>
(database-name *)
=> "dent/newesim/dent"

(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
>> In call to CONNECT:
>> There is an existing connection #<CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}> to database dent/newesim/dent.
>>
>> Restarts:
>> 0: [CREATE-NEW] Create a new connection.
>> 1: [USE-OLD] Use the existing connection.
>> 2: [ABORT] Return to Top-Level.
>>
>> Debug (type H for help)
>>
>> (CONNECT ("dent" "newesim" "dent" "dent") :IF-EXISTS NIL :DATABASE-TYPE ...)
>> Source:
>> ; File: /prj/CLSQL/sql/sql.cl
>> (RESTART-CASE (ERROR 'CLSQL-EXISTS-ERROR :OLD-DB OLD-DB)
>> (CREATE-NEW NIL :REPORT "Create a new connection."
>> (SETQ RESULT #))
>> (USE-OLD NIL :REPORT "Use the existing connection."
>> (SETQ RESULT OLD-DB)))
>> 0] 0
=> #<CLSQL-MYSQL:MYSQL-DATABASE {480451F5}>

Side Effects
A database connection is established, and the resultant database object is registered, so as to appear in
the list returned by connected-databases.

Affected by

default-database-type
connect-if-exists

Exceptional Situations
If the connection specification is not syntactically or semantically correct for the given database type, an
error of type clsql-invalid-spec-error is signalled. If during the connection attempt an error is detected
(e.g. because of permission problems, network trouble or any other cause), an error of type sql-
connection-error is signalled.

If a connection to the database specified by connection-spec exists already, conditions are sig-
nalled according to the if-exists parameter, as described above.

CONNECT

36

See Also

connected-databases
disconnect

Notes
None.

CONNECT

37

Name
DISCONNECT -- close a database connection

DISCONNECT

Syntax
disconnect &key database pool => t

Arguments and Values

pool A boolean flag indicating whether to put the database into a pool of opened databases. If
T, rather than terminating the database connection, the connection is left open and the
connection is placed into a pool of connections. Subsequent calls to connect can then
reuse this connection. The default is NIL.

database The database to disconnect, which defaults to the database indicated by
default-database.

Description
This function takes a database object as returned by connect, and closes the connection. The class of
the object passed is changed to closed-database after the disconnection succeeds, thereby preventing fur-
ther use of the object as an argument to CLSQL functions, with the exception of database-name. If
the user does pass a closed database object to any other CLSQL function, an error of type clsql-
closed-error is signalled.

Examples

(disconnect :database (find-database "dent/newesim/dent"))
=> T

Side Effects
The database connection is closed, and the database object is removed from the list of connected data-
bases as returned by connected-databases.

The class of the database object is changed to closed-database.

If the database object passed is the same under eq as the value of *default-database*, then
default-database is set to the first remaining database from connected-databases or to nil if no
further active database exists.

Affected by

default-database

38

Exceptional Situations
If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type clsql-error might be signalled.

See Also

connect
closed-database

Notes
None.

DISCONNECT

39

Name
DISCONNECT-POOLED -- closes all pooled database connections

DISCONNECT-POOLED

Syntax
disconnect-pool => t

Description
This function disconnects all database connections that have been placed into the pool. Connections are
placed in the pool by calling disconnection.

Examples

(disconnect-pool)
=> T

Side Effects
Database connections will be closed and entries in the pool are removed.

Affected by

disconnect

Exceptional Situations
If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type clsql-error might be signalled.

See Also

connect
closed-database

Notes
None.

40

Name
CREATE-DATABASE -- create a database

CREATE-DATABASE

Syntax
create-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, a new database was successfully created.

Description
This function creates a database in the database system specified by database-type.

Examples

(create-database '("localhost" "new" "dent" "dent") :database-type :mysql)
=> T

(create-database '("localhost" "new" "dent" "badpasswd") :database-type :mysql)
=>
Error: While trying to access database localhost/new/dent
using database-type MYSQL:
Error database-create failed: mysqladmin: connect to server at 'localhost' failed

error: 'Access denied for user: 'root@localhost' (Using password: YES)'
has occurred.
[condition type: CLSQL-ACCESS-ERROR]

Side Effects
A database will be created on the filesystem of the host.

Exceptional Situations
An exception will be thrown if the database system does not allow new databases to be created or if
database creation fails.

