CLSQL Users' Guide

Kevin M. Rosenberg
Marcus T. Pearce
Pierre R. Mai
onShore Development, Inc.

CLSQL Users' Guide

by Kevin M. Rosenberg, Marcus T. Pearce, Pierre R. Mai, and onShore Development, Inc.

¢ CLSQL is Copyright © 2002-2004 by Kevin M. Rosenberg, Copyright © 1999-2001 by Pierre R. Mai, and Copyright ©
1999-2003 onShore Devel opment, Inc.

Allegro CL® is aregistered trademark of Franz Inc.
« Common SQL, LispWorks are trademarks or registered trademarks of LispwWorks Ltd.

¢ Oracle® isaregistered trademark of Oracle Inc.

Microsoft Windows® is aregistered trademark of Microsoft Inc.

« Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents

PrE aCE .. e viii
O 1 1o o [N 1o o 9
PUINDOSE .. et 9
LS 0] Y/ 9
1= 1= 0 (811 =S 9
A D e 9

L0 9

L R PR 9
Supported Common Lisp Implementationcccooeeiiiiiiiiiiiic e, 10
Supported SQL IMplementalionoovieiieiiie e 10

FaES = = o) o PSP 10
Ensure ASDF iS10a0edcooovuiiiiiiiii e 10

Build C helper [IDrariesoooouuuiiiii e 10

WX (o 0 | o 1 PSP 11

AdA MDS PAN v 11

Add CLSQL pathand load moduleccuiiiiiiiii e 11

Run test suite (OPtioNal)ivee i 11

2. CoMMONSQL TULOMAl ...vvniitiiiieeei et e e e e e et e e eeans 13
Fp 10 oo (8 i1 To o E PP PTNPRN 13
Data Modeling With CLSQLcouuiiiiiiiiiee e e e 13
ClaSS REIGLIONS ...t et e e eaes 15
L@ o= o A O = 1 o o P 17
0T 1o @] o= ox P 19
D= 1= (] o 1 o] = £ 20
(00 3To: 1115 o] o IR PSP 20
I. Connection and INItialiSAONc.uiiiiiiiiii e e e eaaaas 21
DATABASE ..o e 22
FCONNECT AT F-EXI ST S ittt e s 23
*DEFAULT-DATABASE® ..o 24
*DEFAULT-DATABASE-TYPEY ...ttt 26
*INITIALIZED-DATABASE-TYPES: ..o 27
0@ 1\ P 28
CONNECTED-DATABASES ...ttt e e e e e 31
DATABASE-NAME ...ttt e et e e e et e e e eabe e eeees 33
DATABASE-NAME-FROM-SPECcciiiiiiiiiiiiiiii e 35
DATABASE-TY PE oo e e 37
D11 00 |\ N | = 39
DISCONNECT-POOLEDcciiiiieiiiiieee et e e e e e e et a e e eat e e e eananaeaees 41
FIND-DATABASE ..o e et e e b e aees 42
INITIALIZE-DATABASE-TYPE ..ottt 44
RECONNECT ..ottt et e e e et e e e e et e e e eeta e e e eateaaaaees 46
ST AT U S i ettt aaan 48
CREATE-DAT ABASE ... e e e e 50
DESTROY -DATABASE ..ottt e et eaaes 52
PROBE-DATABASE ...ttt e et e e et e e e eabe e eaees 54
LIST-DATABASES ...ttt e et e et a e e e et e e e aete e aaees 55
WITH-DATABASE ..ottt et e e 57
WITH-DEFAULT-DATABASE ..ottt 59
[1. The Symbolic SQL SYNEBXcceutneiiiiieee et e e 61
ENABLE-SQL-READER-SYNTAX iitiiiiiiiiiiie ittt e e e et e e et e e eanenaeaens 62
DISABLE-SQL-READER-SYNTAX otiiiiiiiiiiiee ittt e e e et eaeannaeaens 63
LOCALLY-ENABLE-SQL-READER-SYNTAX .ttiiiiiiiiiieeiiiiie e et 64
LOCALLY-DISABLE-SQL-READER-SYNTAX ..ttt 66

iv

CLSQL Users Guide

RESTORE-SQL-READER-SYNTAX-STATE ..ottt 68
S PP 70
SOQL-EXPRESSION ...ttt e e e e e e e e e e e e e 72
SQL-OPERATION ..iiiiiiiiiet ittt e e e e e e et e e et e e e et e e e et e e eanans 74
SQL-OPERATORuiiiiiiiiet ittt ettt e e e e et e e et e e e et e e e e et e e aaaan e eeeenns 76
I11. Functional Data Definition Language (FDDL)oiviiiiiiici e 79
CREATE-TABLE ..oeioiii et e et e e et e eeenans 80
DROP-TABLE ...ttt ettt e et e e e et e e e eaba e eees 82
LIST-TABLES ... e e 84
TABLE-EXISTS P ..t 86
L0 N I Y P 88
DROP-VIEW ..ottt e et e e et e e e e et e e e eateaaeeees 90
LIST-VIEWS oottt e et e et e e e e et e e e eabeneeeees 92
VIEW-EXISTS P oo 94
CREATE-INDEX o e e e e e e e e e 96
DROP-INDEX .ottt e e e e e e e e e et e e e e et e e e ear e eaaa 98
LIST-INDEXES ..ottt e e e e e e et e e e eae s 100
INDEX-EXISTS P ..ttt e et e e e et e e e e aan e 102
ATTRIBUTE-TYPE ..ottt e e s 104
LIST-ATTRIBUTE-TYPES ...ttt e 106
LIST-ATTRIBUTES ...t e e e e e e e e aaanas 108
CREATE-SEQUENCEcciiiiiiieiiie et e e e et e e e et e e e eaaanaeaees 110
DROP-SEQUENCEciitiiiiiiiiiie ettt e e e e e et e e e et e e e eaan s 112
LIST-SEQUENGCEScciitiiiiiiiiie ettt e e e e et e e e et eeeeaen s 114
SEQUENCE-EXISTSP e 116
SEQUENCE-LAST .ottt e et e e et eeeebanaeeees 118
SEQUENCE-NEX T .ot e e e e e e e e e e e ae e en 120
SET-SEQUENCE-POSITIONuiiiiiiiiieiiiiiee et e e e e e e e et e e e st e e e eaaanaeaees 122
TRUNCATE-DATABASEoiiiii e 124
IV. Functional Data Manipulation Language (FDML)coouiiiiiiiiiiiiieceeeeee e 126
*CACHE-TABLE-QUERIES-DEFAULT™ ..ottt 127
CACHE-TABLE-QUERIEScciiiiiiiiiiii e 128
INSERT-RECORDSoiiiiiie e e e et e e e e aaanas 130
UPDATE-RECORDS ..ottt e et e e e e e et e e e e aan e 132
DELETE-RECORDSccttiiiiiiiiii ettt e et e e et e e e e et e e e et aeeaeaan s 134
EXECUTE-COMMANDuiiiiiiiiieeeie ettt e e e e et e e e e 136
QUERY ittt e et a e ae 138
PRINT-QUERY ..ttt e e et e e e e aan s 141
SE L E T i 143
DO-QUERY ittt 147
[0 PP 149
MAP-QUERY ...ttt e et e e e e 152
V. TransaCtion HaNAIiNGccouiiiiiiii e e e e e e 155
START-TRANSACTION ...ttt eaaa e e e 156
L0 117/ N 158
ROLLBACK .ottt e e e e e e e e et e e e et e e e e eran s 160
IN-TRANSACTION-P ... e e e e e e e a e 162
ADD-TRANSACTION-COMMIT-HOOKuiiiiiiiiieiiiiiie et 164
ADD-TRANSACTION-ROLLBACK-HOOKccctuiiiiiiiiiieiiiiiieeeeiee e 166
SET-AUTOCOMMIT L.ttt et e et e eeaaa e eees 168
WITH-TRANSACTION ..ot e e e e e e e 170
V1. Object Oriented Data Definition Language (OODDL)ccovvvviviiiiniiiiiiiieeeeiieeeeeenn 172
STANDARD-DB-OBJIECT ...cottiiiiiiiiieeiit et e et e et e e et eeeaaanaeaees 173
DEFAULT-STRING-LENGTHoiiiiiiii et 174
CREATE-VIEW-FROM-CLASS ...ttt e 175
DEF-VIEW-CLASS ... ittt e e et e e e 177
DROP-VIEW-FROM-CLASS ...ttt et e e e aaanas 183
LIST-CLASSES ..ottt e e et e e s 185

CLSQL Users Guide

V1. Object Oriented Data Manipulation Language (OODML)ovvvieviiiieiiieecieeeieeeaenn, 187
FDB-AUTO-SYNCH ittt e eeeaeas 188
FDEFAULT-CACHING® ..o 190
DEFAULT-UPDATE-OBJECTS-MAX-LEN ... i, 191
INSTANCE-REFRESHEDcccviiiiiiiiiiiecii e e et e et e e e 192
DELETE-INSTANCE-RECORDSuiiiiiiiiieiiiii et e et e e 194
UPDATE-RECORDS-FROM-INSTANCEccoiitiiiiiiiiiieeeeie e 196
UPDATE-RECORD-FROM-SLOT ...oottiiiiiiiiineceeiiie et 198
UPDATE-RECORD-FROM-SLOTS ...ttt e e aa e 200
UPDATE-INSTANCE-FROM-RECORDSccoctiiiiiiiiiiieeeiiie e 202
UPDATE-SLOT-FROM-RECORDuiiiiiiiiieeiiiiieeeeiiie e et e et e e e e aain s 204
UPDATE-OBJIECTS-JOINS ...ttt ettt e e e e et e e e e 206

A A LIS © I L@ N = o (o (1 o 208
START-SQL-RECORDINGuiiiiiiiiieiiiiiie et eeeia e 209
STOP-SQL-RECORDINGttt e e e e e e e e e e 211
SQL-RECORDING-P ..ottt e e e e et eeeaaaaeaees 213
SQL-STREAM ..ttt e e e e et e e a e aaa 215
ADD-SQL-STREAM ..ottt e e e e e e e s 217
DELETE-SQL-STREAM ..ouuiiiiiiiiieeeei ettt e e 219
LIST-SQL-STREAMS ... it e et e e e 221

[X. CLSQL CoNition SYSLEM ...covuiiiiiii et 223
BACKEND-WARNING-BEHAVIORcoiiiiiiiiiii e 224
SQL-CONDITION ...uiiiitiiieett et e e e et e e e et e e e e et e e e aat e e e earenaeaees 225
SQL-ERROR ... ittt ettt e e e et a e aae 226
SQL-WARNING ..ottt e et e e et e e e eetn e eeees 227
SQL-DATABASE-WARNINGciiiiiiiiiiiiiieiiii e 228
SQL-USER-ERRORo e e e e e e e 229
SQL-DATABASE-ERRORuuiiiiiiiiieiiiii ettt a e e e et eeeaaanaeaees 230
SQL-CONNECTION-ERRORcciitiiiiiiiiiiie et et eeie e e e et e e et eeeaannaeaees 231
SQL-DATABASE-DATA-ERRORcoiiiiiiiiiiiiiiieeeie e 232
SQL-TEMPORARY -ERROR ... ittt 233
SQL-TIMEOUT-ERRORcccttiiiiiiiiieiiii ettt e et e e i e e e 234
SQL-FATAL-ERROR ..ot e e e e e e e 235

D [e PP 236
Alphabetical Index for package CLSQLccuuniiiiiiiiiieeie e e 237

A. Database BaCk-enaScc.uiiiiiiii e 239
How CLSQL finds and loads foreign librariesccooeeviiiiiiiiicce e, 239
L0 =5 239

[o 1= 239
INIETAIIZATION «.ee e e e 239
ConNnection SPECITICATIONccuu i 239
N OLES ..t 240
POStOrESQL SOCKELiitiiiii e e e e e e e e e 240
LIDrAITES e 240
T TN = o 240
CoNNECLioN SPECITICALTONccevveieieiii e 240
N OEES et eans 241
Y | ORI 241
LB e 241
INITAlTZAITON ..t 241
ConNNECtion SPECITICALTONccovuniiiiiii e 242
N OEES et 242
L@]3] 1 PSP 243
LIDIAITES ... e 243
INITAlTZAEION .o 243
Connection SPECIfICAtiONccuuiiiiiii e 243
N O S .t 243
AODBC ..ot 243

Vi

CLSQL Users Guide

LB e 243
INITAlTZAETON ..o 244
ConNNECtion SPECITICALTIONccouuiiiiiii e 244

N O S ettt 244
SOQLIEVEISION 2 ...t e e e e e e e e et e et e et e e anaas 244
LIDIAITES .. e 244
INITAlTZAEION ..ot 244
ConNeCtion SPECITICAIONcccvuiiiii i 245
NS ..o 245
SQLITEVEISION 3 ...ttt e e e aaas 245
LIDIAITES ... et 245
INITTAIIZATON «..eeeee e 245
ConNECtion SPECITICAIONcivve e 246
(010 TP TPPT PP 246

(O] 1= o 1= PP PTRPPSPPN 246
[T o = =T 246
LIDIary VEISIONSccenieiiieii ettt ettt e et a e e eanaas 247
INITTAIIZATON ... e 247
ConNECtion SPECITICAIONcivve e 247
N[00 TP TPPT PP 247
GlOSSANY ettt e a e 249

Vii

Preface

This guide provides reference to the features of CLSQL. The first chapter provides an introduction to
CLSQL and ingtallation instructions. The reference sections document all user accessible symbols with
examples of usage. Thereisaglossary of commonly used terms with their definitions.

viii

Chapter 1. Introduction
Purpose

CLSQL isa Common Lisp interface to SQL databases. A number of Common Lisp implementations and
SQL databases are supported. The general structure of CLSQL is based on the CommonSQL package by
LispWorks Ltd.

History

The CLSQL project was started by Kevin M. Rosenberg in 2001 to support SQL access on multiple

Common Lisp implementations using the UFFI library. The initial code was based substantially on

Pierre R. Mai's excellent Mai QL package. In late 2003, the UncommonSQL library was orphaned by

its author, onShore Development, Inc. In April 2004, Marcus Pearce ported the UncommonSQL library

to CLSQL. The UncommonSQL library provides a CommonSQL-compatible API for CLSQL.

The main changes from Mai SQL and UncommonSQL are:

* Port from the CMUCL FFI to UFFI which provide compatibility with the major Common Lisp imple-
mentations.

» Optimized loading of integer and floating-point fields.

» Additional database backends. ODBC, AODBC, SQL ite version 2 and SQL ite version 3.

» A compatibility layer for CMUCL specific code.

» Much improved robustness for the MySQL back-end along with version 4 client library support.

» Improved library loading and installation documentation.

» Improved packages and symbol export.

» Pooled connections.

* Integrated transaction support for the classic MaiSQL iteration macros.

Prerequisites

ASDF

UFFI

MD5

CLSQL uses ASDF to compile and load its components. ASDF is included in the CCLAN [ht-
tp://cclan.sourceforge.net] collection.

CLSQL uses UFFI [http://uffi.n9.com/] as a Foreign Function Interface (FFI) to support multiple ANSI
Common Lisp implementations.

http://cclan.sourceforge.net
http://cclan.sourceforge.net
http://cclan.sourceforge.net
http://uffi.b9.com/
http://uffi.b9.com/

Introduction

CLSQL's postgresql-socket interface uses Pierre Mai's md5 [http://files.b9.com/md5/] module.

Supported Common Lisp Implementation

The implementations that support CLSQL is governed by the supported implementations of UFFI. The
following implementations are supported:

» AllegroCL v6.2 and 7.0b on Debian Linux x86 & x86 64 & PowerPC, FreeBSD 4.5, and Microsoft
Windows XP.

» Lispworksv4.3 on Debian Linux and Microsoft Windows XP.

* CMUCL 18eon Debian Linux, FreeBSD 4.5, and Solaris 2.8.

» SBCL 0.8.5 on Debian Linux.

* SCL 1.1.1 on Debian Linux.

* OpenMCL 0.14 on Debian Linux PowerPC.

Supported SQL Implementation

Currently, CLSQL supports the following databases:

« MySQL v3.23.51 and v4.0.18.

» PostgreSQL v7.4 with both direct APl and TCP socket connections.
» SQLiteversion 2.

» SQLiteversion 3.

» Direct ODBC interface.

» Oracle OCI.

» Allegro's DB interface (AODBC).

Installation
Ensure ASDF is loaded

Simply load thefileasdf . | i sp.

(load "asdf.lisp")

Build C helper libraries

CLSQL uses functions that require 64-bit integer parameters and return values. The FFI in most CLSQL

10

http://files.b9.com/md5/
http://files.b9.com/md5/

Introduction

implementations do not support 64-bit integers. Thus, C helper libraries are required to break these
64-bit integers into two compatible 32-bit integers. The helper libraries reside in the directories uf f i
and db- nysql .

Microsoft Windows

Files named Makef i | e. nsvc are supplied for building the libraries under Microsoft Windows. Since
Microsoft Windows does not come with that compiler, compiled DLL and LIB library files are supplied
with CLSQL.

UNIX

Files named Makef i | e are supplied for building the libraries under UNIX. Loading the . asd files
automatically invokes make when necessary. So, manual building of the helper libraries is not necessary
on most UNIX systems. However, the location of the MySQL library files and include files may need to
adjusted in db- mysql / Makef i | e on non-Debian systems.

Add UFFI path

Unzip or untar the UFFI distribution which creates a directory for the UFFI files. Add that directory to
ASDF's asdf: *central -regi stry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the UFFI files reside in the /
usr/share/li sp/uffi/ directory.

(push #P"/usr/share/lisp/uffi/" asdf:*central-registry*)

Add MD5 path

If you plan to use the clsgl-postgresql-socket interface, you must load the md5 module. Unzip or untar
the cl-md5 distribution, which creates a directory for the cl-md5 files. Add that directory to ASDF's
asdf: *central -regi stry*. You can do that by pushing the pathname of the directory onto this
variable. The following example code assumes the cl-md5 files reside in the /
usr/share/lisp/cl-nd5/ directory.

(push #P"/usr/share/lisp/cl-nmd5/" asdf:*central -regi stry*)

Add CLSQL path and load module

Unzip or untar the CLSQL distribution which creates a directory for the CLSQL files. Add that directory
to ASDFsasdf: *central - regi stry*. You can do that by pushing the pathname of the directory
onto this variable. The following example code assumes the CLSQL files reside in the /
usr/share/lisp/clsql/ directory. You need toload the clsgl system.

(push #P"/usr/share/lisp/clsqgl/" asdf:*central -registry*)
(asdf : operate 'asdf:load-op 'clsql) ; main CLSQL package

Run test suite (optional)

11

Introduction

The test suite can be executed using the ASDF test-op operator. If CLSQL has not been loaded with
asdf:load-op, the asdf:test-op operator will automatically load CLSQL. A configuration file named
.cl sqgl -test. confi g must becreated in your home directory. There are instructures on the format
of that fileinthet est s/ README. After creating . cl sql -t est. confi g, you can run the test suite
with ASDF:

(asdf:operate 'asdf:test-op 'clsql)

12

Chapter 2. CommonSQL Tutorial

Based on the UncommonSQL Tutorial

Introduction

The goal of this tutorial isto guide a new developer thru the process of creating a set of CLSQL classes
providing a Object-Oriented interface to persistent data stored in an SQL database. We will assume that
the reader is familiar with how SQL works, how relations (tables) should be structured, and has created
at least one SQL application previously. We will also assume a minor level of experience with Common

Lisp.

CLSQL provides two different interfaces to SQL databases, a Functional interface, and an Object-Ori-
ented interface. The Functional interface consists of a specia syntax for embedded SQL expressionsin
Lisp, and provides lisp functions for SQL operations like SELECT and UPDATE. The object-oriented
interface provides away for mapping Common Lisp Objects System (CLOS) objects into databases and
includes functions for inserting new objects, querying objects, and removing objects. Most applications
will use a combination of the two.

CLSQL is based on the CommonSQL package from LispWorks Ltd, so the documentation that Lisp-
Works makes available online is useful for CLSQL as well. It is suggested that developers new to
CLSQL read their documentation as well, as any differences between CommonSQL and CLSQL are
minor. LispWorks makes the following documents available:

 Lispworks User Guide - The CommonSQL Package [ht-
tp://www.lispworks.com/documentati on/lw44/L WUG/html/lwuser-204.htm]

 Lispworks Reference Manual - The L Package [ht-
tp://www.lispworks.com/documentation/lw44/L WRM/html/lwref-424.htm]

e CommonSQL Tutorial by Nick Levine [ht-
tp://www.lispworks.com/documentati on/sgl -tutorial /index.html]

Data Modeling with CLSQL

Before we can creaiei query and manipulate CLSQL objects, we need to define our data model as noted
by Philip Greenspun

When data modeling, you are telling the relational database management system (RDBMS) the follow-
ing:

What elements of the data you will store.
» How large each element can be.
» What kind of information each element can contain.

» What elements may be left blank.

Which elements are constrained to a fixed range.

1 Philip Greenspun's "SQL For Web Nerds" - Data Modeling [http://philip.greenspun.com/sgl/data-modeling.html]
13

http://www.lispworks.com/documentation/lw44/LWUG/html/lwuser-204.htm
http://www.lispworks.com/documentation/lw44/LWUG/html/lwuser-204.htm
http://www.lispworks.com/documentation/lw44/LWUG/html/lwuser-204.htm
http://www.lispworks.com/documentation/lw44/LWRM/html/lwref-424.htm
http://www.lispworks.com/documentation/lw44/LWRM/html/lwref-424.htm
http://www.lispworks.com/documentation/lw44/LWRM/html/lwref-424.htm
http://www.lispworks.com/documentation/sql-tutorial/index.html
http://www.lispworks.com/documentation/sql-tutorial/index.html
http://www.lispworks.com/documentation/sql-tutorial/index.html
http://philip.greenspun.com/sql/data-modeling.html
http://philip.greenspun.com/sql/data-modeling.html

CommonSQL Tutorial

» Whether and how various tables are to be linked.

With SQL database one would do this by defining a set of relations, or tables, followed by a set of quer-
ies for joining the tables together in order to construct complex records. However, with CLSQL we do
this by defining a set of CLOS classes, specifying how they will be turned into tables, and how they can
be joined to one another via relations between their attributes. The SQL tables, as well as the queries for
joining them together are created for us automatically, saving us from dealing with some of the tedium

of SQL.

Let us start with a simple example of two SQL tables, and the relations between them.

CREATE TABLE EMPLOYEE (enplid NOT NULL nunber (38),
first_name NOT NULL varchar2(30),
| ast_nane NOT NULL varchar2(30),
emai | var char 2(100),
conpanyid NOT NULL nunber (38),

managerid nunber (38))

CREATE TABLE COWMPANY (conpanyid NOT NULL nunber (38),
name NOT NULL var char2(100),
presidentid NOT NULL nunber (38))

Thisis of course the canonical SQL tutorial example, "The Org Chart".

In CLSQL, we would have two "view classes' (a fancy word for a class mapped into a database). They
would be defined as follows:

(cl sql : def -vi ewcl ass enpl oyee ()
((emplid
:db-ki nd : key
:db-constraints :not-nul
:type integer
sinitarg :enplid)
(first-name
:accessor first-name
:type (string 30)
cinitarg :first-name)
(1 ast-nane
:accessor |ast-nane
:type (string 30)
cinitarg :last-nane)
(emai |
:accessor enpl oyee- enai
:type (string 100)
:nulls-ok t
sinitarg :emil)
(conmpanyi d
:type integer
cinitarg :conpanyid)
(managerid
:type integer
:nulls-ok t
cinitarg :managerid))
(: base-tabl e enmpl oyee))

(cl sql : def -vi ewcl ass company ()
((conpanyi d
:db-ki nd : key
:db-constraints :not-nul

14

CommonSQL Tutorial

:type integer

sinitarg :companyid)
(name

:type (string 100)

sinitarg :nane)
(presidentid

:type integer

cinitarg :presidentid))
(: base-tabl e conpany))

The DEF- VI EW CLASS macro isjust like the norma CLOS DEFCLASS macro, except that it handles
several dlot options that DEFCLASS doesn't. These slot options have to do with the mapping of the slot
into the database. We only use afew of the dlot options in the above example, but there are severa oth-
ers.

 :column - The name of the SQL column this dlot is stored in. Defaults to the slot name. If the slot
nameisnot avalid SQL identifier, it is escaped, so foo-bar becomesfoo_bar.

:db-kind - The kind of database mapping which is performed for this dot. :base indicates the slot
maps to an ordinary column of the database view. :key indicates that this slot corresponds to part of
the unique keys for this view, :join indicates a join slot representing a relation to another view and
:virtual indicates that this slot is an ordinary CLOS slot. Defaults to :base.

 :db-reader - If a string, then when reading values from the database, the string will be used for a
format string, with the only value being the value from the database. The resulting string will be used
as the dot value. If a function then it will take one argument, the value from the database, and return
the value that should be put into the slot.

* :db-writer - If a string, then when reading values from the slot for the database, the string will be used
for aformat string, with the only value being the value of the slot. The resulting string will be used as
the column value in the database. If a function then it will take one argument, the value of the dlot,
and return the value that should be put into the database.

* :db-type - A string which will be used as the type specifier for this slots column definition in the data-
base.

 :void-value- The Lisp valueto returnif thefieldisNULL. The defaultisNI L.

:db-info - A join specification.

In our example each table as a primary key attribute, which is required to be unique. We indicate that a
dot is part of the primary key (CLSQL supports multi-field primary keys) by specifying the :db-kind key
dot option.

The SQL type of a slot when it is mapped into the database is determined by the :type slot option. The
argument for the :type option is a Common Lisp datatype. The CLSQL framework will determine the ap-
propriate mapping depending on the database system the table is being created in. If we really wanted to
determine what SQL type was used for a dot, we could specify a :db-type option like "NUMBER(38)"
and we would be guaranteed that the slot would be stored in the database asa NUMBER(38). Thisis not
recomended because it could makes your view class unportable across database systems.

DEF- VI EW CLASS also supports some class options, like :base-table. The :base-table option specifies
what the table name for the view class will be when it is mapped into the database.

Class Relations

15

CommonSQL Tutorial

In an SQL only application, the EMPLOY EE and COMPANY tables can be queried to determine things
like, "Who is Vladimir's manager?’, "What company does Josef work for?', and "What employees work
for Widgets Inc.". Thisis done by joining tables with an SQL query.

Who works for Widgets Inc.?
SELECT first_nane, |ast_name FROM enpl oyee, conpany

VWHERE enpl oyee. conmpanyi d = conpany. conpanyi d
AND conpany. conpany_name = "Wdgets Inc."

Who is Vladimir's manager?

SELECT nmanagerid FROM enpl oyee
WHERE enpl oyee.first_name = "Vliadimr'
AND enpl oyee. | ast _nane = "Lenin"

What company does Josef work for?

