CLSQL Users’ Guide

Kevin M. Rosenberg
Maintainer of CLSQL

Pierre R. Mali
Author of Original MaiSQL Code

CLSQL Users’ Guide
by Kevin M. Rosenberg and Pierre R. Mai

$Date: 2002/03/23 15:17:43 $
$Id: bookinfo.sgml,v 1.3 2002/03/23 15:17:43 kevin Exp $

« CLSQLis Copyright © 2002 by Kevin M. Rosenberg and Copyright © 1999-2001 by Pierre R. Mai.
- Allegro CL® is a registered trademark of Franz Inc.

« Common SQL, LispWorks and Xanalys are trademarks or registered trademarks of Xanalys Inc.

« Microsoft Windows® is a registered trademark of Microsoft Inc.

« Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents

PREIACE ..ottt i
IO [110 T 1 ox 1o T o ST PTTRRR 1
PUIDOSE ...t e e e et e e R e ne e nae e e r e e re e 1
L 1S3 (o] Y/ SRS PP 1
PrEIEOUISITES. ...ttt e bbbt b et b e et e bbbt 1
DETSYSEEIML ..ttt e e bbb bbb et 1

L6 TSP 1
Supported Common Lisp IMpPIemMentation...........cccoereinrinninnereeseese s 1
Supported SQL IMPIEMENTALIQN. ..ot s 2
INSTAITATION. ...ttt bbb bbbt e bbbttt 2
Ensure Defsystem is [0aded. ... e 2

BUild Chelper IDrariEsS. ..o e 2

o= To 10 OOV 3
0T To [@ IS @] I 4 Vo T [V 1= SRR 3

RUN TEST SUITE. ...ttt bbbt 3

L. OSSOttt ettt ettt e e s st et et et et ettt et et e n s e nese et eeee et et eeeeee et et et et et et et et et et et et et n s nnene et eeeaeeanans 1
CLSQL-CONDITIONctititiieteiiniriristete sttt ettt skttt s e bbb bbbt s s b b 1
CLSQL-ERROR.......citctetiriiete ettt bbbttt b e bbb 1
CLSQL-SIMPLE-ERROR.......ceotntiririeieinisisieieie ettt ettt 1
CLSQL-WARNING.......cotitriririeiettniresisie ettt etttk b et n b 2
CLSQL-SIMPLE-WARNING......cctetittttteiriririeietentsesisierestse st ses e snsnesenens 2
CLSQL-INVALID-SPEC-ERROR.......cccctririeieiiririrmseretse st 3
CLSQL-CONNECT-ERROR......ccootiiitiieirirmieeierenenesesie et sese s sssseses s ssssssesenens 4
CLSQL-SQL-ERROR......ociiteteiiirerinteeenesese ettt et er et nn s en e 5
CLSQL-EXISTS-CONDITION. ..ottt sese e ssssesesesessssssesesens 5
CLSQL-EXISTS-WARNING.......cctrtimrrereinirmreerereneseses et sers e sesseses s sessssesesens 6
CLSQL-EXISTS-ERROR.......coetirirmrrereininreererestsese et snsenenens 7
CLSQL-CLOSED-ERROR.......cciiitiiieiriei ettt sttt st sttt e s saene e 7
*DEFAULT-DATABASE-TYPE™ ..ot ieeeterisieieese sttt e e s sese e e sesenessssssnsas 8
*INITIALIZED-DATABASE-TYPESYociiirrieieentsrsete sttt ssse et sesessenas 9
INITIALIZE-DATABASE-TYPE ..ottt sttt sene e seen 11
FCONNECT-IF-EXISTSY .ttt ettt s b e s b e st b e bt 12
CONNECTED-DATABASES........oote ettt 13
*DEFAULT-DATABASE® ..ottt sttt sttt bbbt s st sanane s 15
DATABASE ...ttt sttt e e et bese e e bk e b e et se £k b e R et e b et e R e Rt ee e bR eRe e e bt nene e e e 17
CLOSED-DATABASEo oottt sttt bttt 17
DATABASE -NAME ..ottt bbbt sttt b bttt b b e st bebeaese e 18
FIND-DATABASE ..ottt ettt bbbt st b btk ket st e bbbttt ne e 20
CONNEC T ..ottt et bbbt b bbbt s e bk e b e s bbb Rt se s e b b e b et re bbb e be e se et be s 21
DISCONNECT ...ttt sttt sttt st b et b b b st £ bbb et se s bbb e Rt st s e bbb et se s bbb e ne st e s 24
DISCONNECT-POOLED.......cotititeittiirisirieiee ettt s 26
DATABASE-NAME-FROM-SPEC........ccitttririeitennnsie et s 27
EXECUTE-COMMAND.......cctitititettitniresieieiet sttt sttt st b bbb e 29
QUERY ..ttt bbbt bR £ bR R R b e R e R bR bbbt e e bR n e 31
MAP-QUERY ...ttt ettt bbbt b bttt b bttt e bbbt bbbt e 33