Notes

41

This function may invoke the operating systems functions. Thus, some database systems may require the
administration functions to be available in the current PATH. At this time, the :mysql backend requires
mysqladmin and the :postgresql backend requires createdb.

CREATE-DATABASE

42

Name
DESTROY-DATABASE -- destroys a database

DESTROY-DATABASE

Syntax
destroy-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, the database was successfully destroyed.

Description
This function destroy a database in the database system specified by database-type.

Examples

(destroy-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> T

(destroy-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=>
Error: While trying to access database localhost/test2/root
using database-type POSTGRESQL:
Error database-destory failed: dropdb: database removal failed: ERROR: database "test2" does not exist
has occurred.
[condition type: CLSQL-ACCESS-ERROR]

Side Effects
A database will be removed from the filesystem of the host.

Exceptional Situations
An exception will be thrown if the database system does not allow databases to be removed, the data-
base does not exist, or if database removal fails.

Notes
This function may invoke the operating systems functions. Thus, some database systems may require the

43

administration functions to be available in the current PATH. At this time, the :mysql backend requires
mysqladmin and the :postgresql backend requires dropdb.

DESTROY-DATABASE

44

Name
PROBE-DATABASE -- tests for existence of a database

PROBE-DATABASE

Syntax
probe-database connection-spec &key database-type => success

Arguments and Values

connection-spec A connection specification

database-type A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

success A boolean flag. If T, the database exists in the database system.

Description
This function tests for the existence of a database in the database system specified by database-
type.

Examples

(probe-database '("localhost" "new" "dent" "dent") :database-type :postgresql)
=> T

Side Effects
None

Exceptional Situations
An exception maybe thrown if the database system does not receive administrator-level authentication
since function may need to read the administrative database of the database system.

Notes
None.

45

Name
DATABASE-NAME-FROM-SPEC -- Return the database name string corresponding to the given con-
nection specification.

DATABASE-NAME-FROM-SPEC

Syntax

database-name-from-spec connection-spec database-type => name

Arguments and Values

connection-spec A connection specification, whose structure and interpretation are dependent on
the database-type.

database-type A database type specifier, i.e. a keyword.

name A string denoting a database name.

Description
This generic function takes a connection specification and a database type and returns the database name
of the database object that would be created had connect been called with the given connection spe-
cification and database types.

This function is useful in determining a database name from the connection specification, since the way
the connection specification is converted into a database name is dependent on the database type.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"
(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "template1" "dent" nil) :postgresql)
=> "/template1/dent"
(connect '(nil "template1" "dent" nil) :database-type :postgresql)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)
=> "/template1/dent"

(database-name-from-spec '("www.pmsf.de" "template1" "dent" nil) :postgresql)
=> "www.pmsf.de/template1/dent"

(find-database "dent/newesim/dent")
=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/template1/dent")

46

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(find-database "www.pmsf.de/template1/dent" nil)
=> NIL
(find-database **)
=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

Side Effects
None.

Affected by
None.

Exceptional Situations
If the value of connection-spec is not a valid connection specification for the given database type,
an error of type clsql-invalid-spec-error might be signalled.

See Also

connect

Notes
None.

DATABASE-NAME-FROM-SPEC

47

Name
EXECUTE-COMMAND -- Execute an SQL command which returns no values.

EXECUTE-COMMAND

Syntax
execute-command sql-expression &key database => t

Arguments and Values

sql-expression An sql expression that represents an SQL statement which will return no values.

database A database object. This will default to the value of *default-database*.

Description
This will execute the command given by sql-expression in the database specified. If the execu-
tion succeeds it will return t, otherwise an error of type sql-database-error will be signalled.

Examples

(execute-command "create table eventlog (time char(30),event char(70))")
=> T

(execute-command "create table eventlog (time char(30),event char(70))")
>>
>> While accessing database #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {480B2B6D}>
>> with expression "create table eventlog (time char(30),event char(70))":
>> Error NIL: ERROR: amcreate: eventlog relation already exists
>> has occurred.
>>
>> Restarts:
>> 0: [ABORT] Return to Top-Level.
>>
>> Debug (type H for help)
>>
>> (CLSQL-POSTGRESQL::|(PCL::FAST-METHOD DATABASE-EXECUTE-COMMAND (T POSTGRESQL-DATABASE))|
>> #<unused-arg>
>> #<unused-arg>
>> #<unavailable-arg>
>> #<unavailable-arg>)
>> Source: (ERROR 'SQL-DATABASE-ERROR :DATABASE DATABASE :EXPRESSION ...)
>> 0] 0

(execute-command "drop table eventlog")
=> T

Side Effects

48

Whatever effects the execution of the SQL statement has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL statement leads to any errors, an error of type sql-database-error is signalled.