SELECT conpany_nane FROM conpany, enpl oyee
WHERE enpl oyee. first_name = "Josef"
AND enpl oyee. | ast-nanme = "Stalin"
AND enpl oyee. conpanyi d conpany. conpanyi d

With CLSQL however we do not need to write out such queries because our view classes can maintain
the relations between employees and companies, and employees to their managers for us. We can then
access these relations like we would any other attribute of an employee or company object. In order to
do this we define some join slots for our view classes.

What company does an employee work for? If we add the following slot definition to the employee class
we can then ask for it's COMPANY dlot and get the appropriate result.

;7 In the enpl oyee slot |ist
(company
:accessor enpl oyee-conpany
:db-kind :join
:db-info (:join-class conpany
: hone- key conpanyi d
. forei gn-key conpanyid
:set nil))

Who are the employees of a given company? And who is the president of it? We add the following slot
definition to the company view class and we can then ask for it's EMPLOYEES slot and get the right
result.

;; In the conpany slot |ist
(enpl oyees
. reader conpany-enpl oyees
:db-kind :join
:db-info (:join-class enployee
: hone- key conpanyi d
: forei gn-key conpanyid
iset t))

16

CommonSQL Tutorial

(president
: reader president
:db-kind :join
:db-info (:join-class enpl oyee
: hone- key presidentid
.foreign-key enplid
:set nil))

And lastly, to define the relation between an employee and their manager:

;; In the enpl oyee slot |ist
(manager

:accessor enpl oyee- manager

:db-kind :join

:db-info (:join-class enployee
: hone- key manageri d
:foreign-key enplid
cset nil))

CLSQL join slots can represent one-to-one, one-to-many, and many-to-many relations. Above we only
have one-to-one and one-to-many relations, later we will explain how to model many-to-many relations.
First, let's go over the dlot definitions and the avail able options.

In order for adlot to be ajoin, we must specify that it's :db-kind :join, as opposed to :base or :key. Once
we do that, we still need to tell CLSQL how to create the join statements for the relation. Thisis what the
.db-info option does. It isalist of keywords and values. The available keywords are:

 :join-class - The view class to which we want to join. It can be another view class, or the same view
class as our object.

* :home-key - The dot(s) in the immediate object whose value will be compared to the foreign-key
dlot(s) in the join-class in order to join the two tables. It can be asingle slot-name, or it can be alist of
slot names.

+ :foreign-key - The dot(s) in the join-class which will be compared to the value(s) of the home-key.

:set - A boolean which if false, indicates that this is a one-to-one relation, only one object will be re-
turned. If true, than this is a one-to-many relation, a list of objects will be returned when we ask for
this slots value.

There are other :join-info options available in CLSQL, but we will save those till we get to the many-
to-many relation examples.

Object Creation

Now that we have our model laid out, we should create some object. Let us assume that we have a data-
base connect set up already. We first need to create our tables in the database:

Note: the file exanpl es/ cl sql -tutorial . lisp contains view class definitions which you can
load into your list at this point in order to play along at home.

(cl'sqgl:create-viewfromclass 'enployee)
(clsqgl:create-viewfromclass 'conmpany)

17

CommonSQL Tutorial

Then we will create our objects. We create them just like you would any other CLOS object:

(defvar conpanyl (nake-instance 'conmpany
;conpanyid 1
ipresidentid 1
:nane "Wdgets Inc."))

(defvar enpl oyeel (meke-instance 'enpl oyee
cemplid 1
:first-name "VMladimr"
:last-nane "Lenin"
emai |l "lenin@oviet.org
.conpanyid 1))

(defvar enpl oyee2 (nmke-instance 'enpl oyee
cemplid 2
:first-name "Josef”
:last-nane "Stalin”
cemai|l "stalin@oviet.org"
:conpanyid 1
:managerid 1))

In order to insert an objects into the database we use the UPDATE- RECORDS- FROM | NSTANCE func-
tion asfollows:

(cl sqgl : updat e-records-frominstance enpl oyeel)
(cl sqgl : updat e-records-frominstance enpl oyee2)
(cl sqgl :updat e-records-frominstance conpanyl)

After you make any changes to an object, you have to specifically tell CLSQL to update the SQL data-
base. The UPDATE- RECORDS- FROM | NSTANCE method will write all of the changes you have made
to the object into the database.

Since CLSQL objects are just normal CLOS objects, we can manipulate their dots just like any other ob-
ject. For instance, let's say that Lenin changes his email because he was getting too much spam from the
German Socialists.

;; Print Lenin's current email address, change it and save it to the
;; database. Get a new object representing Lenin fromthe database
;; and print the enail

;; This lets us use the functional CLSQ interface with [] syntax
(clsqgl:locally-enabl e-sql -reader-syntax)

(format t "The emmil address of ~A ~Ais ~A"
(first-nanme enpl oyeel)
(last-name enpl oyeel)
(enpl oyee-emmi | enpl oyeel))

(setf (enployee-email enployeel) "I enin-nospam@oviets.org")

;7 Update the database
(cl sqgl :updat e-records-frominstance enpl oyeel)

(let ((newlenin (car (clsqgl:select 'enployee
:where [= [slot-value 'enployee 'enplid] 1]))))
(format t "H's new email 1s ~A"
(enpl oyee-emmi |l newlenin)))

18

CommonSQL Tutorial

Everything except for the last LET expression is already familiar to us by now. To understand the call to
CLSQL: SELECT we need to discuss the Functional SQL interface and it's integration with the Object
Oriented interface of CLSQL.

Finding Objects

Now that we have our abjects in the database, how do we get them out when we need to work with
them? CLSQL provides afunctional interface to SQL, which consists of a special Lisp reader macro and
some functions. The special syntax allows us to embed SQL in lisp expressions, and lisp expressions in
SQL, with ease.

Once we have turned on the syntax with the expression:
(clsqgl:locally-enabl e-sql -reader-synt ax)

We can start entering fragments of SQL into our lisp reader. We will get back objects which represent
the lisp expressions. These objects will later be compiled into SQL expressions that are optimized for
the database backed we are connected to. This means that we have a database independent SQL syntax.
Here are some examples:

;; an attribute or table nane
[foo] => #<CLSQL- SYS:: SQL- | DENT- ATTRI BUTE FOO>

;; a attribute identifier with table qualifier
[foo bar] => #<CLSQL- SYS:: SQL- | DENT- ATTRI BUTE FOO. BAR>

;; a attribute identifier with table qualifier
[= "Lenin" [first_nane]] =>
#<CLSQL- SYS: : SQL- RELATI ONAL- EXP (' Lenin' = FI RST_NAME) >

[<[enmplid] 3] =>
#<CLSQL- SYS: : SQL- RELATI ONAL- EXP (EMPLID < 3)>

[and [< [enplid] 2] [= [first_nanme] "Lenin"]] =>
#<CLSQL- SYS: : SQL- RELATI ONAL- EXP ((EMPLID < 2) AND
(FIRST_NAME = 'Lenin'))>

;; If we want to reference a slot in an object we can us the
;7 SLOT- VALUE sqgl extension
[= [slot-value 'enployee "enplid] 1] =>

#<CLSQL- SYS: : SQL- RELATI ONAL- EXP (EMPLOYEE. EMPLID = 1) >

[= [slot-val ue 'enpl oyee 'enplid]
[slot-val ue 'conpany 'presidentid]] =>
#<CLSQL- SYS: : SQL- RELATI ONAL- EXP (EMPLOYEE. EMPLI D

COVPANY. PRESI DENTI D) >

The SLOT- VALUE operator is important because it let's us query objects in a way that is robust to any
changes in the object->table mapping, like column name changes, or table name changes. So when you
are querying objects, be sure to use the SLOT- VALUE SQL extension.

Since we can now formulate SQL relational expression which can be used as qualifiers, like we put after
the WHERE keyword in SQL statements, we can start querying our objects. CLSQL provides a function
SELECT which can return use complete objects from the database which conform to a qualifier, can be
sorted, and various other SQL operations.

19

CommonSQL Tutorial

Thefirst argument to SELECT is aclass name. it also has a set of keyword arguments which are covered
in the documentation. For now we will concern ourselves only with the :where keyword. Select returns a
list of objects, or nil if it can't find any. It's important to remember that it always returns alist, so even if
you are expecting only one result, you should remember to extract it from the list you get from SE-
LECT.

; all enpl oyees
cl sqgl : sel ect ' enpl oyee)
; all conpanies

cl sqgl : sel ect ' conpany)

(
(
;; enpl oyees naned Lenin

(clsqgl:select 'enployee :where [= [slot-value 'enmpl oyee 'l ast-nane]
"Lenin"])

(cl sql:select 'conmpany :where [= [slot-value 'conmpany 'nane]
"Wdgets Inc."])

;; Enmpl oyees of Wdget's Inc.
(clsqgl :select 'enployee
:where [and [= [slot-val ue 'enpl oyee ' conpanyi d]
[sl ot-val ue ' conpany 'conpanyid]]
[= [slot-val ue 'conpany ' nane]
"Wdgets Inc."]])

Sane thing, except that we are using the enpl oyee
relation in the conpany view class to do the join for us,
saving us the work of witing out the SQ!

'(E:orrpany— enpl oyees conpanyl)

;; President of Wdgets Inc.
(president conpanyl)

;; Manager of Josef Stalin
(enpl oyee- nanager enpl oyee2)

Deleting Objects

Now that we know how to create objects in our database, manipulate them and query them (including
using our predefined relations to save us the trouble writing alot of SQL) we should learn how to clean
up after ourself. It's quite simple really. The function DELETE- | NSTANCE- RECORDS will remove an
object from the database. However, when we remove an object we are responsible for making sure that
the database is |eft in a correct state.

For example, if we remove a company record, we need to either remove al of it's employees or we need
to move them to another company. Likewise if we remove an employee, we should make sure to update
any other employees who had them as a manager.

Conclusion

There are many nooks and crannies to CLSQL, some of which are covered in the Xanalys documents we
refered to earlier, some are not. The best documentation at this time is still the source code for CLSQL
itself and the inline documentation for its various functions.

20

Connection and Initialisation

This section describes the CLSQL interface for initialising database interfaces of different types, creating
and destroying databases and connecting and disconnecting from databases.

21

Name

DATABASE — The super-type of al CLSQL databases
Class

Class Precedence List

database, standard-object, t

Description

This class is the superclass of all CLSQL databases. The different database back-ends derive subclasses
of this class to implement their databases. No instances of this class are ever created by CLSQL.

22

Name

CONNECT-IF-EXISTS — Default value for thei f - exi st s parameter of connect .
Variable

Value Type

A valid argument to the i f - exi st s parameter of connect , that is, one of :new, :warn-new, :error,
‘warn-old, :old.

Initial Value

error

Description

The value of thisvariableisused in callsto connect asthe default value of thei f - exi st s paramet-
er. Seeconnect for the semantics of the valid values for this variable.

Examples

None.

Affected By

None.

See Also

connect

Notes

None.

23

Name

DEFAULT-DATABASE — The default database object to use.
Variable

Value Type

Any object of type database, or NI L to indicate no default database.

Initial Value

NI L

Description

Any function or macro in CLSQL that operates on a database uses the value of this variable as the de-
fault value for it'sdat abase parameter.

The value of this parameter is changed by callsto connect , which sets *default-database* to the data-
base object it returns. It is aso changed by callsto di sconnect , when the database object being dis-
connected is the same as the value of *default-database*. In this case di sconnect sets
default-database to the first database that remains in the list of active databases as returned by con-

nect ed- dat abases, or NI L if no further active databases exist.

The user may change * default-database* at any time to avalid value of his choice.

Caution

If the value of *default-database* is NI L, then al calls to CLSQL functions on databases must
provide a suitable dat abase parameter, or an error will be signalled.

Examples

(connect ed- dat abases)

=> NL

(connect '("dent" "newesim "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48385F55} >

(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)
=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE { 483868FD} >

(connect '("dent" "newesim' "dent" "dent") :database-type :nysql :if-exist
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48387265} >

def aul t - dat abase

=> #<CLSQL- MYSQL: MYSQL- DATABASE { 48387265} >

(di sconnect)

= T

def aul t - dat abase

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {483868FD} >

(di sconnect)

== T

def aul t - dat abase

=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48385F55} >

(di sconnect)

= T

def aul t - dat abase

=> NL

(connect ed- dat abases)

24

DEFAULT-DATABASE

=> N L

Affected By

connect
di sconnect

See Also

connect ed- dat abases

Notes
Note

This variable is intended to facilitate working with CLSQL in an interactive fashion at the top-
level loop, and because of this, connect and di sconnect provide some fairly complex be-
haviour to keep *default-database* set to useful values. Programmatic use of CLSQL should
never depend on the value of *default-database* and should provide correct database objects
viathe dat abase parameter to functions called.

25

Name
DEFAULT-DATABASE-TY PE — The default database typeto use

Variable

Value Type

Any keyword representing a valid database back-end of CLSQL, or NI L.

Initial Value

NI L

Description

The value of this variableisused in callstoi ni ti al i ze- dat abase-t ype and connect asthe
default value of the dat abase- t ype parameter.

Caution

If the value of this variable is NI L, then al callstoinitialize-database-type or
connect will have to specify the dat abase-t ype to use, or ageneral-purpose error will be

signalled.
Examples
(setf *default-database-type* :nysql)
=> :mysql
(initialize-database-type)
=> t

Affected By

None.

See Also

intitialize-database-type

Notes

None.

26

Name

INITIALIZED-DATABASE-TYPES — List of al initialized database types
Variable

Value Type

A list of all initialized database types, each of which represented by it's corresponding keyword.

Initial Value

NI L

Description
This variable is updated whenever i niti al i ze- dat abase-type is caled for a database type
which hasn't already been initialized before, as determined by this variable. In that case the keyword
representing the database type is pushed onto the list stored in *INITIALIZED-DATABASE-TY PES*.

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :nysql)
=> : nysql

(initialize-database-type)

=> t

initialized-database-types

=> (:MYSQ)

Affected By

initialize-database-type
See Also

intitialize-database-type

Notes

Direct access to this variable is primarily provided because of compatibility with Harlequin's Common

SQL.

27

Name

CONNECT — create a connection to a database.
Function

Syntax

connect connection-spec &key if-exists database-type pool make-default => database

Arguments and Values

connecti on-spec A vendor specific connection specification supplied as alist or as astring.

i f-exists This indicates the action to take if a connection to the same database exists
aready. See below for the legal values and actions. It defaults to the value of
* connect-if-exists*.

dat abase-type A database type specifier, i.e. a keyword. This defaults to the value of
* def ault-database-type*

pool A boolean flag. If T, acquire connection from a pool of open connections. If the
pool is empty, a new connection is created. The defaultisNI L.
make- def aul t A boolean flag. If T, *default-database* is set to the new connection, otherwise
default-database is not changed. The defaultisT.
database The database object representing the connection.
Description

This function takes a connection specification and a database type and creates a connection to the data-
base specified by those. The type and structure of the connection specification depend on the database

type.

The parameter i f - exi st s specifieswhat to do if a connection to the database specified exists already,
which is checked by caling fi nd- dat abase on the database name returned by dat abase-
nane- f rom spec when called with the connect i on- spec and dat abase-t ype parameters.
The possiblevaluesof i f - exi st s are:

:new Go ahead and create a new connection.

:warn-new Thisisjust like :new, but also signals a warning of type clsgl-exists-warning, indicating
the old and newly created databases.

-error This will cause connect to signal a correctable error of type clsgl-exists-error. The
user may choose to proceed, either by indicating that a new connection shall be created,
viathe restart create-new, or by indicating that the existing connection shall be used, via
the restart use-old.

:old Thiswill cause connect to use an old connection if one exists.

:warn-old Thisisjust like :old, but also signals a warning of type clsgl-exists-warning, indicating

28

CONNECT

the old database used, viathe dots old-db and new-db

The database name of the returned database object will be the same under st ri ng= as that which
would be returned by a call to dat abase- nane-from spec with the given connecti on- spec
and dat abase- t ype parameters.

Examples

(dat abase- nanme-from spec ' ("dent" "newesinl' "dent" "dent") :nysql)
=> "dent/ newesi nl dent"

(connect '("dent" "newesim "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48036F6D} >

(dat abase- nane *)

=> "dent/ newesi ni dent"

(connect '("dent" "newesin "dent" "dent") :database-type :nysql)

>> | n call to CONNECT:

>> There is an existing connection #<CLSQL- MYSQL: MYSQL- DATABASE {48036F6D}> to d
>>

>> Restarts:

>> 0: [CREATE-NEW Create a new connecti on.

>> 1: [USE-OLD] Use the existing connection.

>> 2: [ABORT] Return to Top-Level.

>>

>> Debug (type H for help)

>>

>> (CONNECT ("dent" "newesini "dent" "dent") :IF-EXISTS NIL : DATABASE- TYPE .. .)
>> Source:

>> : File: /prj/CLSQ/sqgl/sql.cl
>> (RESTART- CASE (ERROR ' CLSQ.- EXI STS- ERROR : OLD- DB OLD- DB)

>> (CREATE-NEW NI L : REPORT "Create a new connection.”
>> (SETQ RESULT #))

>> (USE-OLD NIL : REPORT "Use the existing connection."
>> (SETQ RESULT OLD-DB)))

>> 0] 0

=> #<CLSQL- MYSQL: MYSQL- DATABASE { 480451F5} >

Side Effects

A database connection is established, and the resultant database object is registered, so as to appear in
the list returned by connect ed- dat abases. *default-database* may be rebound to the created ob-
ject.

Affected by

* default-database-ty pe*
* connect-if-exists*

Exceptional Situations

If the connection specification is not syntactically or semantically correct for the given database type, an
error of type sgl-user-error is signalled. If during the connection attempt an error is detected (e.g. be-
cause of permission problems, network trouble or any other cause), an error of type sgl-database-error is
signalled.

29

CONNECT

If a connection to the database specified by connect i on- spec exists aready, conditions are sig-
nalled according to thei f - exi st s parameter, as described above.

See Also

connect ed- dat abases
di sconnect
reconnect
connect -i f - exi st s
fi nd- dat abase
st at us

Notes

Thepool and nake- def aul t keyword argumentsto connect are CLSQL extensions.

30

Name

CONNECTED-DATABASES — Return thelist of active database objects.
Function

Syntax

connect ed- dat abases => dat abases

Arguments and Values

databases Thelist of active database objects.

Description

This function returns the list of active database objects, i.e. all those database objects created by calls to
connect , which have not been closed by calling di sconnect on them.

Caution

The consequences of modifying the list returned by connect ed- dat abases are undefined.

Examples

(connect ed- dat abases)
=> N L
(connect '(nil "tenplatel"” "dent" nil) :database-type :postgresql)
=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {4830BC65} >
(connect '("dent" "newesim "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {4830C5AD} >
(connect ed- dat abases)
=> (#<CLSQL- MYSQL: MYSQL- DATABASE { 4830C5AD} >
#<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE { 4830BC65} >)
(di sconnect)
= T
(connect ed- dat abases)
=> (#<CLSQL- POSTGRESQ.: POSTGRESQL- DATABASE {4830BC65} >)
(di sconnect)
= T
(connect ed- dat abases)
=> N L

Side Effects

None.

Affected By

31

CONNECTED-DATABASES

connect
di sconnect

Exceptional Situations

None.

See Also

di sconnect
connect
st at us

fi nd- dat abase

Notes

None.

32

Name

DATABASE-NAME — Get the name of a database object
Generic Function

Syntax

dat abase- name dat abase => name

Arguments and Values

dat abase A database object, either of type database or of type closed-database.

name A string describing the identity of the database to which this database object is connected
to.

Description

This function returns the database name of the given database. The database name is a string which
somehow describes the identity of the database to which this database object is or has been connected.
The database name of a database object is determined at connect time, when a cal to dat abase-
nane- f r om spec derives the database name from the connection specification passed to connect
intheconnect i on- spec parameter.

The database name is used viaf i nd- dat abase in connect to determine whether database connec-
tions to the specified database exist already.

Usually the database name string will include indications of the host, database name, user, or port that
where used during the connection attempt. The only important thing is that this string shall try to identi-
fy the database at the other end of the connection. Connection specifications parts like passwords and
credentials shall not be used as part of the database name.

Examples

(dat abase- nanme-fromspec ' ("dent" "newesint "dent" "dent") :nysqgl)
=> "dent/ newesi nf dent"”

(connect '("dent" "newesim "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48391DCD} >

(dat abase- name *def aul t - dat abase*)

=> "dent/ newesi ni dent"

(dat abase- nanme-fromspec '(nil "tenplatel” "dent" nil) :postgresql)
=> "/tenpl atel/ dent"
(connect '(nil "tenplatel” "dent" nil) :database-type :postgresql)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase- nane *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- nanme-from spec ' ("ww. pnsf.de" "tenplatel” "dent"” nil) :postgresql)
=> "ww. pnsf . de/tenpl atel/ dent”

33

DATABASE-NAME

Side Effects

None.

Affected By

dat abase- name- from spec

Exceptional Situations

Will signal an error if the object passed as the dat abase parameter is neither of type database nor of
type closed-database.

See Also

connect
find- dat abase
connect ed- dat abases
di sconnect

st at us

Notes

None.

Name

DATABASE-NAME-FROM-SPEC — Return the database nhame string corresponding to the given con-
nection specification.
Generic Function

Syntax

dat abase- name-from spec connecti on-spec dat abase-type => nane

Arguments and Values

connecti on-spec A connection specification, whose structure and interpretation are dependent on
thedat abase-t ype.

dat abase-type A database type specifier, i.e. akeyword.

name A string denoting a database name.

Description

This generic function takes a connection specification and a database type and returns the database name
of the database object that would be created had connect been called with the given connection spe-
cification and database types.

This function is useful in determining a database name from the connection specification, since the way
the connection specification is converted into a database name is dependent on the database type.

Examples

(dat abase- nane-fromspec ' ("dent" "newesini' "dent" "dent") :nysql)
=> "dent/ newesi ni dent"

(connect '("dent" "newesin "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE { 48391DCD} >

(dat abase- nanme *def aul t - dat abase*)

=> "dent/ newesi nf dent"

(dat abase- name-fromspec '(nil "tenplatel” "dent" nil) :postgresql)
=> "/tenpl atel/ dent"
(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase- nane *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- nane-from spec ' ("ww. pnsf.de" "tenplatel” "dent" nil) :postgresql)
=> "ww. pnsf. de/tenpl atel/ dent”

(find-dat abase "dent/newesi nf dent")

=> #<CLSQ.- MYSQL: MYSQL- DATABASE {484E91C5} >

(find-dat abase "/tenpl atel/dent")

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(find-dat abase "ww. pnsf. de/tenpl atel/dent" nil)

=> N L

35

DATABASE-NAME-FROM-SPEC

(find-dat abase **)
=> #<CLSQL- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >

Side Effects

None.

Affected by

None.

Exceptional Situations

If the value of connect i on- spec isnot avalid connection specification for the given database type,
an error of type clsgl-invalid-spec-error might be signalled.

See Also

connect

Notes

dat abase- name- f r om spec isaCLSQL extension.

36

Name

DATABASE-TY PE — Get the type of a database object.
Generic Function

Syntax

dat abase-type DATABASE => type

Arguments and Values

dat abase A database object, either of type database or of type closed-database.

type A keyword symbol denoting a known database back-end.
Description
Returnsthe type of dat abase.
Examples
(connect '(nil "tenplatel” "dent" nil) :database-type :postgresql)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase-type *defaul t - dat abase*)
=> : post gresql

Side Effects

None.

Affected by

None.

Exceptional Situations

Will signal an error if the object passed as the dat abase parameter is neither of type database nor of
type closed-database.

See Also

connect

fi nd- dat abase
connect ed- dat abases
di sconnect

37

DATABASE-TYPE

st at us

Notes

dat abase-t ype isaCLSQL extension.

38

Name

DISCONNECT — close a database connection
Function

Syntax

di sconnect &key dat abase error => result

Arguments and Values

error A boolean flag indicating whether to signal an error if dat abase isnon-NI L but cannot
be found.

dat abase The database to disconnect, which defaults to the database indicated by
default-database .

result A Boolean indicating whether a connection was successfully disconnected.

Description

This function takes a database object as returned by connect , and closes the connection. If no match-
ing database isfound and er r or and dat abase are both non-NI L an error is signaled, otherwise NI L
isreturned. If the database is from a pool it will be released to this pool.

The status of the object passed is changed to closed after the disconnection succeeds, thereby preventing
further use of the object as an argument to CLSQL functions, with the exception of dat abase- nane

and dat abase- t ype. If the user does pass a closed database to any other CLSQL function, an error of
type sql-fatal-error is signalled.

Examples

(di sconnect :database (find-database "dent/newesin dent"))
== T

Side Effects

The database connection is closed, and the database object is removed from the list of connected data-
bases as returned by connect ed- dat abases.

The state of the database object is changed to closed.
If the database object passed is the same under eq as the value of *default-database*, then

default-database is set to the first remaining database from connect ed- dat abases or to NI L if
no further active database exists.

Affected by

39

DISCONNECT

* default-database*

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type sgl-error might be signalled.

See Also

connect
di sconnect - pool ed

Notes

None.

40

Name

DISCONNECT-POOLED — closes al pooled database connections
Function

Syntax

di sconnect - pool ed =>t

Description

This function disconnects all database connections that have been placed into the pool by calling con-
nect with :pool T.

Examples

(di sconnect - pool)
= T

Side Effects

Database connections will be closed and entries in the pool are removed.

Affected by

di sconnect

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of type clsgl-error might be signalled.

See Also

connect
di sconnect

Notes

di sconnect - pool ed isaCLSQL extension.

41

Name

FIND-DATABASE — >L ocate a database object through it's name.
Function

Syntax

find- dat abase database &optional errorp => result

Arguments and Values

dat abase A database object or a string, denoting a database name.
errorp A generalized boolean. Defaultsto t.
db-type A keyword symbol denoting a known database back-end.

result Either adatabase object, or, if error p isNI L, possibly NI L.

Description

fi nd- dat abase locates an active database object given the specification in dat abase. If dat a-
base is an object of type database, f i nd- dat abase returns this. Otherwise it will search the active
databases as indicated by the list returned by connect ed- dat abases for a database of type db-
t ype whose name (as returned by dat abase- nane isequal as per st ri ng= to the string passed as
dat abase. If it succeeds, it returns the first database found.

If db-type isN L al databases matching the string dat abase are considered. If no matching data-
basesarefound and er r or p isNI L then NI L isreturned. If er r or p isNI L and one or more matching
databases are found, then the most recently connected database is returned as afirst value and the num-
ber of matching databases is returned as a second value. If no, or more than one, matching databases are
found and er r or p istrue, an error issignalled.