DO-QUERYooomeeeeeoeeeeeeeeeeeeeeeeeeeesesesessessseesseesseeseseesseseseessseseessess e esees s eeesseeeeesesseeeeseseeeeeseeees 35

LOOP-FOR-AS-TUPLES.ottt sttt sttt s ae et st e e ae e be e sraesnteenneeseeas 37

L O ST I SRR 1
DATABASE-INITIALIZE-DATABASE-TYPEocoi oottt 1

A. Database BaCK-ENUS.........ooiieiiee ettt b bttt s b e bt se et ae b bbb e e e ene e 3
Y Y25 SRS 3

] o] = L= 2SSOSR TUPSRURTRN 3
INITIAIIZATION. ...ttt b e b b e e e be et ae b b e b e e enea 3
(Ofe] gl l=Tot1To] g IS] oT=Tol i ox= L1 o] o S 3

Syntax of CONNECHION-SPEC........ccceeie e e e st 3

Description of CONNECHION-SPEC........ccccieiecieie e nas 3

X T = SO 3

I o] = 1= SO SO U PSSP PTP USROS 4

e T1E= 1 2= Lo NS 4
(070] gl g =Tox 110l g o T=Tod 1 o= L1 o] o I 4

Syntax Of CONNECHION-SPEC.......ccueererririerereeeeere et sresr e e e e ens 4

Description Of CONNECHON-SPEC......cccieieeeeecere et s 4

L0 S0 | =357 | S 4

] o] =T 1= OSSOV 4
LU=V o] o SRS 4
CoNNECtioN SPECITICALIAN.cciriirie e 5

Syntax Of CONNECLION-SPECcouruiirirerieeriet et saenes 5

Description 0f CONNECHION-SPEC.......cerruereiererieirieeriee ettt 5

POSIGrESQL SOCKEL.......eiitieiteete e et b e et 5

I o] r= L= TSRS 6

T LU= U2 o] R SSRSTRN 6
CoNNECEION SPECITICALIAN.ciriitiiitirtere e 6

Syntax Of CONNECLION-SPECccuivierieierieieriet ettt b e seeaes 6

Description 0f CONNECHION-SPEC.......cerrererreririeeriee ettt seene e 6

LT (0TS ET= T USSR 8

Preface

This guide provides reference to the feature€bSQL The first chapter provides an introduction to
CLSQLand installation instructions. Following that chapter is the reference section for all user
accessible symbols &¥LSQLwith examples of usage, followed by the reference section for all
accessible symbols of the database back-end interface. At the end there you will find a glossary of
commonly used terms with their definitions.

Chapter 1. Introduction

Purpose

CLSQLis a Common Lisp interface t8QLdatabases. A number of Common Lisp implementations and
SQL databases are supported.The general struct@e®fLis based on the CommonSQL package by
Xanalys.

History

CLSQLis written by Kevin M. Rosenberg and based substantially on Pierre R. Mai's exdelie80QL
package. The main changes frdfaiSQLare:

« port from the CMUCL FFI tdJFFI.

- new AllegroCL ODBC interface back-end.

- compatibility layer for CMUCL specific code.

« much improved robustness for the MySQL back-end.
« improved system loading.

- improved packages and symbol export.

Prerequisites

Defsystem

CLSQLuses Defsystem to compile and load its components. Defsystem is includeddh@@C
(http://clocc.sourceforge.net) collection. The version in the pre-packaged distribution is rather old and
may not function well. The version in CVS tree tree works quite well. For convenience, a copy of the
latest Defsystem at the FTdte (ftp://ftp.med-info.com/pub/defsystem/) GLSQL

UFFI

CLSQLusesUFFI (http://uffi.med-info.com/) as Boreign Function Interfac€FFI) to support multiple
ANSI Common Lisp implementations.