See Also

query

Notes
None.

EXECUTE-COMMAND

49

Name
QUERY -- Execute an SQL query and return the tuples as a list

QUERY

Syntax
query query-expression &key database result-types field-names => result

Arguments and Values

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set.

database A database object. This will default to the value of *default-database*.

result-types A field type specifier. The default is NIL.

The purpose of this argument is cause CLSQL to import SQL numeric fields
into numeric Lisp objects rather than strings. This reduces the cost of allocat-
ing a temporary string and the CLSQL users' inconvenience of converting
number strings into number objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a nu-
meric format where applicable. The default value of NIL causes all fields to
be returned as strings regardless of the SQL type. Otherwise a list is expected
which has a element for each field that specifies the conversion. If the list is
shorter than the number of fields, the a value of t is assumed for the field. If
the list is longer than the number of fields, the extra elements are ignored.

:int Field is imported as a signed integer, from 8-bits to 64-bits depending
upon the field type.
:double Field is imported as a double-float number.
t Field is imported as a string.

field-names
result A list representing the result set obtained. For each tuple in the result set,

there is an element in this list, which is itself a list of all the attribute values in
the tuple.

Description
This will execute the query given by query-expression in the database specified. If the execu-
tion succeeds it will return the result set returned by the database, otherwise an error of type sql-
database-error will be signalled.

Examples

(execute-command "create table simple (name char(50), salary numeric(10,2))")
=> T

50

(execute-command "insert into simple values ('Mai, Pierre',10000)")
=> T
(execute-command "insert into simple values ('Hacker, Random J.',8000.50)")
=> T
(query "select * from simple")
=> (("Mai, Pierre" "10000.00") ("Hacker, Random J." "8000.50"))
(query "select salary from simple")
=> (("10000.00") ("8000.50"))
(query "select salary from simple where salary > 10000")
=> NIL
(query "select salary,name from simple where salary > 10000")
=> NIL
(query "select salary,name from simple where salary > 9000")
=> (("10000.00" "Mai, Pierre"))
(query "select salary,name from simple where salary > 8000")
=> (("10000.00" "Mai, Pierre") ("8000.50" "Hacker, Random J."))

;; MySQL-specific:
(query "show tables")
=> (("demo") ("log") ("newlog") ("simple") ("spacetrial"))

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

See Also

execute-command

Notes
None.

QUERY

51

Name
MAP-QUERY -- Map a function over all the tuples from a query

MAP-QUERY

Syntax
map-query output-type-spec function query-expression &key database result-types => result

Arguments and Values

output-type-spec A sequence type specifier or nil.

function A function designator. function takes a single argument which is the atom
value for a query single with a single column or is a list of values for a multi-
column query.

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set.

database A database object. This will default to the value of *default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of
this argument.

result If output-type-spec is a type specifier other than nil, then a sequence of
the type it denotes. Otherwise nil is returned.

Description
Applies function to the successive tuples in the result set returned by executing the SQL query-
expression. If the output-type-spec is nil, then the result of each application of function is
discarded, and map-query returns nil. Otherwise the result of each successive application of func-
tion is collected in a sequence of type output-type-spec, where the jths element is the result of
applying function to the attributes of the jths tuple in the result set. The collected sequence is the res-
ult of the call to map-query.

If the output-type-spec is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element type
specified for the result-type, the element type of the resulting array is the result of upgrading that
element type; or, if the implementation can determine that the element type is unspecified (or *), the ele-
ment type of the resulting array is t; otherwise, an error is signaled.

Examples

(map-query 'list #'(lambda (tuple)
(multiple-value-bind (salary name) tuple

(declare (ignorable name))
(read-from-string salary)))

52

"select salary,name from simple where salary > 8000")
=> (10000.0 8000.5)

(map-query '(vector double-float)
#'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(declare (ignorable name))
(let ((*read-default-float-format* 'double-float))

(coerce (read-from-string salary) 'double-float))
"select salary,name from simple where salary > 8000")))

=> #(10000.0d0 8000.5d0)
(type-of *)
=> (SIMPLE-ARRAY DOUBLE-FLOAT (2))

(let (list)
(values (map-query nil #'(lambda (tuple)

(multiple-value-bind (salary name) tuple
(push (cons name (read-from-string salary)) list))

"select salary,name from simple where salary > 8000")
list))

=> NIL
=> (("Hacker, Random J." . 8000.5) ("Mai, Pierre" . 10000.0))

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

An error of type type-error must be signaled if the output-type-spec is not a recognizable subtype
of list, not a recognizable subtype of vector, and not nil.