Examples

(dat abase- nanme-fromspec ' ("dent" "newesini' "dent" "dent") :nysql)
=> "dent/ newesi ni dent"

(connect '("dent" "newesinm "dent" "dent") :database-type :nysql)
=> #<CLSQ.- MYSQL: MYSQL- DATABASE {48391DCD} >

(dat abase- nane *def aul t - dat abase*)

=> "dent/ newesi nf dent"

(dat abase- name-fromspec '(nil "tenplatel” "dent" nil) :postgresql)
=> "/tenpl at el/ dent"
(connect '(nil "tenplatel" "dent" nil) :database-type :postgresql)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(dat abase- nanme *def aul t - dat abase*)
=> "/tenpl atel/ dent"

(dat abase- nane-from spec ' ("ww. pnsf.de" "tenplatel” "dent" nil) :postgresql)
=> "www. pnsf. de/tenpl atel/ dent”

(find-dat abase "dent/newesi nf dent")

42

FIND-DATABASE

=> #<CLSQ.- MYSQL: MYSQL- DATABASE {484E91C5} >
(find-database "/tenpl atel/dent")

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >
(find-dat abase "ww. pnsf. de/tenpl atel/dent" nil)

=> N L

(find-dat abase **)

=> #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {48392D2D} >

Side Effects

None.

Affected By

connect ed- dat abases

Exceptional Situations

Will signal an error of type clsgl-error if no matching database can be found, and er r or p is true. Will
signal an error if the value of dat abase is neither an object of type database nor a string.

See Also

dat abase- nane

dat abase- nanme-from spec
di sconnect

connect

st at us
connect ed- dat abases

Notes

Thedb- t ype keyword argument tof i nd- dat abase isa CLSQL extension.

43

Name

INITIALIZE-DATABASE-TYPE — Initializes a database type
Function

Syntax

initialize-database-type &key database-type => result

Arguments and Values

dat abase-type The database type to initialize, i.e. a keyword symbol denoting a known database
back-end. Defaults to the value of * default-database-type*.

result Either NI L if the initialization attempt fails, or t otherwise.

Description

If the back-end specified by dat abase-type has not aready been initialized, as seen from
initialized-database-types, an attempt is made to initialize the database. If this attempt succeeds, or the
back-end has aready been initialized, the function returns t, and places the keyword denoting the data-
base type onto the list stored in *initialized-database-types*, if not already present.

If initialization fails, the function returns NI L, and/or signals an error of type clsgl-error. The kind of ac-
tion taken depends on the back-end and the cause of the problem.

Examples

initialized-database-types

=> N L

(setf *default-database-type* :nysql)
=> : MYSQL

(initialize-database-type)

>> Conpil i ng LAVBDA (#: G897 #: G898 #: (V01 #: (3B02):
>> Conpiling Top-Level Form

>>

== T

initialized-database-types

=> (1 MYSQ)
(initialize-database-type)

== T

initialized-database-types

=> (: MYSQL)

Side Effects

The database back-end corresponding to the database type specified is initialized, unless it has already
been initialized. This can involve any number of other side effects, as determined by the back-end im-
plementation (like e.g. loading of foreign code, calling of foreign code, networking operations, etc.). If

a4

INITIALIZE-DATABASE-TYPE

initialization is attempted and succeeds, the dat abase-type is pushed onto the list stored in
initialized-database-types.

Affected by

* default-database-ty pe*
initiali zed-database-ty pes

Exceptional Situations

If an error is encountered during the initialization attempt, the back-end may signal errors of kind clsqgl-
error.

See Also

initialized-database-types
def aul t - dat abase-t ype

Notes

None.

45

Name

RECONNECT — Re-establishes the connection between a database object and its RDBMS.
Function

Syntax

reconnect &key database error force => result

Arguments and Values

dat abase The database to reconnect, which defaults to the database indicated by * default-database* .

error A boolean flag indicating whether to signal an error if dat abase is non-nil but cannot
be found. The default valueis NI L.
force A Boolean indicating whether to signal an error if the database connection has been lost.
The default valueisT.
result A Boolean indicating whether the database was successfully reconnected.
Description

Reconnects dat abase which defaults to *default-database* to the underlying database management
system. On success, T is returned and the variable *default-database* is set to the newly reconnected
database. If dat abase is a database instance, this object is closed. If dat abase is a string, then a
connected database whose name matches dat abase is sought in the list of connected databases. If no
matching database is found and er r or and dat abase are both non-NI L an error is signaled, other-
wise Nl L isreturned.

When the current database connection has been lost, if f or ce isnon-NI L asit is by default, the con-
nection is closed and errors are suppressed. If f or ce is NI L and the database connection cannot be
closed, an error issignalled.

Examples

def aul t - dat abase

=> #<CLSQL- SQLI TE: SQLI TE- DATABASE : nenory: OPEN {48CFBEA5} >
(reconnect)

=> #<CLSQ.- SQLI TE: SQLI TE- DATABASE : nenory: OPEN {48D64105}>

Side Effects

A database connection is re-established and * default-database* may be rebound to the supplied database
object.

Affected by

46

RECONNECT

* default-database*

Exceptional Situations

An error may be signalled if the specified database cannot be located or if the database cannot be closed.

See Also

connect
di sconnect
di sconnect - pool ed

Notes

None.

47

Name

STATUS — Print information about connected databases.
Function

Syntax

status &optional full =>

Arguments and Values

full A boolean indicating whether to print additional table information. The default valueis NI L.

Description

Prints information about the currently connected databases to * STANDARD-OUTPUT*. The argument
full isN L by default and a value of t means that more detailed information about each database is
printed.

Examples

(status)

CLSQL STATUS: 2004-06-13 15:07:39

DATABASE TYPE RECORDI NG
| ocal host/test/petrov nysql nil
| ocal host/test/petrov post gr esql nil
| ocal host/test/petrov post gresql -socket nil
test/ petrov odbc nil
* lmenory: sqglite nil
(status t)

CLSQL STATUS: 2004-06-13 15:08:08

DATABASE TYPE RECORDI NG POOLED TABLES VIEWS
| ocal host/test/petrov nysql nil nil 7 0
| ocal host/test/petrov post gr esql nil nil 7 0
| ocal host/test/petrov post gresql -socket nil nil 7 0
t est/ petrov odbc nil nil 7 0
* lmenory: sqglite nil nil 0 0

Side Effects

None.

48

STATUS

Affected by

None.

Exceptional Situations

None.

See Also

connect ed- dat abases
connect

di sconnect
connect -i f - exi st s
fi nd- dat abase

Notes

None.

49

Name

CREATE-DATABASE — create a database
Function

Syntax

creat e- dat abase connecti on-spec &key dat abase-type => success

Arguments and Values

connecti on- spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the value of
* default-database-type*

success A boolean flag. If T, anew database was successfully created.

Description

This function creates a database in the database system specified by dat abase-t ype.

Examples

(create-database ' ("l ocal host" "new' "dent" "dent") :database-type :nysql)
= T

(create-database ' ("l ocal host™ "new' "dent" "badpasswd") :database-type :nysql)
=>
Error: Wiile trying to access dat abase | ocal host/ new dent
usi ng dat abase-type MYSQL:
Error dat abase-create failed: nysqladmn: connect to server at 'local host' faile
error: 'Access denied for user: 'root@ocal host' (Using password: YES)'
has occurred.
[condition type: CLSQL- ACCESS- ERROR]

Side Effects

A database will be created on the filesystem of the host.

Exceptional Situations

An exception will be thrown if the database system does not allow new databases to be created or if
database creation fails.

See Also

destroy- dat abase

50

CREATE-DATABASE

pr obe- dat abase
| i st-databases

Notes

This function may invoke the operating systems functions. Thus, some database systems may require the
administration functions to be available in the current PATH. At this time, the :mysqgl backend requires
nmysql adm n and the :postgresgl backend requirescr eat edb.

creat e- dat abase isaCLSQL extension.

51

Name

DESTROY-DATABASE — destroys a database
Function

Syntax

destroy-dat abase connection-spec &ey database-type => success

Arguments and Values

connecti on- spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the value of
* default-database-type*

success A boolean flag. If T, the database was successfully destroyed.

Description

This function destroys a database in the database system specified by dat abase- t ype.

Examples

(destroy-database ' ("l ocal host" "new' "dent" "dent") :database-type :postgresql)
= T

(destroy-database ' ("l ocal host" "new' "dent" "dent") :database-type :postgresql)
=>
Error: Wiile trying to access database | ocal host/test2/root
usi ng dat abase-type POSTGRESQL:
Error dat abase-destory failed: dropdb: database renpval failed: ERROR dat abase
has occurred.
[condition type: CLSQL- ACCESS- ERROR]

Side Effects

A database will be removed from the filesystem of the host.

Exceptional Situations

An exception will be thrown if the database system does not allow databases to be removed, the data-
base does not exist, or if database removal fails.

See Also

cr eat e- dat abase
pr obe- dat abase

52

DESTROY-DATABASE

| i st-databases
Notes

This function may invoke the operating systems functions. Thus, some database systems may require the
administration functions to be available in the current PATH. At this time, the :mysqgl backend requires
nmysql adm n and the :postgresgl backend requires dr opdb.

dest r oy- dat abase isaCLSQL extension.

53

Name

PROBE-DATABASE — tests for existence of a database
Function

Syntax

pr obe- dat abase connection-spec &key database-type => success

Arguments and Values

connecti on- spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the value of
* default-database-type*

success A boolean flag. If T, the database exists in the database system.
Description
This function tests for the existence of a database in the database system specified by dat abase-
type.
Examples

(probe-database ' ("l ocal host" "new' "dent" "dent") :database-type :postgresql)
== T

Side Effects

None

Exceptional Situations

An exception maybe thrown if the database system does not receive administrator-level authentication
since function may need to read the administrative database of the database system.

See Also

cr eat e- dat abase
destroy- dat abase
| i st-dat abases

Notes

pr obe- dat abase isaCLSQL extension.

Name

LIST-DATABASES — List databases matching the supplied connection spec and database type.
Function

Syntax

| i st-databases connection-spec &ey database-type => result

Arguments and Values

connecti on-spec A connection specification

dat abase-type A database type specifier, i.e. a keyword. This defaults to the value of
* default-database-type*

result A list of matching databases.

Description

Thisfunction returns alist of databases existing in the database system specified by dat abase- t ype.

Examples

(list-databases ' ("l ocal host" "new' "dent" "dent") :database-type :postgresql)
=> ("address-book" "sqgl-test" "tenplatel" "tenplate0" "testl" "dent" "test")

Side Effects

None.

Affected by

None.

Exceptional Situations

An exception maybe thrown if the database system does not receive administrator-level authentication
since function may need to read the administrative database of the database system.

See Also

cr eat e- dat abase
dest r oy- dat abase
pr obe- dat abase

55

LIST-DATABASES

Notes

| i st-dat abases isaCLSQL extension.

56

Name

WITH-DATABASE — Execute a body of code with avariable bound to a specified database object.
Macro

Syntax

wi t h- dat abase db-var connection-spec & est connect-args &body body => result

Arguments and Values

db- var A variable to which the specified database is bound.

connecti on-spec A vendor specific connection specification supplied as alist or asastring.

connect - ar gs Other optional argumentsto connect .

body A Lisp code body.

result Determined by the result of executing the last expressionin body.
Description

Evaluate body in an environment, where db- var is bound to the database connection given by con-
necti on- spec and connect - ar gs. The connection is automatically closed or released to the pool
on exit from the body.

Examples

(connect ed- dat abases)
=> NL
(with-database (db ' (":nenory:") :database-type :sqglite
:make-default nil)
(dat abase- nane db))
= ":menory:"
(connect ed- dat abases)
=> N L

Side Effects

Seeconnect anddi sconnect .

Affected by

Seeconnect anddi sconnect .

Exceptional Situations

57

WITH-DATABASE

Seeconnect anddi sconnect .

See Also

connect

di sconnect

di sconnect - pool ed

wi t h-def aul t - dat abase

Notes

wi t h- dat abase isa CLSQL extension.

58

Name

WITH-DEFAULT-DATABASE — Execute a body of code with *default-database* bound to a spe-
cified database.
Macro

Syntax

wi t h- def aul t - dat abase dat abase &rest body => result

Arguments and Values

dat abase An active database object.

body A Lisp code body.
result Determined by the result of executing the last expressionin body.
Description

Perform body with DATABASE bound as * default-database* .

Examples

def aul t - dat abase
=> #<CLSQL.- ODBC: ODBC- DATABASE new dent OPEN {49095CAD} >

(let ((database (clsql:find-database ":nmenory:")))
(wit h-defaul t-database (database)
(dat abase- name *def aul t - dat abase*)))
=> ":nmenory:"

Side Effects

None.

Affected by

None.

Exceptional Situations

Callsto CLSQL functionsin body may signal errorsif dat abase isnot an active database object.

See Also

59

WITH-DEFAULT-DATABASE

wi t h- dat abase
* default-database*

Notes

wi t h-def aul t - dat abase isaCLSQL extension.

60

The Symbolic SQL Syntax

CLSQL provides a symbolic syntax allowing the construction of SQL expressions as lists delimited by
square brackets. The syntax is turned off by default. This section describes utilities for enabling and dis-
abling the square bracket reader syntax and for constructing symbolic SQL expressions.

61

Name

ENABLE-SQL-READER-SYNTAX — Globally enable square bracket reader syntax.
Macro

Syntax

enabl e- sqgl - reader - syntax =>

Arguments and Values

None.

Description

Turns on the SQL reader syntax setting the syntax state such that if the syntax is subsequently disabled,
restore-sql -reader-synt ax- st at e will enableit again.

Examples

None.

Side Effects

Setsthe internal syntax state to enabled.

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

di sabl e-sql - reader - synt ax

| ocal | y- enabl e- sql - r eader - synt ax
| ocal | y-di sabl e- sql - reader - synt ax
restore-sql -reader-syntax-state

Notes

The symbolic SQL syntax is disabled by default.

CLSQL differs from CommonSQL in that enabl e- sql - r eader - synt ax is defined as a macro
rather than a function.

62

Name

DISABLE-SQL-READER-SYNTAX — Globally disable square bracket reader syntax.
Macro

Syntax

di sabl e-sql -reader-syntax =>

Arguments and Values

None.

Description

Turns off the SQL reader syntax setting the syntax state such that if the syntax is subsequently enabled,
restore-sql -reader-synt ax- st at e will disableit again.

Examples

None.

Side Effects

Setsthe internal syntax state to disabled.
Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sql - r eader - synt ax

| ocal | y- enabl e- sql - r eader - synt ax
| ocal | y-di sabl e- sql - reader - synt ax
restore-sql -reader-syntax-state

Notes

The symbolic SQL syntax is disabled by default.

CLSQL differs from CommonSQL in that di sabl e- sql - r eader - synt ax is defined as a macro
rather than a function.

63

Name

LOCALLY-ENABLE-SQL-READER-SYNTAX — Globally enable square bracket reader syntax.
Macro

Syntax

| ocal | y- enabl e- sqgl -reader -syntax =>

Arguments and Values

None.

Description

Turns on the SQL reader syntax without changing the syntax state such that restore-
sql - reader - synt ax- st at e will re-establish the current syntax state.

Examples

Intended to be used in afile for code which uses the square bracket syntax without changing the global
State.

#. (1 ocal | y- enabl e- sql - r eader - synt ax)
CODE USI NG SYMBOLI C SQL SYNTAX ...

#. (restore-sql -reader-synt ax- st at e)

Side Effects

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sqgl - r eader - synt ax

di sabl e-sql - reader - synt ax

| ocal | y-di sabl e-sql -reader - synt ax
restore-sql -reader-syntax-state

LOCALLY-EN-
ABLE-SQL-READER-SYNTAX

Notes

The symbolic SQL syntax is disabled by default.

CLSQL differs from CommonSQL in that | ocal | y- enabl e- sql - r eader - synt ax is defined as
amacro rather than a function.

65

Name

LOCALLY-DISABLE-SQL-READER-SYNTAX — Locally disable square bracket reader syntax.
Macro

Syntax

| ocal | y-di sabl e-sql -reader-syntax =>

Arguments and Values

None.

Description

Turns off the SQL reader syntax without changing the syntax state such that restore-
sql - reader - synt ax- st at e will re-establish the current syntax state.

Examples

Intended to be used in afile for code in which the square bracket syntax should be disabled without
changing the global state.

#. (1 ocal | y-di sabl e-sql -reader - synt ax)
CODE NOT USI NG SYMBOLI C SQ. SYNTAX ...

#. (restore-sql -reader-synt ax- st at e)

Side Effects

Modifies the default readtable.

Affected by

None.

Exceptional Situations

None.

See Also

enabl e- sqgl - r eader - synt ax

di sabl e-sql - reader - synt ax

| ocal | y- enabl e-sql - r eader - synt ax
restore-sql -reader-syntax-state

66

LOCALLY-DIS
ABLE-SQL-READER-SYNTAX

Notes

The symbolic SQL syntax is disabled by default.

CLSQL differsfrom CommonSQL inthat | ocal | y- di sabl e- sql - r eader - synt ax isdefined as
amacro rather than a function.

67

Name

RESTORE-SQL-READER-SYNTAX-STATE — Restore sguare bracket reader syntax to its previous
State.
Macro

Syntax

restore-sql -reader-syntax-state =>

Arguments and Values

None.

Description

Enables the SQL reader syntax if enabl e- sql - r eader - synt ax has been caled more recently
than di sabl e- sql - r eader - synt ax and otherwise disables the SQL reader syntax. By default, the
SQL reader syntax is disabled.

Examples

See | ocal | y- enabl e- sql - reader - synt ax and | ocal I y-di s-
abl e- sqgl - reader - synt ax.

Side Effects

Reverts the internal syntax state.
Modifies the default readtable.

Affected by

The current internal syntax state.

Exceptional Situations

None.

See Also
enabl e- sqgl - reader - synt ax
di sabl e-sql - reader - synt ax

| ocal | y- enabl e- sqgl - r eader - synt ax
| ocal | y-di sabl e- sql -reader - synt ax

Notes

The symbolic SQL syntax is disabled by default.

68

RESTORE-
SQL-READER-SYNTAX-STATE

CLQL differs from CommonSQL in that r est or e- sql - r eader - synt ax- st at e isdefined as a
macro rather than a function.

69

Name

SQL — Construct an SQL string from supplied expressions.
Function

Syntax

sql & est args => sql -expression

Arguments and Values

ar gs A set of expressions.
sgl-expression A string representing an SQL expression.
Description

Returns an SQL string generated from the expressions ar gs. The expressions are translated into SQL
strings and then concatenated with a single space delimiting each expression.

Examples
(sqgl nil)
=> "NuLL"
(sql 'foo)
=> "FQOO'
(sql "bar")
=> "'bar'"

(sql 10)
=> "10"

(sgl '"(nil foo "bar" 10))
=> "(NULL, FOO, ' bar', 10)"

(sgl #(nil foo "bar" 10))
=> "NULL, FOO, ' bar', 10"

(sql [select [foo] [bar] :from[baz]] 'having [= [foo id] [bar id]]

"and [foo val] '< 5)
=> "SELECT FOO, BAR FROM BAZ HAVING (FOO. 1D = BAR I D) AND FOO. VAL < 5"

Side Effects

None.

Affected by

70

None.

Exceptional Situations
An error of type sql - user - error issignalled if any element in ar gs is not of the supported types

(asymboal, string, number or symbolic SQL expression) or alist or vector containing only these suppor-
ted types.

See Also
sql - expr essi on

sql - operation
sql - oper at or

Notes

None.

71

Name

SQL-EXPRESSION — Constructs an SQL expression from supplied keyword arguments.
Function

Syntax

sql - expression &ey string table alias attribute type => result

Arguments and Values

string A string.
tabl e A symbol representing a database table identifier.
alias A table dlias.

attribute A symbol representing an attribute identifier.

type A type specifier.
result A object of type sgl-expression.
Description

Returns an SQL expression constructed from the supplied arguments which may be combined as fol-
lows:

e attributeandtype;

o attribute;

- aliasortableandattri buteandtype;

e aliasortableandattri bute;

tabl e,attributeandtype;

tableandattri bute;

tabl eandal i as;
e tabl e;

e string.

Examples

(sql -expression :table 'foo :attribute 'bar)
=> #<CLSQL- SYS: SQL- | DENT- ATTRI BUTE FOO. BAR>

72

SQL-EXPRESSION

(sql -expression :attribute 'baz)
=> #<CLSQ.- SYS: SQL- | DENT- ATTRI BUTE BAZ>

Side Effects

None.

Affected by

None.

Exceptional Situations

An error of typesql - user - error issignaled if an unsupported combination of keyword arguments
is specified.

See Also

sql
sql - operation
sql - oper at or

Notes

None.

73

Name

SQL-OPERATION — Constructs an SQL expression from a supplied operator and arguments.
Function

Syntax

sqgl -operation operator & est args => result

sqgl -operation 'function func & est args => result

Arguments and Values

operat or A symbol denoting an SQL operator.

func A string denoting an SQL function.

args A set of arguments for the specified SQL operator or function.

result A abject of typesql - expr essi on.
Description

Returns an SQL expression constructed from the supplied SQL operator or function oper at or and its
arguments ar gs. If oper at or is passed the symbol ‘function then the first value in ar gs istaken to
be avalid SQL function and the remaining valuesin ar gs its arguments.

Examples

(sql -operation 'select
(sql -expression :table 'foo :attribute 'bar)
(sql -operation 'sum (sql-expression :table 'foo :attribute 'baz))
:from
(sql -expression :table 'foo)
:wher e
(sql -operation '> (sql-expression :attribute 'bar) 12)
corder-by (sql-operation 'sum (sql-expression :attribute 'baz)))
=> #<SQL- QUERY SELECT FOO BAR, SUM FOO. BAZ) FROM FOO WHERE (BAR > 12) ORDER BY SUM

(sql -operation 'function "strpos" "CLSQ" "SQ.")
=> #<CLSQ.- SYS: SQL- FUNCTI ON- EXP STRPOS(' CLSQL', ' s@Q.') >

Side Effects

None.

Affected by

74

SQL-OPERATION

None.

Exceptional Situations

An error of typesql - user - error issignaled if oper at or isnot asymbol representing a suppor-
ted SQL operator.

See Also

sq
sgl - expr essi on
sql - oper at or

Notes

None.

75

Name

SQL-OPERATOR — Returns the symbol for the supplied SQL operator.
Function

Syntax

sql - operator operator => result

Arguments and Values

operat or A symbol denoting an SQL operator.

result The Lisp symbol used by CLSQL to represent the specified operator.

Description

Returns the Lisp symbol corresponding to the SQL operator represented by the symbol oper at or . If
oper at or does not represent a supported SQL operator or is not a symbol, nil is returned.

Examples

(sql -operator 'like)
=> SQL- LI KE

Side Effects

None.

Affected by

None.

Exceptional Situations
None.
See Also

sq
sgl - expr essi on
sql -operation

Notes

CLSQL's symbolic SQL syntax currently has support for the following CommonSQL compatible SQL

76

SQL-OPERATOR

operators.

any
sone

al l

not

uni on

i ntersect
m nus
except
order - by
nul |

<>

count
max

mn

avg

sum
function
bet ween
di sti nct
nvl

sl ot - val ue
user env

aswell as the pseudo-operator f uncti on.
The following operators are provided as CLSQL extensions to the CommonSQL API.

concat
substring
limt

gr oup- by
havi ng
not - nul |
exi sts
upl i ke

is

t he

coal esce
vi ew cl ass

Note that some of these operators are not supported by all of the RDBMS supported by CLSQL (see the

77

SQL-OPERATOR

Appendix for details).

78

Functional Data Definition
Language (FDDL)

CLSQL provides afunctional DDL which supports the creation and destruction of a variety of database
objects including tables, views, indexes and sequences. Functions which return information about cur-
rently defined database objects are also provided. In addition, the FDDL includes functionality for ex-
amining table attributes and attribute types.

79

Name

CREATE-TABLE — Create a database table.
Function

Syntax

create-tabl e nane description &ey database constraints transactions =>

Arguments and Values

nane The name of the table as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .
description Alist

constraints Asdtring, alist of stringsor NI L.

transacti ons A Boolean. The default valueisT.

Description

Creates a table called nane, which may be a string, symbol or SQL table identifier, in dat abase
which defaults to *default-database*. descri pti on is alist whose elements are lists containing the
attribute names, types, and other constraints such as not-null or primary-key for each column in the ta-
ble.

const r ai nt s isastring representing an SQL table constraint expression or alist of such strings.

With MySQL databases, if t ransacti ons is T an InnoDB table is created which supports transac-

tions.
Examples
(create-table [foo0]
"(([1d] integer)

([hei ght] float)

([name] (string 24))

([coments] |ongchar)))
=>
(tabl e-exists-p [foo0])
== T
(create-table [foo] '(([bar] integer :not-null :unique :primry-key)

([baz] string :not-null :unique)))

=>
(tabl e-exists-p [foo0])
== T

(create-table [foo] '(([bar] integer :not-null) ([baz] string :not-null))
.constraints ' ("UNIQUE (bar, baz)" "PRI MARY KEY (bar)"))

80

CREATE-TABLE

=>
(tabl e-exists-p [foo0])
== T

Side Effects

A tableiscreated in dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error is signalled if arelation called nane aready exists.

See Also

drop-table
list-tables
t abl e-exi sts-p

Notes

Theconstrai nts andtransacti ons keyword argumentsto cr eat e- t abl e are CLSQL exten-
sions. Thet r ansact i ons keyword argument is for compatibility with MySQL databases.

81

Name

DROP-TABLE — Drop a database table.
Function

Syntax

drop-tabl e name &key if-does-not-exist database =>

Arguments and Values

nane The name of the table as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

i f-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the table called name from dat abase which defaults to *default-database*. If the table does

not exist and i f - does- not - exi st is:ignore then dr op-t abl e returns NI L whereas an error is
signalled if i f - does- not - exi st is:error.

Examples

(tabl e-exists-p [foo0])

= T

(drop-table [foo] :if-does-not-exist :ignore)
=>

(tabl e-exists-p [foo0])

=> N L

Side Effects

A tableisdropped dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error issignalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

See Also

82

DROP-TABLE

create-table
list-tables
tabl e-exi sts-p

Notes

Thei f - does- not - exi st keyword argument to dr op-t abl e isa CLSQL extension.

83

Name

LIST-TABLES — Returns alist of database tables.
Function

Syntax

list-tables &ey owner database => result

Arguments and Values

owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

result A list of strings.

Description

Returns a list of strings representing table names in dat abase which defaults to * default-database* .
owner is Nl L by default which means that only tables owned by users are listed. If owner isastring
denoting a user name, only tables owned by owner arelisted. If owner is:all then al tables are listed.

Examples

(list-tables :owner "fred")

=> ("type_table" "type bigint" "enployee" "conmpany" "addr" "ea_join" "big")

(list-tables :owner :all)

=> ("pg_description" "pg_group” "pg_proc" "pg_rewite" "pg_type" "pg_attribute"
"pg_cl ass" "pg_inherits" "pg_iIndex" "pg_operator"” "pg_opclass" "pg_ant
"pg_amop" "pg_anproc" "pg_l anguage" "pg_l argeobject” "pg_aggregate”
"pg_trigger" "pg_listener" "pg_cast" "pg_nanespace" "pg_shadow’
"pg_conversion" "pg_depend" "pg attrdef" "pg_constraint" "pg_database"
"type_table" "type_bigint" "enployee" "conpany" "pg_statistic" "addr"
"ea_join" "big")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

LIST-TABLES

See Also
create-table

drop-table
t abl e-exi sts-p

Notes

None.

85

Name

TABLE-EXISTS-P— Tests for the existence of a database table.
Function

Syntax

tabl e- exi sts-p nane &key owner dat abase => result

Arguments and Values

nane The name of the table as a string, symbol or SQL expression.
owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

resul t A Boolean.

Description

Tests for the existence of an SQL table caled nane in dat abase which defaults to
default-database. owner is NI L by default which means that only tables owned by users are ex-
amined. If owner isastring denoting a user name, only tables owned by owner are examined. If own-
er is:all then all tables are examined.

Examples

(tabl e-exists-p [foo0])
== T

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

create-tabl e

86

TABLE-EXISTS-P

drop-table
list-tables

Notes

None.

87

Name

CREATE-VIEW — Create adatabase view.
Function

Syntax

create-vi ew nanme &ey as colum-1list wth-check-option database =>

Arguments and Values

nane The name of the view as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

as A symbolic SQL query expression.

col um-1Ii st A list.

wi t h- check-opti on A Boolean.

Description

Createsaview called nane in dat abase which defaults to *default-database*. The view is created us-
ing the query as and the columns of the view may be specified using the col umm- | i st parameter.
The wi t h- check-option is NI L by default but if it has a non-NI L value, then al insert/update
commands on the view are checked to ensure that the new data satisfy the query as.

Examples

(create-view [l enins-group]
;as [select [first-nane] [last-nane] [email]
:from [enpl oyee]
:where [= [nanagerid] 1]])

=>

(select [*] :from [l enins-group])
=> (("Josef" "Stalin" "stalin@oviet.org")

("Leon" "Trotsky" "trotsky@oviet.org")
"N kita" "Kruschev" "kruschev@oviet.org")
"Leoni d* "Brezhnev" "brezhnev@oviet.org")
“Yuri" "Andropov" "andropov@oviet.org")
"Konstantin" "Chernenko" "chernenko@oviet.org")
"M khai " " Gorbachev" "gorbachev@oviet.org")
"Boris" "Yeltsin" "yeltsin@oviet.org")
"Mladimr" "Putin" "putin@oviet.org")),
("first_nane" "last_name" "enmail")

(
(
(
(
(
(
(

Side Effects

88

CREATE-VIEW

A view iscreated in dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error issignalled if arelation called nare aready exists.

See Also

dr op-vi ew
[ist-views
Vi ew exi sts-p

Notes

None.

89

Name

DROP-VIEW — Drops a database view.
Function

Syntax

drop-vi ew nane &ey if-does-not-exist database =>

Arguments and Values

nane The name of the view as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

i f-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the view caled name from dat abase which defaults to *default-database*. If the view does

not exist and i f - does- not - exi st is:ignorethen dr op- vi ewreturns NI L whereas an error is sig-
naledif i f - does- not - exi st is:error.

Examples

(viewexists-p [foo])

= T

(drop-view [foo] :if-does-not-exist :ignore)
=>

(viewexists-p [foo])

=> N L

Side Effects

A view isdropped dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error issignalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

See Also

90

DROP-VIEW

create-view
list-views
Vi ew exi sts-p

Notes

Thei f - does- not - exi st keyword argument to dr op- vi ewisa CLSQL extension.

91

Name

LIST-VIEWS — Returns alist of database views.
Function

Syntax

[ist-views & ey owner database => result

Arguments and Values

owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

result A list of strings.

Description

Returns a list of strings representing view names in dat abase which defaults to *default-database* .
owner is Nl L by default which means that only views owned by users are listed. If owner isastring
denoting a user name, only views owned by owner arelisted. If owner is:all then al views are listed.

Examples

(list-views :owner "fred")
=> ("l eni ns_group")

(list-views :owner :all)

=> ("pg_user" "pg_rules" "pg_views" "pg_tables" "pg_indexes" "pg_stats"
"pg_stat_all _tables" "pg_stat_sys_tables" "pg_stat_user_tabl es”
"pg_statio_all_tables" "pg statio_sys tables" "pg_statio_user_tables"
"pg_stat _all _indexes" "pg_stat_sys I ndexes" "pg_stat_user_indexes"
"pg_statio_all _indexes" "pg_statio_sys_indexes" "pg_statio_user_indexes
"pg_statio_all_sequences" "pg statio_sys_sequences"
"pg_statio_user_sequences" "pg_stat_activity" "pg_stat_ dat abase"
"pg_l ocks" "pg_settings" "lenins_group")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

92

LIST-VIEWS

None.

See Also

create-view
dr op-vi ew
Vi ew exi sts-p

Notes

list-view isaCLSQL extension.

93

Name

VIEW-EXISTS-P— Tests for the existence of a database view.
Function

Syntax

Vi ew exi sts-p nane &ey owner dat abase => result

Arguments and Values

nane The name of the view as a string, symbol or SQL expression.
owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

resul t A Boolean.

Description

Tests for the existence of an SQL view caled nane in dat abase which defaults to
default-database. owner is NI L by default which means that only views owned by users are ex-
amined. If owner isastring denoting a user name, only views owned by owner are examined. If own-
er is:all then all views are examined.

Examples

(viewexists-p [l enins-group])
== T

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

create-view

94

VIEW-EXISTS-P

dr op-vi ew
list-views

Notes

Vi ew exi st s- pisaCLSQL extension.

95

Name

CREATE-INDEX — Create a database index.
Function

Syntax

create-index nane &ey on unique attributes database =>

Arguments and Values

nane The name of the index as a string, symbol or SQL expression.
on The name of atable asastring, symbol or SQL expression.
uni que A Boolean.

attributes A listof attribute names.

dat abase A database object which defaults to * default-database* .

Description

Creates an index called nane on the table specified by on in dat abase which default to
default-database. The table attributes to use in constructing the index name are specified by at -
tri but es. Theuni que argument isNI L by default but if it hasanon-NI L value then the indexed at-
tributes must have unique values.

Examples

(create-index [bar] :on [enp
cattributes ' (
;unique t)

| oyee]
[first-nanme] [last-nane] [enail])

=>

(i ndex-exi sts-p [bar])
= T

Side Effects

Anindex iscreated in dat abase.

Affected by

* default-database*

Exceptional Situations

96

CREATE-INDEX

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error is signalled if arelation called nane already exists.

See Also
dr op-i ndex

[ist-indexes
i ndex-exi sts-p

Notes

None.

97

Name

DROP-INDEX — Drop a database index.
Function

Syntax

drop-i ndex name &key if-does-not-exi st on database =>

Arguments and Values

nane The name of the index as a string, symbol or SQL expression.
on The name of atable as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

i f-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the index called nane in dat abase which defaults to * default-database*. If the index does not
exist and i f - does- not - exi st is:ignore then dr op- i ndex returns NI L whereas an error is sig-
nalledif i f - does- not - exi st is:error.

The argument on allows the optional specification of atable to drop the index from. Thisis required for
compatability with MySQL.

Examples

(i ndex-exists-p [foo0])

= T

(drop-index [foo] :if-does-not-exist :ignore)
=>

(i ndex-exists-p [foo0])
=> NL

Side Effects

Anindex isdropped in dat abase.

Affected by

* default-database*

Exceptional Situations

98

DROP-INDEX

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error issignalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

See Also

creat e-i ndex
i st-indexes
i ndex-exi sts-p

Notes

Thei f - does- not - exi st and on keyword argumentsto dr op- i ndex are CLSQL extensions. The
keyword argument on is provided for compatibility with MySQL.

99

Name

LIST-INDEXES — Returns alist of database indexes.
Function

Syntax

list-indexes & ey onowner database => result

Arguments and Values

owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .
on The name of atable as a string, symbol or SQL expression, alist of such namesor NI L.

result A list of strings.

Description

Returns a list of strings representing index names in dat abase which defaults to * default-database*.
owner isNI L by default which means that only indexes owned by users are listed. If owner isastring
denoting a user name, only indexes owned by owner arelisted. If owner is:all then al indexes arelis-
ted.

The keyword argument on limits the results to indexes on the specified tables. Meaningful valuesfor on

are NI L (the default) which means that all tables are considered, a string, symbol or SQL expression
representing atable namein dat abase or alist of such table identifiers.

Examples

(list-indexes)
=> ("enpl oyeepk" "conpanypk" "addrpk" "bar")

(list-indexes :on '([addr] [conpany]))
=> ("addrpk" "conmpanypk")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

100

LIST-INDEXES

None.

See Also

creat e-i ndex
dr op-i ndex
i ndex-exi sts-p

Notes

l'ist-indexesisaCLSQL extension.

101

Name

INDEX-EXISTS- — Tests for the existence of a database index.
Function

Syntax

i ndex-exi sts-p name &key owner database => result

Arguments and Values

nane The name of the index as a string, symbol or SQL expression.
owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

resul t A Boolean.

Description

Tests for the existence of an SQL index caled nane in database which defaults to
default-database. owner is NI L by default which means that only indexes owned by users are ex-
amined. If owner is a string denoting a user name, only indexes owned by owner are examined. If
owner is:al then all indexes are examined.

Examples

(i ndex-exists-p [bar])
== T

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

creat e-i ndex

102

INDEX-EXISTS-P

dr op-i ndex
i st-indexes

Notes

i ndex- exi st s-pisaCLSQL extension.

103

Name

ATTRIBUTE-TY PE — Returns the type of the supplied attribute.
Function

Syntax

attribute-type attribute table & ey owner database => type, precision, scale

Arguments and Values

attribute The name of the index as a string, symbol or SQL expression.
tabl e The name of atable asastring, symbol or SQL expression.
owner A string, NI L or :all.

dat abase A database object which defaults to * default-database* .

type A keyword symbol denoting a vendor-specific SQL type.
preci si on An integer denoting the precision of the attribute type or NI L.
scal e An integer denoting the scale of the attribute type or NI L.

nul | s-accepted Oorl.

Description

Returns a keyword symbol representing the vendor-specific field type of the supplied attribute at -

t ri but e in the table specified by t abl e in dat abase which defaults to * default-database* . owner

is NI L by default which means that the attribute specified by at t ri but e, if it exists, must be user
owned else NI L isreturned. If owner isastring denoting a user name, the attribute, if it exists, must be
owned by owner else NI L isreturned, whereas if owner is:all then the attribute, if it exists, will be re-
turned regardless of its owner.

Other information is also returned. The second value is the type precision, the third is the scale and the
fourth represents whether or not the attribute accepts null values (avalue of 0) or not (avalue of 1).

Examples

(attr|bute type [en"pl|d] [enpl oyee])
=> :INT4, 4, NL,

Side Effects

None.

104

ATTRIBUTE-TYPE

Affected by

* default-database*

Exceptional Situations

None.

See Also

list-attributes
list-attribute-types

Notes

None.

105

Name

LIST-ATTRIBUTE-TY PES — Returns information about the attribute types of atable.
Function

Syntax

list-attribute-types table & ey owner database => result

Arguments and Values

tabl e The name of atable as a string, symbol or SQL expression.
owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

resul t A list.

Description

Returns a list containing information about the SQL types of each of the attributes in the table specified
by t abl e in dat abase which has a default value of *default-database*. owner is NI L by default
which means that only attributes owned by users are listed. If owner is a string denoting a user name,
only attributes owned by owner arelisted. If owner is:all then all attributes are listed. The elements of
the returned list are lists where the first element is the name of the attribute, the second element is its
SQL type, the third is the type precision, the fourth is the scale of the attribute and the fifth is 1 if the at-
tribute accepts null values and otherwise 0.

Examples

(list-attribute-types [enpl oyee])
=> (("enplid" :INT4 4 NIL 0) ("groupid" :INT4 4 NIL 0)

"first_nane" :VARCHAR 30 NIL 1) ("last_nane" :VARCHAR 30 NIL 1)
"emai |l " : VARCHAR 100 NIL 1) ("econpanyid" :INT4 4 NIL 1)
"managerid" :INT4 4 NIL 1) ("height" :FLOAT8 8 NIL 1)

"married" :BOOL 1 NIL 1) ("birthday" :TIMESTAMP 8 NIL 1)
"bd_utine" :INT8 8 NIL 1))

NSNS

Side Effects

None.

Affected by

* default-database*

106

LIST-ATTRIBUTE-TYPES

Exceptional Situations

None.

See Also

attribute-type
list-attribute-types

Notes

None.

107

Name

LIST-ATTRIBUTES — Returns the attributes of atable asalist.
Function

Syntax

list-attributes nane &ey owner dat abase => result

Arguments and Values

nane The name of atable as a string, symbol or SQL expression.
owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

resul t A list.

Description

Returns a list of strings representing the attributes of table name in dat abase which defaults to
default-database. owner is Nl L by default which means that only attributes owned by users are lis-
ted. If owner isastring denoting a user name, only attributes owned by owner arelisted. If owner is
:al then all attributes are listed.

Examples

(list-attributes [enpl oyee])
=> ("enmplid" "groupid" "first_name" "last_nanme" "email" "econpanyid" "nmanagerid"
"height" "married" "birthday" "bd_utinme")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

108

LIST-ATTRIBUTES

attribute-type
list-attribute-types

Notes

None.

109

Name

CREATE-SEQUENCE — Create a database sequence.
Function

Syntax

creat e-sequence nanme &key dat abase =>

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.

dat abase A database object which defaults to * default-database* .

Description

Creates a sequence called nane in dat abase which defaults to * default-database* .
Examples

(create-sequence [foo0])

=>

(sequence-exi sts-p [foo0])

= T

Side Effects

A sequenceis created in dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error is signalled if arelation called nane already exists.

See Also

dr op- sequence
list-sequences
sequence- exi sts-p
sequence- | ast
sequence- next

110

CREATE-SEQUENCE

set - sequence- posi tion

Notes

creat e- sequence isaCLSQL extension.

111

Name

DROP-SEQUENCE — Drop a database sequence.
Function

Syntax

dr op- sequence nane &key if-does-not-exist database =>

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

i f-does-not-exist A symbol. Meaningful values are :ignore or :error (the default).

Description
Drops the sequence called nane from dat abase which defaults to * default-database* . If the sequence

does not exist and i f - does- not - exi st is:ignorethen dr op- sequence returns NI L whereas an
errorissignalled if i f - does- not - exi st is:error.

Examples

(sequence-exi sts-p [foo0])

= T

(drop-sequence [foo] :if-does-not-exist :ignore)
=>

(sequence-exi sts-p [foo0])

=> N L

Side Effects

A sequenceis dropped from dat abase.

Affected by

* default-database*

Exceptional Situations

An error is signalled if name is not a string, symbol or SQL expression. An error of type sgl-data-
base-data-error issignalled if nane doesn't exist andi f - does- not - exi st hasavalue of :error.

See Also

112

DROP-SEQUENCE

creat e- sequence
list-sequences
sequence- exi sts-p
sequence- | ast
sequence- next

set - sequence-position

Notes

dr op- sequence isaCLSQL extension.

113

Name

LIST-SEQUENCES — Returns alist of database sequences.
Function

Syntax

i st-sequences &ey owner database => result

Arguments and Values

owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

result A list of strings.

Description
Returns a list of strings representing sequence names in dat abase which defaults to
default-database. owner is NI L by default which means that only sequences owned by users are lis-

ted. If owner isastring denoting a user name, only sequences owned by owner arelisted. If owner is
:all then all sequences are listed.

Examples

(1ist-sequences)
=> ("foo")

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

creat e- sequence
dr op- sequence
sequence- exi sts-p

114

LIST-SEQUENCES

sequence- | ast
sequence- next
set - sequence-position

Notes

list-sequences isaCLSQL extension.

115

Name

SEQUENCE-EXISTS-P— Tests for the existence of a database sequence.
Function

Syntax

sequence- exi sts-p name &key owner database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
owner A string, NI L or :all.
dat abase A database object which defaults to * default-database* .

resul t A Boolean.

Description

Tests for the existence of an SQL sequence caled name in dat abase which defaults to
default-database. owner is Nl L by default which means that only sequences owned by users are ex-
amined. If owner isastring denoting a user name, only sequences owned by owner are examined. If
owner is:all then al sequences are examined.

Examples

(sequence-exi sts-p [foo0])
=> N L

Side Effects

None.

Affected by

* default-database*

Exceptional Situations

None.

See Also

cr eat e- sequence

116

SEQUENCE-EXISTS-P

dr op- sequence

i st-sequences
sequence- | ast
sequence- next

set - sequence- position

Notes

sequence- exi st s- p isaCLSQL extension.

117

Name

SEQUENCE-LAST — Return the last element in a database sequence.
Function

Syntax

sequence- | ast nane &key database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

result An integer.

Description

Return the last value allocated in the sequence called name in dat abase which defaults to
* default-database* .

Examples

(sequence-l ast [foo0])
= 1

Side Effects

None.

Affected by

The current value stored in database sequence nane.

* default-database*

Exceptional Situations

Will signal an error of type sgl-database-data-error if a sequence called name does not exist in dat a-
base.

See Also

creat e- sequence
dr op- sequence

118

SEQUENCE-LAST

list-sequences
sequence- exi sts-p
sequence- next

set - sequence- position

Notes

sequence- | ast isaCLSQL extension.

119

Name

SEQUENCE-NEXT — Increment the value of a database sequence.
Function

Syntax

sequence- next nane &key database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
dat abase A database object which defaults to * default-database* .

result An integer.

Description

Increment and return the value of the sequence called name in dat abase which defaults to
* default-database* .

Examples

(sequence-l ast [foo0])
=> 3
(sequence-next [foo])
=> 4
(sequence-next [foo])
=> 5
(sequence-next [foo0])
=> 6

Side Effects

Modifies the value of the sequence nane in dat abase.

Affected by

The current value stored in database sequence nane.
* default-database*
Exceptional Situations

Will signal an error of type sgl-database-data-error if a sequence called nanme does not exist in dat a-
base.

120

SEQUENCE-NEXT

See Also

Creat e- sequence

dr op- sequence
list-sequences
sequence-exi sts-p
sequence- | ast

set - sequence-position

Notes

sequence- next isaCLSQL extension.

121

Name

SET-SEQUENCE-POSITION — Sets the position of a database sequence.
Function

Syntax

set - sequence-position nane position &ey database => result

Arguments and Values

nane The name of the sequence as a string, symbol or SQL expression.
posi tion Aninteger.
dat abase A database object which defaults to * default-database* .

result Aninteger.

Description

Explicitly set the position of the sequence cadled name in dat abase, which defaults to
default-database, to posi t i on whichisreturned.

Examples

(sequence-l ast [foo0])
= 4

(set-sequence-position [foo] 50)
=> 50

(sequence-next [foo])

=> 51

Side Effects

Modifies the value of the sequence nane in dat abase.

Affected by

* default-database*

Exceptional Situations

Will signal an error of type sqgl-database-data-error if a sequence called name does not exist in dat a-
base.

See Also

122

SET-SEQUENCE-POSITION

creat e- sequence
dr op- sequence
list-sequences
sequence- exi sts-p
sequence- | ast
sequence- next

Notes

set - sequence- posi ti onisaCLSQL extension.

123

Name

TRUNCATE-DATABASE — Drop dl tables, views, indexes and sequences in a database.
Function

Syntax

truncat e- dat abase &key dat abase =>

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Drop all tables, views, indexes and sequencesin dat abase which defaults to * default-database* .

Examples

(list-tables)

=> ("type_table" "type bigint" "enployee" "conpany" "addr" "ea_join" "big")
(list-indexes)

=> ("enpl oyeepk" "conpanypk" "addrpk")

(1'ist-views)

=> ("l eni ns_group")

(1ist-sequences)

=> ("foo" "bar")

(truncat e- dat abase)

=>

(list-tables)

=> NL

(list-indexes)
=> N L
(list-views)

=> N L
(1ist-sequences)
=> N L

Side Effects

M aodifications are made to the underlying database.

Affected by

None.

Exceptional Situations

124

TRUNCATE-DATABASE

Signals an error of type sgl-database-error if dat abase isnot a database object.

See Also

drop-table
dr op-vi ew
dr op- i ndex
dr op- sequence

Notes

t runcat e- dat abase isa CLSQL extension.

125

Functional Data Manipulation
Language (FDML)

The functional data manipulation interface provided by CLSQL includes functions for inserting, updat-
ing and deleting records in existing database tables and executing SQL queries and statements with the
results of queries returned as Lisp types. SQL statements expressed as strings may be executed with the
guery and execut e- command functions. The sel ect function, on the other hand, allows for the
construction of queries in Lisp using the symbolic SQL syntax. Finally, iterative manipulation of query
resultsis supported by do- quer y, map- quer y and an extended clause for thel oop macro.

126

Name
CACHE-TABLE-QUERIES-DEFAULT — Specifies the default behaviour for caching of attribute

types.
Variable

Value Type

A valid argument totheact i on parameter of cache-t abl e- queri es,i.e.oneof T, NI L, :flush.
Initial Value

nil
Description

Specifies the default behaivour for caching of attribute types. Meaningful values are T, NI L and :flush
as described for theact i on argument to cache-t abl e- queri es.

Examples

None.

Affected By

None.

See Also

cache-tabl e-queries

Notes

None.

127

Name

CACHE-TABLE-QUERIES — Control the caching of table attribute types.
Function

Syntax

cache-tabl e-queries table & ey action database =>

Arguments and Values

tabl e A string representing a database table, T or :default.
action T, NI L or :flush.

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Controls the caching of attribute type information on the table specified by t abl e in dat abase which
defaults to *default-database*. act i on specifies the caching behaviour to adopt. If its value is T then
attribute type information is cached whereas if its value is NI L then attribute type information is not
cached. If acti on is:flush then all existing type information in the cache for t abl e is removed, but
caching is still enabled. t abl e may be a string representing a table for which the caching action isto be
taken while the caching action is applied to all tables if t abl e is T. Alternatively, when t abl e is
:default, the default caching action specified by * cache-table-queries-default* is applied to all tables for
which a caching action has not been explicitly set.

Examples

(setf *cache-tabl e-queries-default* t)
== T

(create-table [foo0]
"(([i1d] integer)
([height] fl oat)
([nane] (string 24))
([conment s] varchar)))
=>
(cache-tabl e-queries "foo")
=>

(list-attribute-types "foo")

=> (("id" :INT4 4 NNL 1) ("height" :FLOAT8 8 NIL 1) ("name" :BPCHAR 24 NIL 1)
("conments" :VARCHAR 255 NIL 1))

(drop-table "foo")

=>

(create-table [fo

"(([i1d] integer)

([height] float)

([name] (string 36))

([coments] (string 100))))

=>

(cache-tabl e-queries "foo" :action :flush)

128

CACHE-TABLE-QUERIES

=>

(list-attribute-types "foo")

=> (("id" :INT4 4 NNL 1) ("height" :FLOAT8 8 NIL 1) ("nane" :BPCHAR 36 NIL 1)
("conments" :BPCHAR 100 NIL 1))

Side Effects

Theinternal attribute cache for dat abase is modified.

Affected by

* cache-table-queries-defaul t*

Exceptional Situations

None.

See Also

* cache-table-queries-default*

Notes

None.

129

Name
INSERT-RECORDS — Insert tuples of datainto a database table.
Function

Syntax

insert-records &ey into attributes values av-pairs query database =>

Arguments and Values

into A string, symbol or symbolic SQL expression representing the name of atable existing
indat abase.

attributes A listof attribute identifiersor NI L.

val ues A list of attribute valuesor NI L.

av-pairs A list of attribute identifier/value pairsor NI L.
query A query expressionor NI L.

dat abase A database object. Thiswill default to the value of * default-database* .

Description

Inserts records into the table specified by i nt o in dat abase which defaults to * defaul t-database* .

There are five ways of specifying the values inserted into each row. In the first val ues contains a list
of valuestoinsert and at t ri but es, av- pai rs and query are NI L. This can be used when values
are supplied for al attributesini nt o. Inthe second, at t ri but es isalist of column names, val ues
is a corresponding list of values and av- pai rs and query are NI L. In the third, attri but es,
val ues and query are NI L and av- pai r s isan alist of (attribute value) pairs. In the fourth, val -
ues,av-pairsandattributes aeN L andquery isasymbolic SQL query expression in which
the selected columns also exist ini nt 0. In the fifth method, val ues and av- pai r s are nil and at -
tributes isalist of column names and query is a symbolic SQL query expression which returns
values for the specified columns.

Examples

(select [first-name] [last-nane] [enail]
:from [enpl oyee]
:where [= [enplid] 11]
:field-nanmes nil)
=> N L
(insert-records :into [enpl oyee]
cattributes "(enmplid groupid first_nanme | ast_nane enai
econpanyi d manageri d)
:values ' (11 1 "Yuri" "CGagarin" "gagari n@oviet.org"
11
-))
(select [first-name] [last-nanme] [email]

130

INSERT-RECORDS

:from [enpl oyee]
cwhere [= [enplid] 11]
:field-nanes nil)
=> (("Yuri" "CGagarin" "gagari n@oviet.org"))

Side Effects

Maodifications are made to the underlying database.

Affected by

None.

Exceptional Situations

An error of type sgl-database-data-error is signalled if t abl e is not an existing table in dat abase or
if the specified attributes are not found.

See Also

updat e-recor ds
del ete-records

Notes

None.

131

Name
UPDATE-RECORDS — Updates the values of existing records.
Function

Syntax

update-records table &ey attributes values av-pairs where database =>

Arguments and Values

tabl e A string, symbol or symbolic SQL expression representing the name of atable existing
indat abase.

attributes A listof attribute identifiersor NI L.

val ues A list of attribute valuesor NI L.

av-pairs A list of attribute identifier/value pairsor NI L.

wher e A symbolic SQL expression.

dat abase A database object. Thiswill default to the value of * default-database* .

Description

Updates the attribute values of existing records satsifying the SQL expression wher e in the table spe-
cified by t abl e indat abase which defaults to * default-database* .

There are three ways of specifying the values to update for each row. In thefirst, val ues containsalist
of valuesto usein the update and at t ri but es and av- pai r s are NI L. This can be used when val-
ues are supplied for al attributes in t abl e. In the second, at t ri but es is alist of column names,
val ues is a corresponding list of values and av- pai rs is NI L. In the third, attri but es and
val ues areNI L and av- pai r s isan dlist of (attribute value) pairs.