An error of type type-error should be signaled if output-type-spec specifies the number of ele-
ments and the size of the result set is different from that number.

See Also

query
do-query

Notes
None.

MAP-QUERY

53

Name
DO-QUERY -- Iterate over all the tuples of a query

DO-QUERY

Syntax
do-query ((&rest args) query-expression &key database result-types) &body body => nil

Arguments and Values

args A list of variable names.

query-expression An sql expression that represents an SQL query which is expected to return a
(possibly empty) result set, where each tuple has as many attributes as func-
tion takes arguments.

database A database object. This will default to *default-database*.

result-types A field type specifier. The default is NIL. See query for the semantics of
this argument.

body A body of Lisp code, like in a destructuring-bind form.

Description
Executes the body of code repeatedly with the variable names in args bound to the attributes of each
tuple in the result set returned by executing the SQL query-expression on the database spe-
cified.

The body of code is executed in a block named nil which may be returned from prematurely via re-
turn or return-from. In this case the result of evaluating the do-query form will be the one sup-
plied to return or return-from. Otherwise the result will be nil.

The body of code appears also is if wrapped in a destructuring-bind form, thus allowing declar-
ations at the start of the body, especially those pertaining to the bindings of the variables named in
args.

Examples

(do-query ((salary name) "select salary,name from simple")
(format t "~30A gets $~2,5$~%" name (read-from-string salary)))

>> Mai, Pierre gets $10000.00
>> Hacker, Random J. gets $08000.50
=> NIL

(do-query ((salary name) "select salary,name from simple")
(return (cons salary name)))

=> ("10000.00" . "Mai, Pierre")

54

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

If the number of variable names in args and the number of attributes in the tuples in the result set don't
match up, an error is signalled.

See Also

query
map-query

Notes
None.

DO-QUERY

55

Name
LOOP-FOR-AS-TUPLES -- Iterate over all the tuples of a query via a loop clause

LOOP-FOR-AS-TUPLES

Compatibility

Caution

loop-for-as-tuples only works with CMUCL.

Syntax
var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} query [from database]

Arguments and Values

var A d-var-spec, as defined in the grammar for loop-clauses in the ANSI Standard for
Common Lisp. This allows for the usual loop-style destructuring.

type-spec An optional type-spec either simple or destructured, as defined in the grammar for
loop-clauses in the ANSI Standard for Common Lisp.

query An sql expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as function takes argu-
ments.

database An optional database object. This will default to the value of *default-database*.

Description
This clause is an iteration driver for loop, that binds the given variable (possibly destructured) to the
consecutive tuples (which are represented as lists of attribute values) in the result set returned by execut-
ing the SQL query expression on the database specified.

Examples

(defvar *my-db* (connect '("dent" "newesim" "dent" "dent"))
"My database"

=> *MY-DB*
(loop with time-graph = (make-hash-table :test #'equal)

with event-graph = (make-hash-table :test #'equal)
for (time event) being the tuples of "select time,event from log"
from *my-db*
do
(incf (gethash time time-graph 0))
(incf (gethash event event-graph 0))
finally
(flet ((show-graph (k v) (format t "~40A => ~5D~%" k v)))
(format t "~&Time-Graph:~%===========~%")

56

(maphash #'show-graph time-graph)
(format t "~&~%Event-Graph:~%============~%")
(maphash #'show-graph event-graph))

(return (values time-graph event-graph)))
>> Time-Graph:
>> ===========
>> D => 53000
>> X => 3
>> test-me => 3000
>>
>> Event-Graph:
>> ============
>> CLOS Benchmark entry. => 9000
>> Demo Text... => 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000
=> #<EQUAL hash table, 3 entries {48350A1D}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

Side Effects
Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by
None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of type sql-database-error is signalled.

Otherwise, any of the exceptional situations of loop applies.

See Also

query
map-query
do-query

Notes
None.