Examples

(select [first-name] [last-nanme] [email]
:from [enpl oyee]

where [= [enplid] 1]
:field-nanes nil)
=> (("Mladimr" "Lenin" "lenin@oviet.org"))

(updat e-records [enpl oyee]
rav-pairs' ((first_nanme "Yuri")
(1 ast _nane "Gagarin")
(emai | "gagarin@oviet.org"))
:where [= [enplid] 1])
=>
(select [first-nanme] [last-nane] [email]
:from [enpl oyee]
where [= [enplid] 1]
:field-names nil)

132

UPDATE-RECORDS

=> (("Yuri" "Gagarin" "gagarin@oviet.org"))

Side Effects

Modifications are made to the underlying database.

Affected by

None.

Exceptional Situations

An error of type sgl-database-data-error is signaled if t abl e is not an existing table in dat abase, if
the specified attributes are not found or if the SQL statement resulting from the symbolic expression
wher e does not return a Boolean value.

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

See Also

i nsert-records
del et e-records

Notes

None.

133

Name

DELETE-RECORDS — Delete records from a database table.
Function

Syntax

del ete-records &key from where dat abase =>

Arguments and Values

from A string, symbol or symbolic SQL expression representing the name of atable existing in
dat abase.
wher e A symbolic SQL expression.

dat abase A database object. Thiswill default to the value of *default-database*.

Description

Deletes records satisfying the SQL expression wher e from the table specified by f r omin dat abase
specifies a database which defaults to * default-database* .

Examples

(select [first-nane] [last-nane] [email]
:from [enpl oyee]
:where [= [enplid] 11]
:field-nanmes nil)
=> (("Yuri"™ "Gagarin" "gagarin@oviet.org"))
(del ete-records :from[enployee] :where [= [enmplid] 11])
=>
(select [first-name] [last-nanme] [enail]
:from [enpl oyee]
:where [= [enplid] 11]
:field-nanes nil)
=> N L

Side Effects

M odifications are made to the underlying database.

Affected by

None.

Exceptional Situations

134

DELETE-RECORDS

An error of type sgl-database-data-error is signalled if f r omis not an existing table in dat abase or if
the SQL statement resulting from the symbolic expression wher e does not return a Boolean value.

See Also

i nsert-records
updat e-recor ds

Notes

None.

135

Name

EXECUTE-COMMAND — Execute an SQL command which returns no values.
Generic Function

Syntax

execut e- command sql - expressi on &ey dat abase =>

Arguments and Values

sgl - expressi on An sgl expression that represents an SQL statement which will return no values.

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Executes the SQL command sql - expr essi on, which may be a symbolic SQL expression or a string
representing any SQL statement apart from a query, on the supplied dat abase which defaults to
* default-database* .

Examples

(execute-command "create table eventlog (time char(30), event char(70))")
=

(execute-command "create table eventlog (time char(30), event char(70))")
>>

>> Whi | e accessi ng dat abase #<CLSQ.- POSTGRESQL: POSTGRESQL- DATABASE {480B2B
>> wth expression "create table eventlog (tinme char(30), event char(70))
>> Error NIL: ERROR antreate: eventlog relation already exists

>> has occurred.

>>

>> Restarts:

>> 0: [ABORT] Return to Top-Level.

>>

>> Debug (type H for help)

>>

>> (CLSQL- POSTGRESQL: : | (PCL: : FAST- METHOD DATABASE- EXECUTE- COMMAND (T POSTG
>> #<unused- ar g>

>> #<unused- ar g>

>> #<unavai l abl e-ar g>

>> #<unavai | abl e- ar g>)

>> S?urce: (ERROR ' SQL- DATABASE- ERROR : DATABASE DATABASE : EXPRESSI ON .. .)
>> 0] O

(execut e-command "drop table eventl og")
=>

Side Effects

136

EXECUTE-COMMAND

Whatever effects the execution of the SQL statement has on the underlying database, if any.

Affected by

None.

Exceptional Situations
If the execution of the SQL statement leads to any errors, an error of type sqgl-database-error is signalled.

See Also

query
Notes

None.

137

Name

QUERY — Execute an SQL query and return the tuplesas alist.
Generic Function

Syntax

guery query-expression &ey database result-types flatp field-nanes => resul

Arguments and Values

guery-expressi on An sgl expression that represents an SQL query which is expected to return a
(possibly empty) result set.

dat abase A database object. Thiswill default to the value of * default-database* .
flatp A Boolean whose default valueis NI L.
result-types A field type specifier. The default is :auto;.

The purpose of this argument is cause CLSQL to import SQL numeric fields
into numeric Lisp objects rather than strings. This reduces the cost of allocat-
ing a temporary string and the CLSQL users inconvenience of converting
number strings into number objects.

A value of :auto causes CLQL to automatically convert SQL fieldsinto a nu-
meric format where applicable. The default value of NI L causes all fields to
be returned as strings regardless of the SQL type. Otherwise alist is expected
which has a element for each field that specifies the conversion. Valid type
identifiersare:

;int Field isimported as a signed integer, from 8-hits to 64-bits depending upon the field type.

:double Field isimported as a double-float number.

t Field isimported as a string.
If the list is shorter than the number of fields, the avalue of t is assumed for
the field. If the list is longer than the number of fields, the extra elements are
ignored.

fi el d- nanes A boolean with a default value of T. When T, this function returns a second
value of alist of field names. When NI L, this function only returns one value
- thelist of rows.

result A list representing the result set obtained. For each tuple in the result set,
thereisan element in thislist, which isitself alist of all the attribute valuesin
thetuple.
Description

Executes the SQL query expression quer y- expr essi on, which may be an SQL expression or a
string, on the supplied dat abase which defaults to *default-database*. r esul t -t ypes is alist of
symbols which specifies the lisp type for each field returned by quer y- expr essi on.

138

QUERY

If result-types isN L al results are returned as strings whereas the default value of :auto means
that the lisp types are automatically computed for each field.

fi el d- nanmes is T by default which means that the second value returned is alist of strings represent-
ing the columns selected by query- expressi on. If fiel d-nanmes is NI L, the list of column
names is not returned as a second value.

f | at p hasadefault value of NI L which meansthat the results are returned as alist of lists.If FLATPis
T and only one result is returned for each record selected by quer y- expr essi on, the results are re-
turned as elements of alist.

Examples

(query "select emplid,first_name, | ast_nane, hei ght from enpl oyee where enplid
=> ((1 "Mladimr" "Lenin" 1.5564661d0)),
("emplid" "first_nanme" "last_nane" "height")

(query "select enmplid,first_nane,|ast_nane, hei ght from enpl oyee where enplid
:field-names nil)

=> ((1 "Madimr" "Lenin" 1.5564661d0))

(query "select enplid,first_nane,|ast_nane, hei ght from enpl oyee where enplid
:field-nanmes ni
cresult-types nil)

=> (("1" "Mladimr" "Lenin" "1.5564661"))

(query "select emplid,first_nane, | ast _nane, hei ght from enpl oyee where enplid
:field-names nil
;result-types '(:int t t :double))

=> ((1 "Madimr" "Lenin" 1.5564661))

(query "select |ast_name from enpl oyee where enplid > 5" :flatp t)

=> (" Andropov" "Chernenko" "Gorbachev" "Yeltsin" "Putin"),

("l ast _name")

(query "select |ast_name from enpl oyee where enplid > 10"
flatp t
:field-nanmes nil)

=> NL

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

See Also

execut e- conmand

139

1)

1||

QUERY

print-query
do- query
map- query

| oop

sel ect

Notes

Thefi el d- nanes andresul t -t ypes keyword arguments are a CLSQL extension.

140

Name
PRINT-QUERY — Prints atabular report of query results.
Function

Syntax

print-query query-expression &ey titles formats sizes stream dat abase =>

Arguments and Values

guery-expressi on An sgl expression that represents an SQL query which is expected to return a
(possibly empty) result set.

dat abase A database object. Thiswill default to the value of * default-database* .

titles A list of stringsor NI L which isthe default value.

formats A list of strings, NI L or T which isthe default value.

si zes A list of numbers, NI L or T which isthe default value.

stream An output stream or T which is the default value.
Description

Prints a tabular report of the results returned by the SQL query quer y- expr essi on, which may be a
symbolic SQL expression or a string, in dat abase which defaults to * default-database*. The report is
printed onto st r eamwhich has a default value of T which means that *standard-output* is used. The
titl e argument, which defaults to NI L, allows the specification of alist of strings to use as column
titles in the tabular output. si zes accepts a list of column sizes, one for each column selected by
guery- expr essi on, to use in formatting the tabular report. The default value of T means that min-
imum sizes are computed. f or mat s isalist of format strings to be used for printing each column selec-
ted by quer y- expr essi on. The default value of f or mat s is T meaning that ~A is used to format
al columns or ~VA if column sizes are used.

Examples

(print-query [select [enplid] [first-nane] [last-nanme] [email]
:from [enpl oyee]
where [< [enplid] 5]]
‘titles " ("1 D' "FORENAME" " SURNAME" "EMAIL"))
D FORENAMVE SURNAMVE EMAI L

I

1 Madinr Lenin | eni n@oviet.org

2 Josef Stalin stal i n@oviet.org

3 Leon Trotsky trotsky@oviet.org
4 N kita Kruschev kruschev@oviet. org
=>

(print-query "select enplid,first_nane,|ast_nane,email from enpl oyee where enplid
ctitles " ("1 D" "FORENAME" "SURNAME" "EMAIL"))
| D FORENAME SURNAME EMAIL

141

PRINT-QUERY

5 Leonid Brezhnev brezhnev@oviet.org
6 Yuri Andr opov andropov@ovi et. org
7 Konstantin Chernenko chernenko@oviet.org
8 M khail Gor bachev gor bachev@oviet. org
9 Boris Yeltsin yeltsin@oviet.org
10 Madinr Putin puti n@oviet.org

=>

Side Effects

None.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

See Also

query
do- query
map- query
| oop

sel ect

Notes

None.

142

Name

SELECT — Executes a query given the supplied constraints.
Function

Syntax

select &rest identifiers & ey all distinct fromgroup-by having Iimt offset

Arguments and Values

identifiers A set of sgl expressions each of which indicates a column to query.
al | A Boolean.

di stinct A Boolean.

from One or more SQL expression representing tables.

gr oup- by An SQL expression.

havi ng An SQL expression.

[imt A non-negative integer.

of f set A non-negative integer.

or der - by An SQL expression.

set-operation AnSQL expression.

wher e An SQL expression.
dat abase A database object. Thiswill default to the value of * default-database*.
flatp A Boolean whose default valueis NI L.

result-types A fieldtype specifier. The default is :auto.

The purpose of this argument is cause CLSQL to import SQL numeric fields into
numeric Lisp objects rather than strings. This reduces the cost of allocating a tem-
porary string and the CLSQL users' inconvenience of converting number strings
into number objects.

A value of :auto causes CLSQL to automatically convert SQL fields into a numeric
format where applicable. The default value of NI L causes all fields to be returned
as strings regardless of the SQL type. Otherwise alist is expected which has a ele-
ment for each field that specifiesthe conversion. Valid type identifiers are:

;int Field isimported as a signed integer, from 8-bits to 64-bits depending upon the field type.

:double Field isimported as a double-float number.

t Field isimported as a string.
If the list is shorter than the number of fields, the a value of t is assumed for the
field. If thelist islonger than the number of fields, the extra elements are ignored.

143

SELECT

fiel d- names A boolean with a default value of T. When T, this function returns a second value
of alist of field names. When NI L, this function only returns one value - the list
of rows.

refresh This value is only considered when CLOS objects are being selected. A boolean

with a default value of NI L. When the value of the cachi ng keyword is T, a
second equivalent sel ect call will return the same view class instance objects.
Whenr ef r esh isT, then slots of the existing instances are updated as necessary.
In such cases, you may wish to override the hook i nst ance-r ef r esh.

cachi ng This value is only considered when CLOS objects are being selected. A boolean
with a default value of *def aul t - cachi ng*. CLSQL caches objects in ac-
cordance with the CommonSQL interface: a second equivalent sel ect call will
return the same view class instance objects.

result A list representing the result set obtained. For each tuple in the result set, thereis
an element in thislist, whichisitself alist of al the attribute values in the tuple.

Description

Executes a query on dat abase, which has a default value of * default-database*, specified by the SQL
expressions supplied using the remaining arguments in ar gs. The sel ect function can be used to
generate queries in both functional and object oriented contexts.

In the functional case, the required arguments specify the columns selected by the query and may be
symbolic SQL expressions or strings representing attribute identifiers. Type modified identifiersindicate
that the values selected from the specified column are converted to the specified lisp type. The keyword
arguments al |, di stinct, from group-by, having, limt, of fset, order-by, set-

oper ati on and wher e are used to specify, using the symbolic SQL syntax, the corresponding com-
ponents of the SQL query generated by the call to sel ect .

resul t-types isalist of symbols which specifies the lisp type for each field returned by the query.
If resul t-types isNI L al results are returned as strings whereas the default value of :auto means
that the lisp types are automatically computed for each field. fi el d- names is T by default which
means that the second value returned is a list of strings representing the columns selected by the query.
If fi el d- names isNI L, thelist of column namesis not returned as a second value.

In the object oriented case, the required arguments to sel ect are symbols denoting View Classes
which specify the database tables to query. In this case, sel ect returnsalist of View Class instances
whose dots are set from the attribute values of the records in the specified table. Slot-valueis alega op-
erator which can be employed as part of the symbolic SQL syntax used in the wher e keyword argu-
ment to sel ect .refresh isNI L by default which means that the View Class instances returned are
retrieved from a cache if an equivalent call to sel ect has previously been issued. If r ef r esh istrue,
the View Class instances returned are updated as necessary from the database and the generic function
i nst ance-refreshed iscalled to perform any necessary operations on the updated instances.

In both object oriented and functional contexts, f | at p has adefault value of NI L which means that the
results are returned asalist of lists. If f | at p ist and only one result is returned for each record selected
in the query, the results are returned as elements of alist.

Examples

(select [first-nanme] :from[enployee] :flatp t :distinct t
:field-names nil
cresult-types nil

144

SELECT

corder-by [first-nane])
=> ("Boris" "Josef" "Konstantin" "Leon" "Leonid" "Mkhail" "N kita" "Vladimr"
"Yuri")

(select [first-name] [count [*]] :from [enpl oyee]
;result-types ni
;group-by [first-nane]
;order-by [first-nane]
:field-nanmes nil)
=> (("Boris" "1") ("Josef" "1") ("Konstantin" "1") ("Leon" "1") ("Leonid" "1")
("Mkhail"™ "1") ("Nikita" "1") ("Madimr" "2") ("Yuri" "1"))

(select [last-nanme] :from [enpl oyee]
cwhere [like [email] "%org"]
:order-by [Iast-nane]
:field-nanmes ni
:result-types ni
flatp t)
=> (" Andropov" "Brezhnev" "Chernenko" "Gorbachev" "Kruschev" "Lenin" "Putin"
"Stalin" "Trotsky" "Yeltsin")

(select [max [enplid]] :from [enpl oyee]
cflatp t
:field-names nil
:result-types :auto)
=> (10)

(select [avg [height]] :from[enployee] :flatp t :field-nanmes nil)
=> (1.58999584d0)

(select [enplid] [last-nanme] :from[enployee] :where [= [enplid] 1])
=> ((1 "Lenin")),

("emplid" "last_nane")
(select [enplid :string] :from [enpl oyee]
where [= 1 [enplid]]
:field-names nil
cflatp t)

=> ("1")

(select [enplid] :from|[enployee] :order-by [enplid]
:where [not [between [* [enplid] 10] [* 5 10] [* 10 10]]]
:field-names nil
flatp t)

=> (1 2 3 4)

(select [enplid] :from[enpl oyee
where [in [enplid] '(1
cflatp t
:order-by [enplid]
:field-nanes nil)

=> (1 2 3 4)

]
2 3 4)]

(select [enplid] :from][enployee]
:order-by [enplid]
climt 5
roffset 3
:field-names nil
flatp t)

=> (456 7 8)

(select [first-name] [last-nanme] :from [enpl oyee]
:field-nanmes ni
corder-by ' (([first-name] :asc) ([last-nane] :desc)))

145

SELECT

=> (("Boris" "Yeltsin") ("Josef" "Stalin") ("Konstantin" "Chernenko")
("Leon" "Trotsky") ("Leonid" "Brezhnev"') ("M khail" "Gorbachev")
("N kita" "Kruschev") ("Vladimr" "Putin") ("Madimr" "Lenin")
("Yuri" "Andropov"))

(select [last-nanme] :from [enpl oyee]
:set-operation [union [select [first-nane] :from[enpl oyee]
;order-by [last-nane]]]
flatp t
cresult-types nil
:field-names nil)
=> (" Andropov" "Boris" "Brezhnev" "Chernenko" "Corbachev" "Josef" "Konstantin"
"Kruschev" "Lenin" "Leon" "Leonid" "Mkhail" "N kita" "Putin" "Stalin"
"Trotsky" "Vladimr" "Yeltsin" "Yuri")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

See Also

query
print-query

do- query

map- query

| oop

i nstance-refreshed

Notes

The sel ect function is actualy implemented in CLSQL with a single &rest parameter (which is sub-
sequently destructured) rather than the keyword parameters presented here for the purposes of exposi-
tion. This means that incorrect or missing keywords or values may not trigger errors in the way that they
would if sel ect had been defined using keyword arguments.

Thefi el d- nanes andresul t -t ypes keyword arguments are a CLSQL extension.

sel ect iscommon across the functional and object-oriented data mani pulation languages.

146

Name

DO-QUERY — lterate over al the tuples of aquery.
Macro

Syntax

do-query ((& est args) query-expression &key database result-types &body bod

Arguments and Values

ar gs A list of variable names.

guery-expressi on An sgl expression that represents an SQL query which is expected to return a
(possibly empty) result set, where each tuple has as many attributes asf unc-
t i on takes arguments.

dat abase A database object. Thiswill default to * default-database*.
result-types A field type specifier. The default is NI L. See query for the semantics of
this argument.
body A body of Lisp code, likeinadest ruct uri ng- bi nd form.
result The result of executing body .
Description

Repeatedly executes body within a binding of ar gs on the fields of each row selected by the SQL
guery query-expr essi on, which may be a string or a symbolic SQL expression, in dat abase
which defaults to * default-database* .

The body of code is executed in a block named nil which may be returned from prematurely viar e-
turnorreturn-from lnthiscasethe result of evaluating the do- quer y form will be the one sup-
pliedtor et urnorr et ur n- f r om Otherwise the result will be nil.

The body of code appears also isif wrapped inadest r uct uri ng- bi nd form, thus allowing declar-
ations at the start of the body, especially those pertaining to the bindings of the variables named in
ar gs.

resul t-types isalist of symbols which specifies the lisp type for each field returned by quer y-
expression.Ifresul t-types isN L al results are returned as strings whereas the default value
of :auto means that the lisp types are automatically computed for each field.

guery- expressi on may be an object query (i.e., the selection arguments refer to View Classes), in
which case ar gs are bound to the tuples of View Class instances returned by the object oriented query.

Examples

(do-query ((salary nanme) "sel ect salary,name from sinple")
(format t "~30A gets $~2,5%~% nane (read-fromstring salary)))

147

DO-QUERY

>> Mai, Pierre gets $10000. 00
>> Hacker, Random J. gets $08000. 50
=> N L

(do-query ((salary nanme) "sel ect salary,nanme from sinple")
(return (cons salary nane)))
=> ("10000.00" . "Mai, Pierre")

(let ((result "()))
(do-query ((nane) [select [last-name] :from [enpl oyee]
:order-by [l ast-nane]])
(push nanme result))
result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"
"Cher nenko" "Brezhnev" "Andropov")

(let ((result "()))
(do-query ((e) [select 'enployee :order-by [last-nane]])
(push (slot-value e 'last-nane) result))
result)
=> ("Yeltsin" "Trotsky" "Stalin" "Putin" "Lenin" "Kruschev" "Gorbachev"
" Cher nenko" "Brezhnev" "Andropov")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

If the number of variable namesin ar gs and the number of attributes in the tuples in the result set don't
match up, an error is signalled.

See Also

query

map- query
print-query
| oop

sel ect

Ther esul t -t ypes keyword argument is a CLSQL extension.

do- query iscommon across the functional and object-oriented data manipulation languages.

148

Name

L OOP — Extension to Common Lisp Loop to iterate over all the tuples of a query viaaloop clause.
Loop Clause

Syntax

{as | for} var [type-spec] being {each | the} {record | records | tuple | tuples}
Arguments and Values

var A d- var - spec, as defined in the grammar for | oop-clausesin the ANSI Standard for
Common Lisp. This allows for the usual |oop-style destructuring.

type-spec Anoptiona t ype- spec ether ssimple or destructured, as defined in the grammar for
| oop-clausesin the ANSI Standard for Common Lisp.

query An sgl expression that represents an SQL query which is expected to return a (possibly
empty) result set, where each tuple has as many attributes as f unct i on takes argu-
ments.

dat abase Anoptional database object. Thiswill default to the value of * default-database* .

Description

This clause is an iteration driver for | oop, that binds the given variable (possibly destructured) to the
consecutive tuples (which are represented as lists of attribute values) in the result set returned by execut-
ing the SQL quer y expression on thedat abase specified.

guery may be an object query (i.e., the selection arguments refer to View Classes), in which case the
supplied variable is bound to the tuples of View Class instances returned by the object oriented query.

Examples

(defvar *my-db* (connect '("dent" "newesini "dent" "dent"))
"My dat abase”
=> *W_ m*
(loop with tinme-graph = (make-hash-table :test # equal)
wi th event-graph = (make-hash-table :test # equal)
for (time event) being the tuples of "select time,event froml og"
from *ny- db*
do
ncf (gethash tinme tine-graph 0))
Inff (gethash event event-graph 0))
y
let ((showgraph (k v) (format t "~40A => ~5D~% k v)))
(format t "~&TI ne- G aph: ~%==========~0)
(maphash #' show graph ti nme-graph)
(format t "~&%Event - G aph: ~%===========~0)
(maphash #' show graph event-graph))
(return (values tine-graph event-graph)))
>> Ti me- & aph:
>> S —m—m=—

(i

(i
fina

(f

149

LOOP

>> D => 53000
>> X => 3
>> test-ne => 3000
>>

>> Event - G aph:

>> oo =—=—=—==

>> CLOS Benchmark entry. => 9000
>> Demp Text... = 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000

=> #<EQUAL hash table, 3 entries {48350A10}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

(1 oop for (forename surname)
bei ng each tuple in
[select [first-name] [last-nanme] :from [enpl oyee]
;order-by [last-nane]]
collect (concatenate 'string forename " " surnane))
=> ("Yuri Andropov" "Leonid Brezhnev" "Konstantin Chernenko" "M khail Gorbachev"
"N kita Kruschev" "Vladimr Lenin" "M adimr Putin" "Josef Stalin"
"Leon Trotsky" "Boris Yeltsin")
(loop for (e) being the records in
[sel ect 'enployee :where [< [enplid] 4] :order-by [enplid]]
collect (slot-value e 'last-nane))
=> ("Lenin" "Stalin" "Trotsky")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

Otherwise, any of the exceptional situations of | oop applies.

See Also

query
map- query
do- query
print-query
sel ect

Notes

The dat abase loop keyword isa CLSQL extension.

The extended | oop syntax is common across the functional and object-oriented data manipulation lan-

150

LOOP

guages.

151

Name

MAP-QUERY — Map afunction over al the tuples from a query
Function

Syntax

map- query out put-type-spec function query-expression & ey database result-types =>

Arguments and Values

out put -t ype- spec A sequence type specifier or nil.

function A function designator. f unct i on takes a single argument which is the atom
value for a query single with a single column or is alist of values for a multi-
column query.

guery-expressi on An sgl expression that represents an SQL query which is expected to return a
(possibly empty) result set.

dat abase A database abject. Thiswill default to the value of * default-database*.

result-types A field type specifier. The default is NI L. See query for the semantics of
this argument.

result If out put -t ype- spec isatype specifier other than nil, then a sequence of

the type it denotes. Otherwise nil is returned.

Description

Applies f unct i on to the successive tuples in the result set returned by executing the SQL quer y-
expr essi on. If theout put -t ype- spec isnil, then the result of each application of f uncti on is
discarded, and map- quer y returns nil. Otherwise the result of each successive application of f unc-
ti on iscollected in a sequence of type out put -t ype- spec, where the jths element is the result of
applying f unct i on to the attributes of the jths tuple in the result set. The collected sequence is the res-
ult of the call to map- query.

If the out put - t ype- spec isasubtype of list, the result will be alist.

If ther esul t -t ype isasubtype of vector, then if the implementation can determine the element type
specified for ther esul t - t ype, the element type of the resulting array is the result of upgrading that
element type; or, if the implementation can determine that the element type is unspecified (or *), the ele-
ment type of the resulting array ist; otherwise, an error is signaled.

If resul t-types isNI L al results are returned as strings whereas the default value of :auto means
that the lisp types are automatically computed for each field.

guer y- expressi on may be an object query (i.e., the selection arguments refer to View Classes), in

which case the supplied function is applied to the tuples of View Class instances returned by the object
oriented query.

Examples

152

MAP-QUERY

(map-query 'list # (lanbda (tuple)
(rmul tipl e-val ue-bind (salary nane) tuple
(decl are (ignorable nane))
(read-fromstring salary)))
"sel ect sal ary,nane from sinple where salary > 8000")
=> (10000. 0 8000. 5)

(map-query ' (vector double-float)
(lanbda (tuple)
(rmul tipl e-val ue-bind (salary nane) tuple
(decl are (ignorable nane))
(let ((*read-default-float-format* 'double-float))
(coerce (read-fromstring salary) 'double-float))
"sel ect sal ary,nane from sinple where salary > 8000")))
=> #(10000. 0d0 8000. 5d0)
(type-of *)
=> (S| MPLE- ARRAY DOUBLE- FLOAT (2))

(let (list)
(val ues (map-query nil # (lanbda (tuple)
(rmul tipl e-val ue-bind (salary nane) tuple
(push (cons nane (read-fromstring salary)) list))
"sel ect sal ary,nane from sinple where salary > 8000"))
list))
=> N L
=> (("Hacker, RandomJ." . 8000.5) ("M, Pierre" . 10000.0))

(map-query 'vector #'identity
[select [last-nanme] :from [enployee] :flatp t
:order-by [l ast-nane]])
=> #(" Andropov" "Brezhnev" "Chernenko" "Gorbachev" "Kruschev" "Lenin" "Putin"
"Stalin" "Trotsky" "Yeltsin")

(map-query 'list # identity
[sel ect [first-nane] [last-name] :from [enpl oyee]
order-by [last-nane]])

"Andropov") ("Leonid* "Brezhnev") ("Konstantin" "Chernenko")
hai | " "Gbrbachev") ("N|k|ta" "Kruschev") ("Vlad|n1r" "Lenin")
d|n1r "Putin") ("Josef" "Stalin") ("Leon" "Trotsky")

"Yeltsin"))

("Yuri
("MK
("Vl a
(" Bori

(map-query 'list # last-nane [sel ect 'enployee :order-by [enplid]])
=> ("Lenin" "Stalin" "Trotsky" "Kruschev" "Brezhnev" "Andropov" "Chernenko"
"Gor bachev" "Yeltsin" "Putin")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of type sgl-database-error is signalled.

An error of type type-error must be signaled if the out put -t ype- spec is not a recognizable subtype

153

MAP-QUERY

of list, not arecognizable subtype of vector, and not nil.

An error of type type-error should be signaled if out put -t ype- spec specifies the number of ele-
ments and the size of the result set is different from that number.

See Also

query

do- query
print-query
| oop

sel ect

Notes

Ther esul t -t ypes keyword argument is a CLSQL extension.

map- query iscommon across the functional and object-oriented data manipulation languages.

154

Transaction Handling

This section describes the interface provided by CLSQL for handling database transactions. The inter-
face allows for opening transaction blocks, committing or rolling back changes made and controlling
autocommit behaviour.

Note

In contrast to CommonSQL, CLSQL, by default, starts in transaction AUTOCOMMIT mode
(see set-autocommit). To begin a transaction in autocommit mode, start-
t ransacti on hasto be caled explicitly.

155

Name

START-TRANSACTION — Open atransaction block.
Function

Syntax
start-transaction &ey database => N L

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Starts atransaction block on dat abase which defaults to * default-database* and which continues until
rol | back or comm t arecalled.

Examples
(in-transaction-p)
=> NL
(select [*] :from[foo] :field-names nil)
=> N L
(start-transacti on)
=> N L
(in-transacti on-p)
== T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))

=>
(select [*] :from[foo] :field-nanmes nil)
=> ((1 "one"))

(roll back)

=> NI L

(i n-transacti on-p)

=> N L

(select [*] :from[foo] :field-names nil)
=> N L

Side Effects

Autocommit mode is disabled and if dat abase is currently within the scope of atransaction, al com-
mit and rollback hooks are removed and the transaction level associated with dat abase is modified.

Affected by

None.

156

START-TRANSACTION

Exceptional Situations

Signals an error of type sgl-database-error if dat abase isnot a database object.

See Also

conmi t

rol | back

i n-transaction-p
set - aut ocomi t

W t h-transacti on

Notes

start-transacti onisaCLSQL extension.

157

Name

COMMIT — Commit modifications made in the current transaction.
Function

Syntax
conmit &key database => N L

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

If dat abase, which defaults to * default-database*, is currently within the scope of a transaction, com-
mits changes made since the transaction began.

Examples
(in-transaction-p)
=> NL
(select [*] :from[foo] :field-names nil)
=> N L
(start-transacti on)
=> N L
(in-transacti on-p)
== T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))

=>
(select [*] :from[foo] :field-nanmes nil)
=> ((1 "one"))

(commt)

=> NI L

(i n-transacti on-p)

=> N L

(select [*] :from[foo] :field-names nil)
=> ((1 "one"))

Side Effects

Changes made within the scope of the current transaction are committed in the underlying database and
the transaction level of dat abase isreset.

Affected by

The transaction level of dat abase which indicates whether a transaction has been initiated by a call to
start-transacti on sincethelastcal tor ol | back orcommi t .

158

COMMIT

Exceptional Situations

Signals an error of type sgl-database-error if dat abase is not a database object. A warning of type sql-
warning issignalled if thereis no transaction in progress.

See Also

start-transaction

rol | back

i n-transaction-p
add-transacti on-comn t - hook
set - aut ocommi t

wi th-transaction

Notes

None.

159

Name

ROLLBACK — Roall back modifications made in the current transaction.
Function

Syntax

rol | back &key database => N L

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

Description

If dat abase, which defaults to * default-database*, is currently within the scope of a transaction, rolls
back changes made since the transaction began.

Examples
(in-transaction-p)
=> NL
(select [*] :from[foo] :field-names nil)
=> N L
(start-transacti on)
=> N L
(in-transacti on-p)
== T
(insert-records :into [foo] :av-pairs '(([bar] 1) ([baz] "one")))

=>
(select [*] :from[foo] :field-nanmes nil)
=> ((1 "one"))

(roll back)

=> NI L

(i n-transacti on-p)

=> N L

(select [*] :from[foo] :field-names nil)
=> N L

Side Effects

Changes made within the scope of the current transaction are reverted in the underlying database and the
transaction level of dat abase isreset.

Affected by

The transaction level of dat abase which indicates whether a transaction has been initiated by a call to
start-transacti on sincethelastcal tor ol | back orcommi t .

160

ROLLBACK

Exceptional Situations

Signals an error of type sgl-database-error if dat abase is not a database object. A warning of type sql-
warning issignalled if thereis no transaction in progress.

See Also

start-transaction

comni t

i n-transaction-p

add-transacti on-rol | back- hook
set - aut ocommi t
with-transaction

Notes

None.

161

Name

IN-TRANSACTION-P — A predicate for testing whether atransaction is currently in progress.
Function

Syntax

i n-transacti on-p &key database => result

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

resul t A Boolean.

Description

A predicate to test whether dat abase, which defaults to * default-database*, is currently within the
scope of atransaction.

Examples

(i n-transaction-p)
=> NL
(start-transaction)
=> NL
(in-transaction-p)
= T

(commt)

=> NI L

(i n-transacti on-p)
=> NL

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

See Also

162

IN-TRANSACTION-P

start-transaction
comni t

rol | back

set - aut ocomi t

Notes

i n-transacti on- pisaCLSQL extension.

163

Name

ADD-TRANSACTION-COMMIT-HOOK — Specify hooks to be run when committing changes.
Function

Syntax

add-transacti on-comm t - hook conmit-hook &key database => result

Arguments and Values

conmi t - hook A designator for afunction with no required arguments.

dat abase A database object. Thiswill default to the value of * default-database*.
result Thelist of currently defined commit hooks for dat abase.
Description

Adds commi t - hook, which should a designator for a function with no required arguments, to the list
of hooks run when conmmi t iscaled on dat abase which defaults to * default-database* .

Examples

(start-transacti on)
=> NL

(add-transaction-comm t-hook # (lanbda () (print "Successfully conmitted.

=> (#<Interpreted Function (LAVBDA # #) {48E2E689} >)
(commit)

"Successfully committed. "

=> N L

Side Effects

conmi t - hook is added to the list of commit hooks for dat abase.

Affected by

None.

Exceptional Situations

If conmi t - hook has one or more required arguments, an error will be signalled when conmi t is
called.

See Also

164

"))

ADD-TRANSACTION-COMMIT-HOOK

conmi t

rol | back

add-transacti on-rol | back- hook
w t h-transacti on

Notes

add-transacti on-conmi t - hook isaCLSQL extension.

165

Name

ADD-TRANSACTION-ROLLBACK-HOOK — Specify hooks to be run when rolling back changes.
Function

Syntax

add-transacti on-rol | back- hook rol | back-hook &key database => result

Arguments and Values

rol | back- hook A designator for afunction with no required arguments.

dat abase A database object. Thiswill default to the value of * default-database* .
result Thelist of currently defined rollback hooks for dat abase.
Description

Addsr ol | back- hook, which should a designator for a function with no required arguments, to the
list of hooksrunwhenr ol | back iscaled on dat abase which defaults to * default-database* .

Examples

(start-transacti on)

=> NI L

(add-transaction-rol | back-hook # (lanbda () (print "Successfully rolled back.")))
=> (#<Interpreted Function (LAVBDA # #) {48E37C31}>)

(roll back)

"Successfully rolled back."

=> N L

Side Effects

rol | back- hook isadded to thelist of rollback hooks for dat abase.

Affected by

None.

Exceptional Situations

If rol | back- hook has one or more required arguments, an error will be signalled when r ol | back
iscalled.

See Also

166

ADD-TRANSACTION-ROLLBACK-HOOK

comni t
rol | back
add-transacti on- conm t - hook

Notes

add-transacti on-rol | back- hook isaCLSQL extension.

167

Name

SET-AUTOCOMMIT — Turn on or off autocommit for a database.
Function

Syntax

set-autocommt val ue &key dat abase => result

Arguments and Values

val ue A Boolean specifying the desired autocommit behaviour for dat abase.
dat abase A database object. Thiswill default to the value of * default-database*.

result The previous autocommit value for dat abase.

Description

Turns autocommit off for dat abase if val ue isNl L, and otherwise turns it on. Returns the old value
of autocommit flag.

For RDBMS (such as Oracle) which don't automatically commit changes, turning autocommit on has the
effect of explicitly committing changes made whenever SQL statements are executed.

Autocommit isturned on by default.

Examples

Side Effects

dat abase isassociated with the specified autocommit mode.

Affected by

None.

Exceptional Situations

None.

See Also

start-transaction

168

SET-AUTOCOMMIT

comm t
add-transacti on-comn t - hook
w t h-transacti on

Notes

set - aut oconmi t isaCLSQL extension.

169

Name

WITH-TRANSACTION — Execute a body of code within a transaction.
Macro

Syntax

wi t h-transacti on & ey dat abase &rest body => result

Arguments and Values

dat abase A database object. Thiswill default to the value of * default-database*.

body A body of Lisp code.
result The result of executing body .
Description

Starts a transaction in the database specified by dat abase, which is * default-database* by default, and
executes body within that transaction. If body aborts or throws, dat abase is rolled back and other-
wise the transaction is committed.

Examples

(in-transaction-p)
=> N L
(select [email] :from[enployee] :where [= [enplid] 1] :flatp t :field-nanes nil)
=> ("l enin@oviet.org")
(with-transaction ()
(updat e-records [enpl oyee]
rav-pairs '((email "lenin-nospam@oviet.org"))
swhere [= [enplid] 1]))
=> N L
(select [email] :from[enployee] :where [=[enplid] 1] :flatp t :field-nanes nil)
=> ("l enl n- nospam@ovi et.org")
(in-transaction-p)
=> NL

Side Effects

Changes specified in body may be made to the underlying database if body completes successfully.

Affected by

None.

Exceptional Situations

170

WITH-TRANSACTION

Signals an error of type sgl-database-error if dat abase isnot a database object.
See Also

start-transaction

conmi t

rol | back
add-transacti on- conm t - hook
add-transacti on-rol | back- hook

Notes

None.

171

Object Oriented Data Definition
Language (OODDL)

The Object Oriented Data Definition Language (OODDL) provides access to relational SQL tables us-
ing Common Lisp Object System (CLOS) objects. SQL tables are mapped to CLOS aobjects with the
SQL columns being mapped to slots of the CLOS object.

The mapping between SQL tables and CLOS objects is defined with the macro def - vi ew cl ass.

SQL tables are created with creat e-vi ew-fromcl ass and SQL tables can be deleted with
drop-vi ewfromcl ass.

Note

The above functions refer to the Lisp view of the SQL table. This Lisp view should not be con-
fused with SQL VI EWstatement.

172

Name

STANDARD-DB-OBJECT — Superclass for all CLSQL View Classes.
Class

Class Precedence List

standard-db-object, standard-object, t

Description

This classisthe superclass of all CLSQL View Classes.

Class details

(def cl ass STANDARD- DB- OBJECT ()(...))

Slots

dot VIEW-DATABASE is of type (OR NULL DATABASE) which stores the associated database for
the instance.

173

Name

DEFAULT-STRING-LENGTH — Default length of SQL strings.
Variable

Value Type

Fixnum

Initial Value

255

Description

If adot of aclass defined by def - vi ew cl ass is of thetype stri ng or var char and does not
have alength specified, then the value of thisvariableis used as SQL length.

Examples

(let ((*default-string-Ilength* 80))
(def-viewclass s80 ()

((a :type string)
(b :type (string 80))
(c :type varchar))))
=> #<St andard- Db- C ass S80 {480A431D} >

(create-viewfromclass 's80)
=>

(tabl e-exists-p [s80])

== T

The above code causes a SQL table to be created with the SQL command
CREATE TABLE (A VARCHAR(80), B CHAR(80), C VARCHAR(80))

Affected By

Some SQL backends do not support var char lengths greater than 255.

See Also

None.

Notes

Thisisa CLSQL extension to the CommonSQL API.

174

Name

CREATE-VIEW-FROM-CLASS — Create a SQL table from a View Class.
Function

Syntax

create-viewfromclass viewclass-nane &ey database transactions =>

Arguments and Values

vi ew cl ass- nane The name of aView Class that has been defined with def - vi ew cl ass.

dat abase The database in which to create the SQL table. This will default to the value of
* default-database* .
transacti ons When NI L specifies that a table type which does not support transactions
should be used.
Description
Creates atable as defined by the View Classvi ew cl ass- nane indat abase.
Examples
(def-viewclass foo () ((a :type (string 80))))
=> #<St andar d- Db- C ass FOO {4807F7CD} >
(create-viewfromclass 'foo)
=>
(list-tables)
=> ("FOO')

Side Effects

Causes atable to be created in the SQL database.

Affected by

Most SQL database systems will signal an error if atable creation is attempted when a table with the
same name already exists. The SQL user, as specified in the database connection, must have sufficient
permission for table creation.

Exceptional Situations

A condition will be signaled if the table can not be created in the SQL database.

See Also

175

CREATE-VIEW-FROM-CLASS

def - vi ew cl ass
drop-vi ewfromcl ass

Notes

Currently, only MySQL supports transactionless tables. CLSQL provides the ability to create such tables
for applications which would benefit from faster table access and do not require transaction support.

The case of the table name is determined by the type of the database. MySQL, for example, creates data
bases in upper-case while PostgreSQL uses lowercase.

176

Name

DEF-VIEW-CLASS — Defines CLOS classes with mapping to SQL database.
Macro

Syntax

def - vi ew cl ass nane supercl asses slots & est class-options => class

Arguments and Values

nane The class name.

supercl asses The superclasses for the defined class.
slots The class dot definitions.

cl ass options Theclassoptions.

cl ass The defined class.

Slot Options

» : db- ki nd - specifies the kind of database mapping which is performed for this slot and defaults to
: base which indicates that the slot maps to an ordinary column of the database table. A : db- ki nd
value of : key indicates that this slot is a special kind of : base dot which maps onto a column
which is one of the unique keys for the database table, the value : j oi n indicates this slot represents
ajoin onto another View Class which contains View Class objects, and the value : vi r t ual indic-
ates a standard CL OS slot which does not map onto columns of the database table.

» :db-info -if adotis specified with : db- ki nd : j oi n, the dot option : db-i nf o contains a
property list which specifies the nature of the join. The valid members of thelist are:

e :joi n-cl ass class-name - the name of the classtojoin on.
« : home- key dot-name - the name of the dot of this class for joining
« . foreign- key slot-name - the name of the dot of the: j oi n- cl ass for joining

e :target-slot target-dot - thisis an optional parameter. If specified, then the join sot of the
defining class will contain instances of this target slot rather than of the join class. This can be use-
ful when the : j oi n-cl ass is an intermediate class in a many-to-many relationship and the ap-
plication isactualy interested inthe: t ar get - sl ot .

e :retrieval time - The default value is : def er r ed, which defers filling this slot until the
value is accessed. The other valid valueis: i mredi at e which performs the SQL query when the
instance of the classis created. In this case, the : set isautomatically setto NI L

e :set set- This controls what is stored in the join slot. The default value is T. When set is T and
target-dlot is undefined, the join slot will contain a list of instances of the join class. Wheress, if
target-dlot is defined, then the join slot will contain a list of pairs of (target-value join-instance).
When setisNI L, the join slot will contain a single instances.

177

DEF-VIEW-CLASS

» :type -fordotsof : db- ki nd : base or: key, the: t ype slot option has a special interpretation
such that Lisp types, such as string, integer and float are automatically converted into appropriate
SQL types for the column onto which the slot maps. This behaviour may be overridden using the
: db- t ype dot option. The valid values are:

st ri ng - avariable length character field up to * default-string-length* characters.
(string n) -afixedlength character field n characterslong.

var char - avariablelength character field up to * default-string-length* characters.
(var char n) -avariablelength character field up to n charactersin length.

char - asingle character field

i nt eger - signed integer at least 32-bitswide

(i nteger n)

fl oat

(float n)

| ong-f | oat
nunber
(nunber n)
(nunmber n p)

tinyi nt - Aninteger column 8-bits wide. [not supported by all database backends]

smal | i nt - Aninteger column 16-bits wide. [not supported by all database backends]

bi gi nt - Aninteger column 64-bits wide. [not supported by all database backends]

uni versal -ti me - aninteger field sufficiently wide to store a universal-time. On most databases, a
dot of thistype assigned a SQL type of Bl G NT

wal | - ti me - adot which stores a date and time in a SQL timestamp column. CLSQL provides a num-
ber of time manipulation functions to support objects of type wall-time.

dat e - adot which stores the date (without any time of day resolution) in a column. CLSQL provides a
number of time manipulation functions that operate on date values.

dur ati on - stores a duration structure. CLSQL provides routines for wall-time and duration pro-
cessing.

bool ean - storesaT or NI L value.

gener al i zed- bool ean - similar to abool ean inthat either aT or NI L valueis stored in the SQL
database. However, any Lisp object can be stored in the Lisp object. A Lisp value of NI L is stored as
FALSE in the database, any other Lisp valueis stored as TRUE.

keywor d - stores a keyword

synbol - storesasymbol

I i st -storesalist by writing it to astring. The itemsin the list must be able to be readable written.
vect or - storesavector similarly tol i st

array - storesaarray similarly tol i st

e : col um - specifies the name of the SQL column which the slot maps onto, if : db- ki nd is not
:virtual , and defaults to the slot name. If the slot name is used for the SQL column name, any hy-
pens in the slot name are converted to underscore characters.

e :voi d-val ue - specifies the value to store in the Lisp instance if the SQL value is NULL and de-
faultsto NIL.

» db-constraints -isakeyword symbol representing an SQL column constraint expression or a
list of such symbols. The following column constraints are supported: :not-null, :primary-key,
:unique, :unsigned (MySQL specific), :zerofill (MySQL specific) and :auto-increment (MySQL spe-
cific).

» db-type - astring to specify the SQL column type. If specified, this string overrides the SQL
column type as computed from the : t ype dlot value.

» :db-reader - If astring, then when reading values from the database, the string will be used for a
format string, with the only value being the value from the database. The resulting string will be used
as the dot value. If a function then it will take one argument, the value from the database, and return
the value that should be put into the slot. If a symbol, then the symbol-function of the symbol will be

178

DEF-VIEW-CLASS

used.

e :db-witer -If astring, then when reading values from the slot for the database, the string will be
used for a format string, with the only value being the value of the slot. The resulting string will be
used as the column value in the database. If afunction then it will take one argument, the value of the
dlot, and return the value that should be put into the database. If a symbol, then the symbol-function of
the symbol will be used.

Class Options

» : base-tabl e - specifies the name of the SQL database table. The default value is the class name.
Like slot names, hypens in the class name are converted to underscore characters.

Description

Creates a View Class called nanme whose sots sl ot s can map onto the attributes of atable in a data-
base. If super cl asses is Nl L then the superclass of cl ass will be st andar d- db- obj ect , oth-
erwise supercl asses is a list of superclasses for cl ass which must include st andar d-
db- obj ect or adescendent of this class.

Examples

The following examples are from the CLSQL test suite.

(def-vi ew cl ass person (thing)
((height :db-kind :base :accessor height :type float
sinitarg :height)
(rmarried :db-kind :base :accessor nmarried :type bool ean
sinitarg :married)
(birthday :type clsqgl:wall-time :initarg :birthday)
(bd-utine :type clsqgl:universal-tine :initarg :bd-utine)
(hobby :db-kind :virtual :initarg :hobby :initformnil)))

(def-vi ew cl ass enpl oyee (person)
((emplid
:db-ki nd : key
:db-constraints :not-nul
:type integer
sinitarg :enplid)
(groupi d
:db-ki nd : key
:db-constraints :not-nul
:type integer
cinitarg :groupid)
(first-nane
:accessor first-name
:type (varchar 30)
sinitarg :first-name)
(1ast-nane
;accessor |ast-nane
:type (varchar 30)
sinitarg :1ast-name)
(emuai |
. accessor enpl oyee- emmi

179

DEF-VIEW-CLASS

:type (varchar 100)
sinitarg :emil)
(econpanyi d
:type integer
cinitarg :conpanyid)
(company
:accessor enpl oyee- conpany
:db-kind :join
:db-info (:join-class conpany
: hone- key econpanyid
: forei gn-key conpanyid
:set nil))
(managerid
:type integer
cinitarg :manageri d)
(manager
:accessor enpl oyee- nanager
.db-kind :join
:db-info (:join-class enployee
: hone- key manageri d
.foreign-key enplid
:set nil))
(addresses
:accessor enpl oyee- addr esses
:db-kind :join
:db-info (:join-class enpl oyee-address
s hone-key enplid
:foreign-key aenplid
:target-sl ot address
.set t)))
(: base-tabl e enmpl oyee))

(def-vi ewcl ass conpany ()
((comnpanyid
:db-ki nd : key
:db-constraints :not-nul
:type integer
sinitarg :companyid)
(groupi d
:db-ki nd : key
:db-constraints :not-nul
:type integer
cinitarg :groupid)
(nane
:type (varchar 100)
cinitarg :name)
(presidentid
:type integer
sinitarg :presidentid)
(president
. reader president
:db-kind :join
:db-info (:join-class enployee
: hone- key presidentid
:foreign-key enplid
:set nil))
(enpl oyees
: reader conpany-enpl oyees
:db-kind :join
:db-info (:join-class enployee
s hone- key (conpanyid groupid)
:foreign-key (econpanyid groupid)
iset t))))

180

DEF-VIEW-CLASS

(def-vi ewcl ass address ()

((addressid

:db-ki nd : key

:db-constraints :not-nul

:type integer

cinitarg :addressid)
(street-nunber

:type integer

cinitarg :street-nunber)
(street-nane

:type (varchar 30)

:void-value ""

sinitarg :street-nane)
(city

:colum "city_field"

:void-value "no city"

:type (varchar 30)

cinitarg :city)
(postal - code

:colum zip

:type integer

:void-value 0

sinitarg :postal-code))
(: base-tabl e addr))

;; many enpl oyees can reside at nany addressess
(def-vi ew cl ass enpl oyee-address ()
((aenplid :type integer :initarg :enplid)
(aaddressid :type integer :initarg :addressid)
(verified :type boolean :initarg :verified)
(address :db-kind :join
:db-info (:join-class address
: hone- key aaddressid
:foreign-key addressid
cretrieval :imrediate)))
(: base-table "ea_join"))

(def-vi ew cl ass deferred-enpl oyee-address ()

((aenplid :type integer :initarg :enplid)
(aaddressid :type integer :initarg :addressid)
(verified :type boolean :initarg :verified)
(address :db-kind :join

:db-info (:join-class address
: hone- key aaddressid
. foreign-key addressid
‘retrieval :deferred
:set nil)))
(: base-table "ea_join"))

Side Effects

Creates anew CLOS class.

Affected by

Nothing.

Exceptional Situations

181

DEF-VIEW-CLASS

None.

See Also

Notes

create-vi ewfromcl ass
st andar d- db- obj ect
drop-vi ewfromcl ass

The actual SQL type for a column depends up the database type in which the SQL table is stored. Asan
example, the view class type (var char 100) specifies a SQL column type VARCHAR(100) in
MySQL and a column type VARCHAR2(100) in Oracle

The actual lisp type for a slot may be different than the value specified by the : t ype attribute. For ex-
ample, a slot declared with ": t ype (string 30)" actualy sets the slots Lisp typeas (or nul |
string).Thisistoalow aNl L value or astring shorter than 30 characters to be stored in the slot.

182

Name

DROP-VIEW-FROM-CLASS — Delete table from SQL database.
Function

Syntax

drop-viewfromcl ass vi ewcl ass-name &key dat abase =>

Arguments and Values

vi ew cl ass- nane The name of the View Class.

dat abase database object. Thiswill default to the value of * default-database* .

Description

Removes a table defined by the View Class vi ew cl ass- nane from dat abase which defaults to
def aul t - dat abase.

Examples

(1'ist-tables)

=> ("FOO' "BAR")
(drop-viewfromclass 'foo)
=>

(list-tables)

=> ("BAR")

Side Effects

Deletes atable from the SQL database.

Affected by

Whether the specified table existsin the SQL database.

Exceptional Situations

A condition may be signalled if the table does not exist in the SQL database or if the SQL connection
does not have sufficient permissions to delete tables.

See Also

create-viewfromcl ass
def -vi ew cl ass

183

DROP-VIEW-FROM-CLASS

Notes

None.

184

Name

LIST-CLASSES — List classes for tables in SQL database.
Function

Syntax

list-classes &ey test root-class database => cl asses

Arguments and Values

t est afunction used to filter the search. By default, i dent i t y isused which will return all
classes.

root-class gpecifies the root class to the search. By default, st andar d- db- obj ect is used
which istheroot for all view classes.

dat abase The database to search for view classes. This will default to the vaue of
default-database .

cl asses List of view classes.

Description

Returns alist of all the View Classes which have been defined in the Lisp session and are connected to
dat abase and which descended from the classr oot - ¢l ass and which satisfy the functiont est .

Examples

(list-classes)

=> (#<cl sql -sys::standard-db-cl ass bi g> #<cl sql -sys: : st andard- db-cl ass enpl oyee- ad
#<cl sql - sys: : st andar d- db- cl ass addr ess> #<cl sql -sys: : st andar d- db- cl ass conpany
#<cl sql - sys: : st andar d- db- cl ass enpl oyee>)

(list-classes :test # (lanmbda (c) (> (length (synmbol-name (class-nane c))) 3)))

=> (#<cl sql -sys:: standard-db-cl ass enpl oyee- addr ess> #<cl sql - sys: : st andar d- db- cl as
#<cl sql - sys: : st andar d- db- cl ass conpany> #<cl sql - sys: : st andar d- db-cl ass enpl oye

Side Effects

None.

Affected by

Which view classes have been defined in the Lisp session.

Exceptional Situations

185

LIST-CLASSES

None.

See Also

def -vi ew cl ass

Notes

None.

186

Object Oriented Data Manipulation
Language (OODML)

Object Oriented Data Manipulation Language (OODML) provides a Common Lisp Object System
(CLOS) interface to SQL databases. View classes are defined with the OODDL interface and objects are
read and written with the OODML .

The main function for reading data with the OODML isthesel ect function. Thesel ect isaso used
in the FDML. However, when sel ect isgiven aview class name, it returns alist of instances of view
classes.

View class instances can be updated to reflect any changes in the database with the functions updat e-
slot-fromrecordandupdat e-i nstance-fromrecords.

To update the database to reflect changes made to instances of view classes, use the functions updat e-
records-frominstance, updat e-record-fromsl ot and updat e-re-
cord-fromslots.