LOOP-FOR-AS-TUPLES

57

CLSQL-SYS
This part gives a reference to the symbols exported from the package CLSQL-SYS, which are not ex-
ported from CLSQL package.. These symbols are part of the interface for database back-ends, but not
part of the normal user-interface of CLSQL.

58

Name
DATABASE-INITIALIZE-DATABASE-TYPE -- Back-end part of
initialize-database-type.

DATABASE-INITIALIZE-DATABASE-TYPE

Syntax
database-initialize-database-type database-type => result

Arguments and Values

database-type A keyword indicating the database type to initialize.

result Either t if the initialization succeeds or nil if it fails.

Description
This generic function implements the main part of the database type initialization performed by ini-
tialize-database-type. After initialize-database-type has checked that the given
database type has not been initialized before, as indicated by *initialized-database-types*, it will call this
function with the database type as it's sole parameter. Database back-ends are required to define a meth-
od on this generic function which is specialized via an eql-specializer to the keyword representing their
database type.

Database back-ends shall indicate successful initialization by returning t from their method, and nil oth-
erwise. Methods for this generic function are allowed to signal errors of type clsql-error or subtypes
thereof. They may also signal other types of conditions, if appropriate, but have to document this.

Examples

Side Effects
All necessary side effects to initialize the database instance.

Affected By
None.

Exceptional Situations
Conditions of type clsql-error or other conditions may be signalled, depending on the database back-end.

See Also

initialize-database-type

59

initialized-database-types

Notes
None.

DATABASE-INITIAL-
IZE-DATABASE-TYPE

60

Appendix A. Database Back-ends
PostgreSQL
Libraries

The PostgreSQL back-end requires the PostgreSQL C client library (libpq.so). The location of this
library is specified via *postgresql-so-load-path*, which defaults to /usr/lib/libpq.so. Addition-
al flags to ld needed for linking are specified via *postgresql-so-libraries*, which defaults to ("-lcrypt" "-
lc").

Initialization
Use

(asdf:operate 'adsf:load-op 'clsql-postgresql)

to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresql.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment vari-
ables (see PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the
C client library are used.

host String representing the hostname or IP address the PostgreSQL server resides on. Use the
empty string to indicate a connection to localhost via Unix-Domain sockets instead of
TCP/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

port String representing the port to use for communication with the PostgreSQL server.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.

61

PostgreSQL Socket
Libraries

The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it commu-
nicates directly with the PostgreSQL server using the published frontend/backend protocol, version 2.0.
This eases installation and makes it possible to dump CMU CL images containing CLSQL and this
backend, contrary to backends which require FFI code.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-postgresql-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is
:postgresql-socket.

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host If this is a string, it represents the hostname or IP address the PostgreSQL server resides
on. In this case communication with the server proceeds via a TCP connection to the giv-
en host and port.

If this is a pathname, then it is assumed to name the directory that contains the server's
Unix-Domain sockets. The full name to the socket is then constructed from this and the
port number passed, and communication will proceed via a connection to this unix-do-
main socket.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication. This can be the
empty string if no password is required for authentication.

port Integer representing the port to use for communication with the PostgreSQL server. This
defaults to 5432.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.

Database Back-ends

62

MySQL
Libraries

The MySQL back-end requires the MySQL C client library (libmysqlclient.so). The location of
this library is specified via *mysql-so-load-path*, which defaults to /
usr/lib/libmysqlclient.so. Additional flags to ld needed for linking are specified via
mysql-so-libraries, which defaults to ("-lc").

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-mysql)

to load the MySQL back-end. The database type for the MySQL back-end is :mysql.

Connection Specification

Syntax of connection-spec

(host db user password)

Description of connection-spec

host String representing the hostname or IP address the MySQL server resides on, or nil to in-
dicate the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix
user ID.

password String representing the unencrypted password to use for authentication, or nil if the au-
thentication record has an empty password field.

ODBC
Libraries

The ODBC back-end requires access to an ODBC driver manager as well as ODBC drivers for the un-
derlying database server. CLSQL has been tested with unixODBC ODBC Driver Manager as well as Mi-
crosoft's ODBC manager. These driver managers have been tested with the psqlODBC
[http://odbc.postgresql.org] driver for PostgreSQL and the MyODBC
[http://www.mysql.com/products/connector/odbc/] driver for MySQL.