The function del et e-i nst ance-r ecor ds deletes the records corresponding to an instance of a
view class.

187

Name

DB-AUTO-SYNC — Enables SQL storage during Lisp object cregtion.
Variable

Value Type

Boolean

Initial Value

NI L

Description

When thisvariableis T an instance is stored in the SQL database when the instance is created by nake-
i nst ance. Furthermore, the appropriate database records are updated whenever the slots of a View
Classinstance are modified.

When this variable is NI L, which is the default value, CLSQL behaves like CommonSQL: instances of
view classes are stored or updated in the SQL database only when update-re-
cord-frominstance, update-record-fromslot or update-record-fromslots
arecaled.

Examples

(let ((instance (make-instance 'fo0)))
(updat e-records-frominstance instance))

;; is equivalent to

(let ((*db-auto-sync* t))
(make-i nstance 'foo0))

and
(progn
(setf (slot-value instance 'bar) "baz")
(update-record-fromslot instance 'bar))
;; is equivalent to

(let ((*db-auto-sync* t))
(setf (slot-value instance 'bar) "baz"))

Affected By

None.

See Also

updat e-records-frominstance

188

DB-AUTO-SYNC

updat e-record-from sl ot
update-record-fromslots

Notes

Thisisa CLSQL extension to the CommonSQL API.

189

Name

DEFAULT-CACHING — Controls the default caching behavior.
Variable

Value Type

Boolean

Initial Value

T

Description

This variable stores the default value of the CACHI NG keyword for thesel ect .

Examples

(let ((*default-caching* nil)))
(select 'foo))

;; is equivalent to

(select '"foo :caching nil)

Affected By

None.

See Also

sel ect

Notes

Thisisa CLSQL extension to the CommonSQL API. CommonSQL has caching on at all times.

190

Name

DEFAULT-UPDATE-OBJECTS-MAX-LEN — The default maximum number of objects each query
to perform ajoin
Variable

Value Type

(or null integer)

Initial Value

NI L

Description

This specia variable provides the default value for the max- | en argument of the function updat e-
obj ect -j oi ns.

Examples

(setq *default-update-objects-max-1en* 100)

Affected By

None.

See Also

updat e- obj ect-j oi ns

Notes

None.

191

Name

INSTANCE-REFRESHED — User hook to call on object refresh.
Generic function

Syntax

i nstance-refreshed object =>

Arguments and Values

obj ect The View Class object which is being refreshed.

Description

Provides a hook which is called within an object oriented call to sel ect with a non-nil value of r e-
f r esh when the View Class instance obj ect has been updated from the database. A method special-
ised on standard-db-object is provided which has no effects. Methods specialised on particular View
Classes can be used to specify any operations that need to be made on View Classes instances which
have been updated in callsto sel ect .

Examples

(slot-value enpl oyeel 'enunil)
=> "| eni n@ovi et.org"
(defmet hod i nstance-refreshed ((e enpl oyee))

(format t "~&Details for ~A ~A have been updated fromthe database."

(slot-value e 'first-nane)
(slot-value e 'l ast-nane)))
=> #<Standar d- Met hod | NSTANCE- REFRESHED (EMPLOYEE) {48174D9D} >
(sel ect 'enployee :where [= [slot-value "enployee "enplid] 1] :flatp t)
=> (#<EMPLOYEE {48149995} >)
(slot-value (car *) 'email)
=> "| eni n@ovi et.org"
(update-records [enployee] :av-pairs '(([ermail] "v.lenin@oviet.org"))
:where [= [enplid] 1])

=>
(sel ect 'enployee :where [= [slot-value 'enployee "enplid] 1] :flatp t)
=> (#<EMPLOYEE {48149995} >)
(slot-value (car *) 'emmil)
=> "| eni n@ovi et.org"
(sel ect 'enployee :where [= [slot-value 'enployee "enplid] 1] :flatp t :refresh t)
Details for Viadimr Lenin have been updated fromthe database.
=> (#<EMPLOYEE {48149995} >)
(slot-value (car *) 'email)
=> "v.|l eni n@oviet.org"

Side Effects

The user hook function may cause side effects.

192

INSTANCE-REFRESHED

Exceptional Situations

None.

See Also

sel ect

Notes

None.

193

Name

DELETE-INSTANCE-RECORDS — Delete SQL records represented by a View Class object.
Function

Syntax

del et e-i nstance-records object =>

Arguments and Values

obj ect Aninstance of aView Class.

Description

Deletes the records represented by obj ect in the appropriate table of the database associated with ob-
j ect . If obj ect isnot yet associated with a database, an error is signalled.

Examples

(def-viewclass tab ()
((a :initarg :a :type integer :db-kind :key)

(b :initarg :b :type string)))
=> #<St andar d- Db- C ass TAB {49B01845} >
(create-viewfromclass 'tab)
=>
(defvar obj (let ((*db-auto-sync* t))

(rmake-instance 'tab :a 5 :b "the string")))

=> OBJ
(start-sql-recording :type :both)
=>
(del et e-instance-records obj)
;; 2004-07-17 11:07:19 fool/ bar/baz => DELETE FROMtab WHERE tab.a = 5
;; 2004-07-17 11:07:19 foo/bar/baz <= T
=>

Side Effects

Deletes data from the SQL database.

Affected by

Permissions granted by the SQL database to the user in the database connection.

Exceptional Situations

An exception may be signaled if the database connection user does not have sufficient privileges to
modify the database. An error of type sgl-database-error is signalled if obj ect is not associated with

194

DELETE-INSTANCE-RECORDS

an active database.

See Also

updat e-recor ds
del et e-records
updat e-records-fronminstance

Notes

Instances are referenced in the database by values stored in the key dots. If del ete-re-
cords-frominstance iscaled with an instance of a class that does not contain any keys, then all
records in that table will be deleted.

195

Name

UPDATE-RECORDS-FROM-INSTANCE — Update database from view class object.
Function

Syntax

updat e-records-frominstance object &key database =>

Arguments and Values

obj ect An instance of a View Class.

dat abase database object. Thiswill default to the value of * default-database*.

Description

Using an instance of a View Class, obj ect , update the table that stores its instance data. dat abase
specifies the database in which the update is made only if obj ect isnot associated with a database. In
this case, arecord is created in the appropriate table of dat abase using values from the slot values of
obj ect , and obj ect becomes associated with dat abase.

Examples

(select [email] :from[enmployee] :where [= [enmplid] 1] :field-names nil :flatp t)
=> ("l enin@oviet.org")

(defvar *el* (car (select 'enployee :where [= [slot-value 'enployee "enplid] 1] :f
=> * El*

(slot-value *el* 'email)

=> "| eni n@ovi et.org"

(setf (slot-value *el* "email) "v.lenin@oviet.org")

=> "v.l|lenin@oviet.org"

(updat e-records-frominstance *el*)

=>

(select [email] :from[enployee] :where [= [enplid] 1] :field-names nil :flatp t)
=> ("v.lenin@oviet.org")

Side Effects

Modifies the database.

Affected by

Nothing.

Exceptional Situations

Database errors.

196

UPDATE-RECORDS-FROM-INSTANCE

See Also
updat e-record-from sl ot

update-record-fromslots
updat e-recor ds

Notes

None.

197

Name

UPDATE-RECORD-FROM-SLOT — Updates database from dot value.
Function

Syntax

update-record-from sl ot object slot &key database =>

Arguments and Values

obj ect An instance of a View Class.
sl ot The name of aslotin obj ect .

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Updates the value stored in the column represented by the slot, specified by the CLOS slot name si ot ,
of View Class instance obj ect . dat abase specifies the database in which the update is made only if
obj ect isnot associated with a database. In this case, arecord is created in dat abase and the attrib-
ute represented by sl ot isinitialised from the value of the supplied slots with other attributes having
default values. Furthermore, obj ect becomes associated with dat abase.

Examples

(select [email] :from[enployee] :where [= [enplid] 1] :field-nanmes nil
=> ("lenin@oviet.org")

(defvar *el* (car (select 'enployee :where [= [slot-value 'enployee 'enplid] 1]

=> * El*

(slot-value *el* 'enmil)

=> "| eni n@ovi et.org"

(setf (slot-value *el* '"email) "v.lenin@oviet.org")

=> "v. |l eni n@oviet.org"

(updat e-record-fromslot *el* 'email)

=>

(select [email] :from[enployee] :where [= [enplid] 1] :field-nanmes ni
=> ("v.lenin@oviet.org")

Side Effects

Modifies database.

Affected By

Nothing.

198

(flatp t)

flatp t)

o f

UPDATE-RECORD-FROM-SLOT

Exceptional Situations

Database errors.

See Also

update-record-fromslots
updat e-records-frominstance

Notes

None.

199

Name

UPDATE-RECORD-FROM-SLOTS — Update database from slots of view class object.
function

syntax

update-record-from sl ots object slots &key database =>

Arguments and Values

obj ect An instance of a View Class.
slots A list of slot namesin obj ect .

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Updates the values stored in the columns represented by the slots, specified by the clos slot nhames
sl ot s, of View Class instance obj ect . dat abase specifies the database in which the update is
made only if obj ect isnot associated with a database. In this case, arecord is created in the appropri-
ate table of dat abase and the attributes represented by sl ot s are initialised from the values of the
supplied dots with other attributes having default values. Furthermore, obj ect becomes associated
with dat abase.

Examples
(select [last-name] [email] :from[enpl oyee] :where [= [enplid] 1] :field-names n
=> (("Lenin" "lenin@oviet.org"))
(defvar *el* (car (select 'enployee :where [= [slot-value 'enployee "enplid] 1] :f
=> *E1*
(slot-value *el* 'l ast-nane)
=> "Lenin"

(slot-value *el* 'enmil)

=> "| eni n@ovi et.org"

(setf (slot-value *el* 'last-nane) "lvanovich")

=> "|vanovi ch"

(setf (slot-value *el* 'email) "v.ivanovi ch@oviet.org")

=> "v.ivanovi ch@oviet.org"

(updat e-record-fromslots *el* '(emmil |ast-nane))

=>

(select [last-nanme] [enail] :from [enployee] :where [= [enplid] 1] :field-nanes ni
=> (("Ivanovich" "v.ivanovi ch@oviet.org"))

Side Effects

Modifies the SQL database.

200

UPDATE-RECORD-FROM-SLOTS

Affected by

Nothing.

Exceptional Situations

Database errors.

See Also

updat e-record-from sl ot
updat e-records-frominstance

Notes

None.

201

Name

UPDATE-INSTANCE-FROM-RECORDS — Update slot values from database.
Function

Syntax

updat e-i nst ance-fromrecords object &key database => object

Arguments and Values

obj ect An instance of a View Class.

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Updates the slot values of the View Class instance obj ect using the attribute values of the appropriate
table of dat abase which defaults to the database associated with obj ect or, if obj ect isnot asso-
ciated with a database, * def aul t - dat abase*. Join slots are updated but instances of the class on
which the join is made are not updated.

Examples

(defvar *el* (car (select 'enployee :where [= [slot-value 'enployee "enplid] 1] :f

=> *El*

(slot-value *el* 'emmil)

=> "| eni n@ovi et. org"

(updat e-records [enpl oyee]
rav-pairs '(([email] "v.lenin@oviet.org"))
:where [= [enplid] 1])

=>

(updat e-i nstance-fromrecords *el*)

=> #<EMPLOYEE {4806B53D} >

(slot-value *el* 'enmil)

=> "v.| eni n@oviet.org"

Side Effects

Slot values of obj ect may be modified.

Affected by

Datain SQL database.

Exceptional Situations

202

UPDATE-INSTANCE-FROM-RECORDS

If dat abase isnot able to be read.

See Also

update-slot-fromrecord
updat e- obj ect s-j oi ns

Notes

None.

203

Name

UPDATE-SLOT-FROM-RECORD — Update objects dlot from database.
Function

Syntax

update-slot-fromrecord object slot &ey database => object

Arguments and Values

obj ect An instance of a View Class.
sl ot The name of aslotin obj ect .

dat abase A database object. Thiswill default to the value of * default-database*.

Description

Updates the slot value, specified by the CLOS slot name sl ot , of the View Class instance obj ect us-
ing the attribute values of the appropriate table of dat abase which defaults to the database associated
with obj ect or, if obj ect isnot associated with a database, * def aul t - dat abase*. Join slotsare
updated but instances of the class on which the join is made are not updated.

Examples

(defvar *el* (car (select 'enployee :where [= [slot-value 'enployee 'enplid] 1]

=> *El*

(slot-value *el* 'enmil)

=> "| eni n@ovi et.org"

(updat e-records [enpl oyee]
cav-pairs '(([email] "v.lenin@oviet.org"))
:where [= [enplid] 1])

=>

(update-slot-fromrecord *el* 'email)

=> #<EMPLOYEE {4806B53D} >

(slot-value *el* 'emil)

=> "v.|lenin@oviet.org"

Side Effects

Modifies the dot value of the object.

Affected by

Datain SQL database.

204

o f

UPDATE-SLOT-FROM-RECORD

Exceptional Situations

Database errors.

See Also

updat e-i nst ance-fromrecords
updat e- obj ect s-j oi ns

Notes

None.

205

Name

UPDATE-OBJECTS-JOINS — Updates joined slots of objects.
Function

Syntax

updat e- obj ect s-j oi ns obj ects &ey slots force-p class-name max-1en =>

Arguments and Values

obj ects A list of instances of a View Class.
slots A list of slot namesin obj ect or T.
force-p A Boolean, defaultingto T.

cl ass-nane A list of instances of aView Class.

max- | en A non-negative integer or NI L defaulting to * default-update-objects-max-len*.

Description

Updates from the records of the appropriate database tables the join slots specified by sl ot s in the sup-
plied list of View Class instances obj ect s. sl ot s when T means that al join dots with :retrieval
:immediate are updated. cl ass- nane is used to specify the View Class of al instance in obj ect s,
when NI L then the class of the first instancein obj ect s isused. f or ce- p when T meansthat al join
slots are updated whereas a value of NI L means that only unbound join slots are updated. max- | en
when non-nil specifies that updat e- obj ect - j oi ns may issue multiple database queries with a
maximum of max- | en instances updated in each query.

Examples

(defvar *addresses* (select 'deferred-enpl oyee-address :order-by [ea_join aaddress
=> * ADDRESSES*
(sl ot-boundp (car *addresses*) 'address)

=> N L

(updat e- obj ect s-j 0i ns *addresses*)

=>

(sl ot-boundp (car *addresses*) 'address)
= T

(slot-value (car *addresses*) 'address)
=> #<ADDRESS {480B0F1D} >

Side Effects

The dot values of obj ect s are modified.

206

UPDATE-OBJECTS-JOINS

Affected by

def aul t - updat e- obj ect s- max- | en

Exceptional Situations

Database errors.

See Also

def aul t - updat e- obj ect s- max- | en
updat e-i nst ance-fromrecords
update-slot-fromrecord

Notes

None.

207

SQL 1/0O Recording

CLSQL provides a facility for recording SQL commands sent to and/or results returned from the under-
lying RDBMS to user sprecified streams. This is useful for monitoring CLSQL activity and for debug-
ging applications.

This section documents the functions provided for enabling and disabling SQL recording as well as for
mani pulating the streams on to which SQL commands and results are recorded.

208

Name

START-SQL-RECORDING — Start recording SQL commands or results.
Function

Syntax

start-sqgl -recordi ng &ey type database =>

Arguments and Values

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

dat abase A database object. Thiswill default to * default-database* .

Description

Starts recording of SQL commands sent to and/or results returned from dat abase which defaults to
default-database. The SQL is output on one or more broadcast streams, initialy just
standard-output, and the functions add- sql - st r eamand del et e- sql - st r eammay be used to
add or delete command or result recording streams. The default value of t ype is :commands which
means that SQL commands sent to dat abase are recorded. If t ype is :results then SQL results re-
turned from dat abase are recorded. Both commands and results may be recorded by passing t ype
value of :both.

Examples

(start-sqgl-recording :type :both)
=>
(select [last-nanme] :from [enpl oyee]
:where [= [enplid] 1]
:field-nanmes nil
flatp t)
;; 2004-07-02 16:42:12 dent/test/dent => SELECT | ast_nane FROM enpl oyee WHERE (enp
;; 2004-07-02 16:42:12 dent/test/dent <= (Lenin)
=> ("Lenin")

Side Effects

The command and result recording broadcast streams associated with dat abase are reinitialised with
only *standard-output* astheir component streams.

Affected by

None.

209

START-SQL-RECORDING

Exceptional Situations

None.

See Also

st op-sql -recordi ng
sql -recordi ng-p
sgl - stream

add- sgl - stream

del ete-sql -stream
list-sql-streamns

Notes

None.

210

Name
STOP-SQL-RECORDING — Stop recording SQL commands or results.
Function

Syntax

stop-sql -recordi ng &ey type dat abase =>

Arguments and Values

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

dat abase A database object. Thiswill default to * default-database* .

Description

Stops recording of SQL commands sent to and/or results returned from dat abase which defaults to
default-database . The default value of t ype is :commands which means that SQL commands sent to
dat abase will no longer be recorded. If t ype is :results then SQL results returned from dat abase
will no longer be recorded. Recording may be stopped for both commands and results by passing t ype
value of :both.

Examples

(start-sql-recording :type :both)
=>
(select [last-nanme] :from [enpl oyee]
:where [= [enplid] 1]
:field-names nil
flatp t)
2004-07-02 16:42:12 dent/test/dent => SELECT | ast_name FROM enpl oyee WHERE (enp
2004-07-02 16:42:12 dent/test/dent <= (Lenin)
=> ("Lenin")
(stop-sql-recording :type :results)

=>

(select [last-nanme] :from [enpl oyee]
:where [= [enplid] 1]
:field-names nil
flatp t)

;; 2004-07-02 16:44:11 dent/test/dent => SELECT | ast_nane FROM enpl oyee WHERE (enp
=> ("Lenin")

Side Effects

The command and result recording broadcast streams associated with dat abase are reinitialised to
NI L.

211

STOP-SQL-RECORDING

Affected by

None.

Exceptional Situations

None.

See Also

start-sqgl -recordi ng
sqgl -recordi ng-p

Notes

None.

212

Name

SQL-RECORDING-P — Tests whether SQL commands or results are being recorded.
Function

Syntax

sqgl -recordi ng-p &key type database => result

Arguments and Values

type One of the following keyword symbols: :commands, :results, :both or :either defaulting to
:commands.

dat abase A database object. Thiswill default to * default-database* .

result A Boolean.

Description
Predicate to test whether the SQL recording specified by t ype is currently enabled for dat abase

which defaults to * default-database*. t ype may be one of :commands, :results, :both or :either, default-
ing to :commands, otherwise NI L isreturned.

Examples

(start-sql-recording :type :comands)
=>

(sqgl -recording-p :type :conmmands)

= T

(sqgl -recording-p :type :both)

=> N L

(sql -recording-p :type :either)

= T

Side Effects

None.

Affected by

start-sql -recordi ng
st op-sql -recordi ng

Exceptional Situations

None.

213

SQL-RECORDING-P

See Also

start-sql-recording
st op-sql -recordi ng

Notes

The :both and :either values for thet ype keyword argument are CLSQL extensions.

214

Name

SQL-STREAM — Returns the broadcast stream used for recording SQL commands or results.
Function

Syntax

sgl -stream &key type database => result

Arguments and Values

type One of the following keyword symbols: :commands or :results, defaulting to :commands.
dat abase A database object. Thiswill default to * default-database* .

result A broadcast stream or NI L.

Description
Returns the broadcast stream used for recording SQL commands sent to or results returned from dat a-
base which defaults to *default-database*. t ype must be one of :commands or :results, defaulting to

:commands, and determines whether the stream returned is that used for recording SQL commands or
results.

Examples

(start-sql-recording :type :comrands)
=>

(sql -stream :type :conmands)

=> #<Broadcast Streanp

(sql -stream :type :results)

=> NL

Side Effects

None.

Affected by

None.

Exceptional Situations

Anerrorissignalled if t ype isnot one of :commands or :results.

See Also

215

SQL-STREAM

start-sql-recording
add- sql - stream

del et e-sgl - stream
[ist-sqgl-streans

Notes

None.

216

Name

ADD-SQL-STREAM — Add a component to the broadcast streams used for recording SQL commands
or results.
Function

Syntax

add- sgl - stream stream &key type dat abase => result

Arguments and Values

stream A streamor T.

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

dat abase A database object. Thiswill default to * default-database* .

resul t The added stream.

Description

Adds the supplied stream st r eam(or T for * standard-output*) as a component of the recording broad-
cast stream for the SQL recording type specified by type on dat abase which defaults to
default-database. t ype must be one of :commands, :results, or :both, defaulting to :commands, de-
pending on whether the stream is to be added for recording SQL commands, results or both.

Examples

(start-sql-recording :type :comrands)
=>
(with-output-to-string (s)
(add-sqgl -stream s :type :conmands)
(print-query [select [enplid] [first-nane] [last-nane] [email] :from [enpl oyee]]

:streams))

2004-07-02 17:38:45 dent/test/dent => SELECT enplid, first_name, | ast_nane, emai |
=>
":;; 2004-07-02 17:38:45 dent/test/dent => SELECT enplid,first_nane, | ast_nane, enai
1 Madinr Lenin | eni n@oviet.org
2 Josef Stalin stali n@oviet.org
3 Leon Tr ot sky trotsky@oviet.org
4 N kita Kruschev kruschev@oviet.org
5 Leonid Brezhnev brezhnev@oviet.org
6 Yuri Andr opov andr opov@ovi et. org
7 Konstantin Chernenko chernenko@oviet.org
8 Mkhail Cor bachev gor bachev@ovi et. org
9 Boris Yeltsin yel tsi n@oviet. org
10 Vladimr Putin puti n@ovi et.org

217

ADD-SQL-STREAM

Side Effects

The specified broadcast stream(s) associated with dat abase are modified.

Affected by

None.

Exceptional Situations

None.

See Also

start-sqgl -recording
sgl - stream

del et e-sql - stream
list-sqgl-streans

Notes

None.

218

Name

DELETE-SQL-STREAM — Remove a component from the broadcast streams used for recording SQL
commands or results.
Function

Syntax

del et e-sqgl - stream stream &EY type database => result

Arguments and Values

stream A streamor T.
stream A streamor T.

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

dat abase A database object. Thiswill default to *default-database* .

resul t The added stream.

Description

Removes the supplied stream st r eamfrom the recording broadcast stream for the SQL recording type
specified by type on dat abase which defaults to *default-database*. t ype must be one of
:commands, :results, or :both, defaulting to :commands, depending on whether the stream is to be added
for recording SQL commands, results or both.

Examples

(list-sql-streans :type :both)

=> (#<Stream for descriptor 7> #<Stream for descriptor 7>)
(del et e-sql -stream *standard-out put* :type :results)

=> #<Stream for descriptor 7>

(list-sql-streans :type :both)

=> (#<Stream for descriptor 7>)

Side Effects

The specified broadcast stream(s) associated with dat abase are modified.

Affected by

None.

219

DELETE-SQL-STREAM

Exceptional Situations

None.

See Also

Notes

start-sql -recordi ng
st op-sql -recordi ng
sql -recordi ng-p

sgl -stream

add- sqgl - stream

del et e-sql - stream
list-sql-streans

None.

220

Name

LIST-SQL-STREAMS — List the components of the broadcast streams used for recording SQL com-
mands or results.
Function

Syntax

list-sqgl-streans &key type database => result

Arguments and Values

type One of the following keyword symbols: :commands, :results or :both, defaulting to
:commands.

dat abase A database object. Thiswill default to *default-database* .

resul t A list.

Description

Returns the list of component streams for the broadcast stream recording SQL commands sent to and/or
results returned from dat abase which defaults to *default-database*. t ype must be one of
:commands, :results, or :both, defaulting to :commands, and determines whether the listed streams con-
tain those recording SQL commands, results or both.

Examples
(list-sql-streans :type :both)
=> N L
(start-sqgl-recording :type : both)
=>

(list-sql-streans :type :both)
=> (#<Stream for descriptor 7> #<Stream for descriptor 7>)

Side Effects

None.

Affected by

add- sql - stream
del et e-sql - stream

Exceptional Situations

221

LIST-SQL-STREAMS

Anerorissignaledif t ype ispassed avalue other than :commands, :results or :both.

See Also

sgl - stream
add- sql - stream
del et e-sgl - stream

Notes

None.

222

CLSQL Condition System

CLSQL provides and uses a condition system in which al errors and warnings are of type sgl-condition.
This section describes the various subclasses of sgl-condition defined by CLSQL. Details are also
provided for how they are used in CLSQL and intended to be signalled in user code. Finally, slot ac-
cessors for some of the condition types are described.

223

Name

BACKEND-WARNING-BEHAVIOR — Controls behaviour on warnings from underlying RDBMS.
Variable

Value Type

Meaningful values are :warn, :error, :ignoreand NI L.

Initial Value

warn

Description

Action to perform on warning messages from backend. Default is to :warn. May also be set to :error to
signal an error or :ignore or NI L to silently ignore the warning.

Examples

Affected By

None.

See Also

None.

Notes

* packend-warning-behaviour* isa CLSQL extension.

224

Name

SQL-CONDITION — the super-type of all CLSQL-specific conditions
Condition Type

Class Precedence List
sqgl-condition, condition, t
Description

Thisisthe super-type of all CLSQL-specific conditions defined by CLSQL, or any of it's database-specif-
ic interfaces. There are no defined initialization arguments nor any accessors.

Notes

sgl-condition is a CLSQL extension.

225

Name

SQL-ERROR — the super-type of all CLSQL-specific errors
Condition Type

Class Precedence List

sgl-error, simple-error, simple-condition, error, serious-condition, sgl-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent errors, as defined by CLSQL, or
any of it's database-specific interfaces. There are no defined initialization arguments nor any accessors.

Notes

sgl-error isa CLSQL extension.

226

Name
SQL-WARNING — the super-type of all CLSQL-specific warnings
Condition Type

Class Precedence List

sgl-warning, warning, sql-condition, condition, t

Description

This is the super-type of all CLSQL-specific conditions that represent warnings, as defined by CLSQL,
or any of it's database-specific interfaces. There are no defined initialization arguments nor any ac-
Cessors.

Notes

sgl-warning isa CLSQL extension.

227

Name

SQL-DATABASE-WARNING — Used to warn while accessing a CLSQL database.
Condition Type

Class Precedence List

sgl-database-warning, sql-warning, warning, sgl-condition, condition, t

Description

This condition represents warnings signalled while accessing a database.
The following initialization arguments and accessors exist:

Initarg: :database

Accessor: sql - war ni ng- dat abase

Description: The database object that was involved in the incident.

Notes

sgl-database-warning is a CLSQL extension.

228

Name

SQL-USER-ERROR — condition representing errors because of invalid parameters from the library
user.
Condition Type

Class Precedence List

sgl-user-error, sgl-error, simple-error, simple-condition, error, serious-condition, sgl-condition, condi-
tion, t

Description

This condition represents errors that occur because the user supplies invalid data to CLSQL. This in-
cludes errors such as an invalid format connection specification or an error in the syntax for the LOOP
macro extensions.

The following initialization arguments and accessors exist:
Initarg: :message

Accessor: sql - user - error-nessage

Description: The error message.

Notes

The slot accessor sql - user - err or - message isaCLSQL extension.

229

Name

Class

Descr

Notes

SQL-DATABASE-ERROR — condition representing errors during query or command execution
Condition Type

Precedence List

sql-database-error, sql-error, simple-error, simple-condition, error, serious-condition, sgl-condition, con-
dition, t

iption

This condition represents errors that occur while executing SQL statements, either as part of query oper-
ations or command execution, either explicitly or implicitly, as caused e.g. by wi t h-t r ansact i on.

The following initialization arguments and accessors exist:

Initarg: :database

Accessor: sql - error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :secondary-error-id

Accessor: sql - error-secondary-error-id

Description: The secondary humeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

The dot accessor sql - err or - dat abase isaCLIQL extension.

230

Name

SQL-CONNECTION-ERROR — condition representing errors during connection
Condition Type

Class Precedence List

sgl-connection-error, sgl-database-error, sgl-error, simple-error, simple-condition, error, serious-con-
dition, sgl-condition, condition, t

Description

This condition represents errors that occur while trying to connect to a database.

The following initialization arguments and accessors exist:

I nitarg: :database-type

Accessor: sql - error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - error-connecti on-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - error-dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary humeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.

Initarg: :message

Accessor: sql - dat abase-error-error

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes

The dlot accessors sql - error-dat abase, sql -error-database-type and sql -er-
ror-connecti on- spec are CLSQL extensions.

231

Name

SQL-DATABASE-DATA-ERROR — Used to signal an error with the SQL data passed to a database.
Condition Type

Class Precedence List

sgl-database-data-error, sgl-database-error, sgl-error, simple-error, simple-condition, error, serious-
condition, sgl-condition, condition, t

Description

This condition represents errors that occur while executing SQL statements, specifically as a result of
malformed SQL expressions.

The following initialization arguments and accessors exist:

Initarg: :expression

Accessor: sql - error-expression

Description: The SQL expression whose execution caused the error.

Initarg: :database

Accessor: sql - error-dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sqgl -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql - error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.

I nitarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes

The dot accessorssql - error - dat abase andsql - err or - expr essi on are CLSQL extensions.

232

Name

SQL-TEMPORARY -ERROR — Used to signal atemporary error in the database backend.
Condition Type

Class Precedence List

sgl-temporary-error, sql-database-error, sgl-error, simple-error, simple-condition, error, serious-condi-
tion, sgl-condition, condition, t

Description

This condition represents errors occurring when the database cannot currently process a valid interaction
because, for example, it is still executing another command possibly issued by another user.

The following initialization arguments and accessors exist:

Initarg: :database

Accessor: sql - error - dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

Initarg: :secondary-error-id

Accessor: sql - error-secondary-error-id

Description: The secondary humeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes

The dot accessor sql - err or - dat abase isaCLIQL extension.

233

Name

SQL-TIMEOUT-ERROR — condition representing errors when a connection times out.
Condition Type

Class Precedence List

sgl-connection-error, sgl-database-error, sgl-error, simple-error, simple-condition, error, serious-con-
dition, sgl-condition, condition, t

Description

This condition represents errors that occur when the database times out while processing some opera
tion. The following initialization arguments and accessors exist:

I nitarg: :database-type

Accessor: sql - error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - error-connecti on-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - error-dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sqgl -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql - error-secondary-error-id

Description: The secondary numeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.

I nitarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes

The dlot accessors sql - error-dat abase, sql -error-database-type and sql -er-
ror-connecti on- spec are CLSQL extensions.

234

Name

SQL-FATAL-ERROR — condition representing a fatal error in a database connection
Condition Type

Class Precedence List

sgl-connection-error, sgl-database-error, sgl-error, simple-error, simple-condition, error, serious-con-
dition, sgl-condition, condition, t

Description

This condition represents errors occurring when the database connection is no longer usable.

The following initialization arguments and accessors exist:

I nitarg: :database-type

Accessor: sql - error-dat abase-type

Description: Database type for the connection attempt

I nitarg: :connection-spec

Accessor: sql - error-connecti on-spec

Description: The connection specification used in the connection attempt.

Initarg: :database

Accessor: sql - error-dat abase

Description: The database object that was involved in the incident.

Initarg: :error-id

Accessor: sql -error-error-id

Description: The numeric or symbolic error specification returned by the database back-end. The values
and semantics of this are interface specific.

I nitarg: :secondary-error-id

Accessor: sql -error-secondary-error-id

Description: The secondary humeric or symbolic error specification returned by the database back-end.
The values and semantics of this are interface specific.

Initarg: :message

Accessor: sql - error - dat abase- nessage

Description: A string describing the problem that occurred, possibly one returned by the database back-
end.

Notes

The dlot accessors sql - error-dat abase, sql -error-database-type and sql -er-
ror-connecti on- spec are CLSQL extensions.

235

Index

236

Name

Alphabetical Index for package CLSQL — Clickable index of al symbols

BACKEND-WARNING-BEHAVIOR
CACHE-TABLE-QUERIES-DEFAULT
CONNECT-IF-EXISTS
DB-AUTO-SYNC
DEFAULT-DATABASE
DEFAULT-DATABASE-TYPE

DEFAULT-UPDATE-OBJECTS-MAX-LEN

DEFAULT-STRING-LENGTH
INITIALIZED-DATABASE-TY PES
ADD-SQL-STREAM
ADD-TRANSACTION-COMMIT-HOOK

ADD-TRANSACTION-ROLLBACK-HOOK

ATTRIBUTE-TYPE
CACHE-TABLE-QUERIES
COMMIT

CONNECT
CONNECTED-DATABASES
CREATE-DATABASE
CREATE-INDEX
CREATE-SEQUENCE
CREATE-TABLE
CREATE-VIEW
CREATE-VIEW-FROM-CLASS
DATABASE
DATABASE-NAME
DATABASE-NAME-FROM-SPEC
DATABASE-TYPE
DEF-VIEW-CLASS
DELETE-INSTANCE-RECORDS
DELETE-RECORDS
DELETE-SQL-STREAM
DESTROY-DATABASE
DISABLE-SQL-READER-SYNTAX
DISCONNECT
DISCONNECT-POOLED
DO-QUERY

DROP-INDEX
DROP-SEQUENCE
DROP-TABLE

DROP-VIEW
DROP-VIEW-FROM-CLASS
ENABLE-SQL-READER-SYNTAX
EXECUTE-COMMAND
FIND-DATABASE
IN-TRANSACTION-P
INDEX-EXISTS-P
INITIALIZE-DATABASE-TY PE
INSERT-RECORDS
INSTANCE-REFRESHED
LIST-ATTRIBUTE-TYPES
LIST-ATTRIBUTES
LIST-CLASSES

LIST-SEQUENCES
LIST-SQL-STREAMS
LIST-TABLES
LIST-VIEWS

LOCALLY-DISABLE-SQL-READER-SYNTAX
LOCALLY-ENABLE-SQL-READER-SYNTAX

LOOP-FOR-AS-TUPLES
MAP-QUERY
PROBE-DATABASE
QUERY

RECONNECT

RESTORE-SQL-READER-SYNTAX-STATE

ROLLBACK

SELECT

SEQUENCE-EXISTS-P
SEQUENCE-LAST
SEQUENCE-NEXT
SET-AUTOCOMMIT
SET-SEQUENCE-POSITION

SQL

SQL-CONDITION
SQL-CONNECTION-ERROR
SQL-DATABASE-DATA-ERROR
SQL-DATABASE-ERROR
SQL-DATABASE-WARNING
SQL-ERROR

SQL-EXPRESSION
SQL-FATAL-ERROR
SQL-OPERATION
SQL-OPERATOR
SQL-RECORDING-P
SQL-STREAM
SQL-TEMPORARY-ERROR
SQL-TIMEOUT-ERROR
SQL-USER-ERROR
SQL-WARNING
START-SQL-RECORDING
START-TRANSACTION
STATUS
STOP-SQL-RECORDING
TABLE-EXISTS-P
TRUNCATE-DATABASE
UPDATE-INSTANCE-FROM-RECORDS
UPDATE-OBJECTS-JOINS
UPDATE-RECORD-FROM-SLOT
UPDATE-RECORD-FROM-SLOTS
UPDATE-RECORDS
UPDATE-RECORDS-FROM-INSTANCE
UPDATE-SLOT-FROM-RECORD
VIEW-EXISTS-P
WITH-DATABASE
WITH-DEFAULT-DATABASE

237

Alphabetical Index for package CLSQL

LIST-DATABASES WITH-TRANSACTION
LIST-INDEXES

238

Appendix A. Database Back-ends
How CLSQL finds and loads foreign libraries

For some database types CLSQL has to load external foreign libaries. These are usually searched for in
the standard locations the operating system uses but you can tell CLSQL to look into other directories as
well by using the function CLSQL: PUSH- LI BRARY- PATH or by directly manipulating the special
variable CLSQL: * FOREl G\- LI BRARY- SEARCH- PATHS*. If, say, the shared library libpg.so
needed for PostgreSQL support islocated in the directory / opt / f oo/ on your machine you'd use

(clsqgl:push-library-path "/opt/foo/")

before loading the CL SQL-POSTGRESQL module. (Note the trailing slash above!) If you want to com-
bine this with fully automatic loading of libraries via ASDF a technique like the following works:

(defmet hod asdf:perform:after ((o asdf:| oad-op)
(c (eql (asdf:find-system'clsqgl))))
(funcall (find-symbol (symnbol-name '#: push-1ibrary-path)
(find-package 'clsql))
#p"/opt/fool"))

Additionally, site-specific initidization can be done using an initidization file. If the file /
etc/clsqgl-init.lisp exists, thisfile will be read after the CLSQL ASDF system is loaded. This
file can contain forms to set site-specific paths as well as change CLSQL default values.

PostgreSQL

Libraries

The PostgreSQL back-end requires the PostgreSQL C client library (I i bpq. so). The location of this
library is specified via * postgresgl-so-load-path*, which defaultsto / usr/1i b/ | i bpg. so. Addition-
al flagsto |d needed for linking are specified via * postgresgl-so-libraries*, which defaultsto ("-lcrypt" "-
Ic").

Initialization

Use
(asdf: operate 'asdf:load-op 'clsql-postgresql)

to load the PostgreSQL back-end. The database type for the PostgreSQL back-end is :postgresgl.

Connection Specification

Syntax of connection-spec

239

Database Back-ends

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spec, nil indicates that the PostgreSQL default environment vari-
ables (see PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of the
Cclient library are used.

host String representing the hostname or | P address the PostgreSQL server resides on. Use the
empty string to indicate a connection to localhost via Unix-Domain sockets instead of
TCP/IP.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.
port String representing the port to use for communication with the PostgreSQL server.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.
Notes
None.
PostgreSQL Socket
Libraries

The PostgreSQL Socket back-end needs no access to the PostgreSQL C client library, since it commu-
nicates directly with the PostgreSQL server using the published frontend/backend protocol, version 2.0.
This eases installation and makes it possible to dump CMU CL images containing CLSQL and this
backend, contrary to backends which require FFI code.

Initialization

Use
(asdf: operate 'asdf:load-op 'clsqgl-postgresql-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is
‘postgresgl-socket.

Connection Specification

240

Database Back-ends

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

host If thisis a string, it represents the hostname or 1P address the PostgreSQL server resides
on. In this case communication with the server proceeds via a TCP connection to the giv-
en host and port.

If this is a pathname, then it is assumed to name the directory that contains the server's
Unix-Domain sockets. The full name to the socket is then constructed from this and the
port number passed, and communication will proceed via a connection to this unix-do-

main socket.
db String representing the name of the database on the server to connect to.
user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication. This can be the
empty string if no password is required for authentication.

port Integer representing the port to use for communication with the PostgreSQL server. This
defaultsto 5432.

options String representing further runtime options for the PostgreSQL server.

tty String representing the tty or file to use for debugging messages from the PostgreSQL
server.
Notes
None.
Libraries

The MySQL back-end requires the MySQL C client library (1 i bnysql cl i ent . so). The location of
this library is specified via *mysqgl-so-load-path*, which defaults to /
usr/lib/libmysglclient.so. Additional flags to Id needed for linking are specified via
mysgl-so-libraries, which defaultsto ("-Ic").

Initialization

Use

(asdf: operate 'asdf:|oad-op 'clsqgl-nmysql)

241

Database Back-ends

to load the MySQL back-end. The database type for the MySQL back-end is :mysql.
Connection Specification
Syntax of connection-spec

(host db user password &optional port)

Description of connection-spec

host String representing the hostname or | P address the MySQL server resides on, or nil to in-
dicate the localhost.

db String representing the name of the database on the server to connect to.

user String representing the user name to use for authentication, or nil to use the current Unix
user ID.

password String representing the unencrypted password to use for authentication, or nil if the au-
thentication record has an empty password field.

port String representing the port to use for communication with the MySQL server.

Notes
FDDL

» dr op-i ndex requires atable to be specified with the :on keyword parameter.
* views are not supported by MySQL .

» The :transactions keyword argument to cr eat e- t abl e controls whether or not the created table is
an InnoDB table which supports transactions.

e The :owner keyword argument to the FDDL functions for listing and testing for database objectsisig-
nored.

FDML

 Prior to version 4.1, MySQL does not support nested subqueriesin callsto sel ect .

Symbolic SQL Syntax

» MySQL does not support the | | concatenation operator. Use concat instead.
» MySQL does not support the subst r operator. Usesubst r i ng instead.

» MySQL does not support thei nt er sect and except set operations.

242

Database Back-ends

» MySQL (version 4.0 and later) does not support string table aliases unless the server is started with
ANSI_QUOTES enabled.

ODBC

Libraries

The ODBC back-end requires access to an ODBC driver manager as well as ODBC drivers for the un-
derlying database server. CLSQL has been tested with unixODBC ODBC Driver Manager as well as Mi-
crosoft's ODBC manager. These driver managers have been tested with the psglODBC [ht-
tp://odbc.postgresql.org] driver for PostgreSQL and the MyODBC [ht-
tp://www.mysgl.com/products/connector/odbc/] driver for MySQL.

Initialization

Use

(asdf : operate 'asdf: | oad-op 'clsqgl-odbc)

to load the ODBC bhack-end. The database type for the ODBC back-end is :odbc.

Connection Specification

Syntax

of connection-spec

(dsn user password)

Description of connection-spec

Notes
FDDL

dsn String representing the ODBC data source hame.
user String representing the user name to use for authentication.

password String representing the unencrypted password to use for authentication.

» The :owner keyword argument to the FDDL functions for listing and testing for database objectsisig-
nored.

AODBC

Libraries

243

http://odbc.postgresql.org
http://odbc.postgresql.org
http://odbc.postgresql.org
http://www.mysql.com/products/connector/odbc/
http://www.mysql.com/products/connector/odbc/
http://www.mysql.com/products/connector/odbc/

Database Back-ends

The AODBC back-end requires access to the ODBC interface of AllegroCL named DBI. This interface
isnot availablein thetrial version of AllegroCL

Initialization

Use

(require 'aodbc-v2)
(asdf: operate 'asdf: | oad-op 'clsqgl-aodbc)

to load the AODBC back-end. The database type for the AODBC back-end is :aodbc.

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn String representing the ODBC data source hame.
user String representing the user name to use for authentication.

passwor d String representing the unencrypted password to use for authentication.

Notes

None.

SQLite version 2

Libraries

The SQL.ite version 2 back-end requires the SQL ite version 2 shared library file. Its default file nameis
fusr/lib/libsqglite.so.

Initialization

Use
(asdf:operate 'asdf:load-op 'clsqgl-sqlite)

to load the SQL.ite version 2 back-end. The database type for the SQL ite version 2 back-end is :sglite.

244

Database Back-ends

Connection Specification

Syntax of connection-spec

(filenane)

Description of connection-spec

fil enanme String representing the filename of the SQLite version 2 database file.

Notes

Connection

» Passingfil ename avalueof : nenory: will create a database in physical memory instead of using
afileon disk.

» Some operations will be many times faster if database integrity checking is disabled by setting the
SYNCHRONOUS flag to OFF (see the SQLITE manual for details).

FDDL

» The :owner keyword argument to the FDDL functions for listing and testing for database objectsisig-
nored.

» The:column-list keyword argument to cr eat e- vi ewis not supported by SQL ite version 2.

Symbolic SQL Syntax

» SQLite version 2 does not support theal | , some, any and exi st s subquery operations.

SQLite version 3

Libraries

The SQL.ite version 3 back-end requires the SQL.ite version 3 shared library file. Its default file nameis
fusr/lib/libsqglite3.so.

Initialization

Use

(asdf : operate 'asdf:load-op 'clsqgl-sqglite3)

245

Database Back-ends

to load the SQL.ite version 3 back-end. The database type for the SQL.ite version 3 back-end is :sqlite3.

Connection Specification

Syntax of connection-spec

(filenane &optional init-function)

Description of connection-spec

fil enane String representing the filename of the SQL ite version 3 database file.

init-function A function designator. i nit-functi on takes a single argument of type sql-
ite3:sglite3-db, a foreign pointer to the C descriptor of the newly opened database.
i nit-function iscaled by the back-end immediately after SQLite version 3
sql i t e3_open library function, and can be used to perform optional database
initializations by calling foreign functions in the SQL ite version 3 library.

An example of an initialization function which defines a new collating sequence
for text columnsisprovidedin. / exanpl es/ sqlite3/init-func/.

Notes
Connection
» Passingfi | ename avalueof : nenory: will create adatabase in physical memory instead of using

afileon disk.

» Some operations will be many times faster if database integrity checking is disabled by setting the
SYNCHRONOUS flag to OFF (see the SQLITE manual for details).

FDDL

» The :owner keyword argument to the FDDL functions for listing and testing for database objectsisig-
nored.

» The:column-list keyword argument to cr eat e- vi ewis not supported by SQL.ite version 3.

Symbolic SQL Syntax

» SQLite version 3 does not support theal | , sonme, any and exi st s subquery operations.

Oracle

Libraries

246

Database Back-ends

The Oracle back-end requires the Oracle OCI client library. (1 i bcl nt sh. so). Thelocation of thislib-
rary is specified relative to the ORACLE_HOME value in the operating system environment.

Library Versions

CLSQL has tested sucessfully using the client library from Oracle 9i and Oracle 10g server installations
aswell as Oracle's 10g Instant Client library. For Oracle 8 and earlier versions, there is vestigial support
by pushing the symbol :0ci7 onto cl:*features* prior to loading thecl sql - or acl e ASDF system.

(push :oci7 cl:*features*)
(asdf: operate 'asdf:load-op 'clsqgl-oracle)

Initialization

Use

(asdf: operate 'asdf:load-op 'clsqgl-oracle)

to load the Oracle back-end. The database type for the Oracle back-end is :oracle.
Connection Specification
Syntax of connection-spec

(gl obal - name user password)

Description of connection-spec

gl obal - nane String representing the global name of the Oracle database. Thisislooked up through
the tnsnames.orafile.

user String representing the user name to use for authentication.

passwor d String representing the password to use for authentication..

Notes
Symbolic SQL Syntax

» Theuser env operator is Oracle specific.
 Oracle does not support the except operator. Use m nus instead.

» Oracle does not support theal | , sone, any subquery operations.

Transactions

247

Database Back-ends

» By default, CLSQL startsin transaction AUTOCOMMIT mode (see set - aut ocomnri t). To begina
transaction in autocommit mode, st art - t r ansact i on hasto be called explicitly.

248

Glossary

Note

This glossary is till very thinly populated, and not all references in the main text have been
properly linked and coordinated with this glossary. This will hopefully change in future revi-

sions.

Attribute

Active database
Connection
Column

Data Definition

(DDL)

Language
Data Manipulation Language
(DML)

database

Database Object

Field

Field Types Specifier

Interface

Foreign Function

(FFI)

Query
RDBMS

Record

Row

Structured Query Language
(SQL)

SQL Expression

Table

Transaction

A property of objects stored in a database table. Attributes are rep-
resented as columns (or fields) in atable.

See Database Object.
See Database Object.
See Attribute.

The subset of SQL used for defining and examining the structure of
a database.

The subset of SQL used for inserting, deleting, updating and fetch-
ing datain a database.

See Database Object.

An object of type database.

See Attribute.

A vauethat specifies the type of each field in aquery.

An interface from Common Lisp to aexternal library which contains
compiled functions written in other programming languages, typic-
aly C.

An SQL statement which returns a set of results.

A Relational DataBase Management System (RDBMYS) is a software
package for managing a database in which the data is defined, or-
ganised and accessed as rows and columns of atable.

A sequence of attribute values stored in a database table.

See Record.

An ANSI standard language for storing and retrieving datain arela
tional database.

Either a string containing avalid SQL statement, or an object of type
sql-expression.

A collection of data which is defined, stored and accessed as tuples
of attribute values (i.e., rows and columns).

An atomic unit of one or more SQL statements of which all or none
are successfully executed.

249

Glossary

Tuple See Record.

View A table display whose structure and content are derived from an ex-
isting table viaa query.

View Class Theclassst andar d- db- obj ect or one of its subclasses.

250

	CLSQL Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	History
	Prerequisites
	ASDF
	UFFI
	MD5
	Supported Common Lisp Implementation
	Supported SQL Implementation

	Installation
	Ensure ASDF is loaded
	Build C helper libraries
	Microsoft Windows
	UNIX

	Add UFFI path
	Add MD5 path
	Add CLSQL path and load module
	Run test suite (optional)

	Chapter 2. CommonSQL Tutorial
	Introduction
	Data Modeling with CLSQL
	Class Relations
	Object Creation
	Finding Objects
	Deleting Objects
	Conclusion

	Connection and Initialisation
	DATABASE
	CONNECT-IF-EXISTS
	DEFAULT-DATABASE
	DEFAULT-DATABASE-TYPE
	INITIALIZED-DATABASE-TYPES
	CONNECT
	CONNECTED-DATABASES
	DATABASE-NAME
	DATABASE-NAME-FROM-SPEC
	DATABASE-TYPE
	DISCONNECT
	DISCONNECT-POOLED
	FIND-DATABASE
	INITIALIZE-DATABASE-TYPE
	RECONNECT
	STATUS
	CREATE-DATABASE
	DESTROY-DATABASE
	PROBE-DATABASE
	LIST-DATABASES
	WITH-DATABASE
	WITH-DEFAULT-DATABASE

	The Symbolic SQL Syntax
	ENABLE-SQL-READER-SYNTAX
	DISABLE-SQL-READER-SYNTAX
	LOCALLY-ENABLE-SQL-READER-SYNTAX
	LOCALLY-DISABLE-SQL-READER-SYNTAX
	RESTORE-SQL-READER-SYNTAX-STATE
	SQL
	SQL-EXPRESSION
	SQL-OPERATION
	SQL-OPERATOR

	Functional Data Definition Language (FDDL)
	CREATE-TABLE
	DROP-TABLE
	LIST-TABLES
	TABLE-EXISTS-P
	CREATE-VIEW
	DROP-VIEW
	LIST-VIEWS
	VIEW-EXISTS-P
	CREATE-INDEX
	DROP-INDEX
	LIST-INDEXES
	INDEX-EXISTS-P
	ATTRIBUTE-TYPE
	LIST-ATTRIBUTE-TYPES
	LIST-ATTRIBUTES
	CREATE-SEQUENCE
	DROP-SEQUENCE
	LIST-SEQUENCES
	SEQUENCE-EXISTS-P
	SEQUENCE-LAST
	SEQUENCE-NEXT
	SET-SEQUENCE-POSITION
	TRUNCATE-DATABASE

	Functional Data Manipulation Language (FDML)
	CACHE-TABLE-QUERIES-DEFAULT
	CACHE-TABLE-QUERIES
	INSERT-RECORDS
	UPDATE-RECORDS
	DELETE-RECORDS
	EXECUTE-COMMAND
	QUERY
	PRINT-QUERY
	SELECT
	DO-QUERY
	LOOP
	MAP-QUERY

	Transaction Handling
	START-TRANSACTION
	COMMIT
	ROLLBACK
	IN-TRANSACTION-P
	ADD-TRANSACTION-COMMIT-HOOK
	ADD-TRANSACTION-ROLLBACK-HOOK
	SET-AUTOCOMMIT
	WITH-TRANSACTION

	Object Oriented Data Definition Language (OODDL)
	STANDARD-DB-OBJECT
	DEFAULT-STRING-LENGTH
	CREATE-VIEW-FROM-CLASS
	DEF-VIEW-CLASS
	DROP-VIEW-FROM-CLASS
	LIST-CLASSES

	Object Oriented Data Manipulation Language (OODML)
	DB-AUTO-SYNC
	DEFAULT-CACHING
	DEFAULT-UPDATE-OBJECTS-MAX-LEN
	INSTANCE-REFRESHED
	DELETE-INSTANCE-RECORDS
	UPDATE-RECORDS-FROM-INSTANCE
	UPDATE-RECORD-FROM-SLOT
	UPDATE-RECORD-FROM-SLOTS
	UPDATE-INSTANCE-FROM-RECORDS
	UPDATE-SLOT-FROM-RECORD
	UPDATE-OBJECTS-JOINS

	SQL I/O Recording
	START-SQL-RECORDING
	STOP-SQL-RECORDING
	SQL-RECORDING-P
	SQL-STREAM
	ADD-SQL-STREAM
	DELETE-SQL-STREAM
	LIST-SQL-STREAMS

	CLSQL Condition System
	BACKEND-WARNING-BEHAVIOR
	SQL-CONDITION
	SQL-ERROR
	SQL-WARNING
	SQL-DATABASE-WARNING
	SQL-USER-ERROR
	SQL-DATABASE-ERROR
	SQL-CONNECTION-ERROR
	SQL-DATABASE-DATA-ERROR
	SQL-TEMPORARY-ERROR
	SQL-TIMEOUT-ERROR
	SQL-FATAL-ERROR

	Index
	Alphabetical Index for package CLSQL

	Appendix A. Database Back-ends
	How CLSQL finds and loads foreign libraries
	PostgreSQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes

	PostgreSQL Socket
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes

	MySQL
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	FDDL
	FDML
	Symbolic SQL Syntax

	ODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	FDDL

	AODBC
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes

	SQLite version 2
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	Connection
	FDDL
	Symbolic SQL Syntax

	SQLite version 3
	Libraries
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	Connection
	FDDL
	Symbolic SQL Syntax

	Oracle
	Libraries
	Library Versions
	Initialization
	Connection Specification
	Syntax of connection-spec
	Description of connection-spec

	Notes
	Symbolic SQL Syntax
	Transactions

	Glossary