Initialization
Use

Database Back-ends

63

http://odbc.postgresql.org
http://www.mysql.com/products/connector/odbc/

(asdf:operate 'asdf:load-op 'clsql-odbc)

to load the ODBC back-end. The database type for the ODBC back-end is :odbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

AODBC
Libraries

The AODBC back-end requires access to the ODBC interface of AllegroCL named DBI. This interface
is not available in the trial version of AllegroCL

Initialization
Use

(require 'aodbc-v2)
(asdf:operate 'asdf:load-op 'clsql-aodbc)

to load the AODBC back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source name.

Database Back-ends

64

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

SQLite
Libraries

The SQLite back-end requires the SQLite shared library file. Its default file name is /
usr/lib/libsqlite.so.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-sqlite)

to load the SQLite back-end. The database type for the SQLite back-end is :sqlite.

Connection Specification

Syntax of connection-spec

(filename)

Description of connection-spec

filename String representing the filename of the SQLite database file.

Oracle
Libraries

The Oracle back-end requires the Oracle OCI client library. (libclntsh.so). The location of this lib-
rary is specified relative to the ORACLE_HOME value in the operating system environment. CLSQL
has tested sucessfully using the client library from Oracle 9i and Oracle 10g server installations as well
as Oracle's 10g Instant Client library.

Initialization
Use

(asdf:operate 'asdf:load-op 'clsql-oracle)

to load the Oracle back-end. The database type for the Oracle back-end is :oracle.

Database Back-ends

65

Connection Specification

Syntax of connection-spec

(global-name user password)

Description of connection-spec

global-name String representing the global name of the Orace database. This is looked up through
the tnsnames.ora file.

user String representing the user name to use for authentication.

password String representing the password to use for authentication..

Database Back-ends

66

Glossary
Note

This glossary is still very thinly populated, and not all references in the main text have been
properly linked and coordinated with this glossary. This will hopefully change in future revi-
sions.

Active database See Database Object.

Connection See Database Object.

Closed Database
An object of type closed-database. This is in contrast to the terms
connection, database, active database or database object which don't
include objects which are closed database.

database See Database Object.

Foreign Function Interface
(FFI) An interface from Common Lisp to a external library which contains

compiled functions written in other programming languages, typic-
ally C.

Database Object
An object of type database.

Field Types Specifier
A value that specifies the type of each field in a query.

Structured Query Language
(SQL) An ANSI standard language for storing and retrieving data in a rela-

tional database.

SQL Expression
Either a string containing a valid SQL statement, or an object of type
sql-expression.

Note

This has not been implemented yet, so only strings are valid SQL expressions for the moment.

67

	CLSQL Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	History
	Prerequisites
	ASDF
	UFFI
	MD5
	Supported Common Lisp Implementation
	Supported SQL Implementation

	Installation
	Ensure ASDF is loaded
	Build C helper libraries
	Microsoft Windows
	UNIX

	Load UFFI
	Load MD5 module
	Load CLSQL modules
	Run test suite

	Chapter 2. CommonSQL Tutorial
	Introduction
	Data Modeling with CLSQL
	Class Relations
	Object Creation
	Finding Objects
	Deleting Objects
	Conclusion

	CLSQL
	SQL-CONDITION
	SQL-ERROR
	SQL-WARNING
	CLSQL-USER-ERROR
	SQL-CONNECTION-ERROR
	SQL-DATABASE-ERROR
	DEFAULT-DATABASE-TYPE
	INITIALIZED-DATABASE-TYPES
	INITIALIZE-DATABASE-TYPE
	CONNECT-IF-EXISTS
	CONNECTED-DATABASES
	DEFAULT-DATABASE
	DATABASE
	CLOSED-DATABASE
	DATABASE-NAME
	FIND-DATABASE
	CONNECT
	DISCONNECT
	DISCONNECT-POOLED
	CREATE-DATABASE
	DESTROY-DATABASE
	PROBE-DATABASE
	DATABASE-NAME-FROM-SPEC
	EXECUTE-COMMAND
	QUERY
	MAP-QUERY
	DO-QUERY
	LOOP-FOR-AS-TUPLES

	CLSQL-SYS
	DATABASE-INITIALIZE-DATABASE-TYPE

	Appendix A. Database Back-ends
	PostgreSQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	PostgreSQL Socket
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	MySQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	ODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	AODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	SQLite
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Oracle
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Glossary