You can downloadJFFI from its FTPsite (ftp://ftp.med-info.com/pub/uffi/). There are zip files for
Microsoft Windows systems and gzipped tar files for other systems.

Chapter 1. Introduction

Supported Common Lisp Implementation

The implementations that supp@tSQLis governed by the supported implementations)BFI. The
following implementations are supported:

» AllegroCL v6.1 on Redhat Linux 7.2, FreeBSD 4.5, and Microsoft Windows XP.
 Lispworks v4.2 on Redhat Linux 7.2 and Microsoft Windows XP.
« CMUCL 18d-pre on Redhat Linux 7.2, FreeBSD 4.5, and Solaris 2.8.

Supported SQL Implementation
Currently, CLSQLsupports the following databases:

» MySQL v3.23.49.
» PostgreSQL v7.2 with both direct APl and TCP socket connections.
» Allegro’s ODBC interface (AODBC) using iODBC ODBC manager.

Installation

Ensure Defsystem is loaded
Simply load the filedefsystem.lisp

(load "defsystem.lisp")

Build C helper libraries

CLSQLuses functions that require 64-bit integer parameters and return valueSFThemostCLSQL
implementations do not support 64-bit integers. Thus, C helper libraries are required to break these
64-bit integers into two compatible 32-bit integers.

Makefiles for Microsoft Windows and GNU/Solaris systems are supplied to build the libraries. Since
many Microsoft Windows users don’t have access to a compilepthendLIB files for Microsoft
Windows are supplied with the distribution.

To build the libraries on a GNU or Solaris, use the shell and change to the root direc@sQfL. You

may need to edit the filaterfaces/mysql/Makefile to specify the location of your MySQL
installation. The default Makefiles are setup for shared library linking on Linux. If you are using
FreeBSD or Solaris, you will need to change the linker setting as instructed in the Makefile. Then, you
can give the command

make libs

Chapter 1. Introduction

in the root directory ofCLSQLto build the librariesnterfaces/mysgl/clsgl-mysgl.so and
interfaces/clsgl-uffi/clsql-uffi.so

Load UFFI

Unzip or untar thaJFFI distribution which creates a directory for thié-FI files. Add that directory to
Defsystem’ank:*central-registry* . You can do that by either pushing the pathname of the
directory onto this variable, or use the nedd-registry-location present in the newest versions of
Defsystem. The following example code assumesiREl files reside in the

{ust/local/src/lisp/uffi directory.

(mk:add-registry-location #P"/usr/local/src/lisp/uffi")
(mk:load-system :uffi)

Load CLSQL modules

Unzip or untar theCLSQLdistribution which creates a directory for thd SQLfiles. Add that directory

to Defsystem’snk:*central-registry* . You can do that by either pushing the pathname of the
directory onto this variable, or use the nedd-registry-location present in the newest versions of
Defsystem. The following example code assume<ah8QLfiles reside in the

{usr/local/src/lisp/clsgl directory. You need to load, at a minimum, the maiiegl system
and at least one interface system.

(mk:add-registry-location #P"/usr/local/src/lisp/clsql")

(mk:load-system :clsql) ; main clsgl package
(mk:load-system :clsqgl-mysq]l) ; MySQL interface
(mk:load-system :clsql-postgresql) ; PostgreSQL interface
(mk:load-system :clsqgl-postgresqgl-socket) ; Socket PGSQL interface
(mk:load-system :clsgl-aodbc) ; Allegro ODBC interface

Run test suite

After loadingCLSQL, you can execute the test program in the directbegt-suite . The test file,
tester-clsql has instructions for creatingtest.config . After creating that file, simple load the
test file with Lisp and the tests should automatically execute.

l. CLSQL

This part gives a reference to all the symbols exported from the packa®@L-SYS which are also
re-exported from the packa@® SQL These symbols constitute the normal user-interfacel(8QL

CLSQL-CONDITION

Name
CLSQL-CONDITION— the super-type of alCLSQL-specific conditions

Condition Type

Class Precedence List

clsql-condition , condition ,t

Description

This is the super-type of alLSQL-specific conditions defined ByLSQL, or any of it’s
database-specific interfaces. There are no defined initialization arguments nor any accessors.

CLSQL-ERROR

Name
CLSQL-ERROR- the super-type of alCLSQl-specific errors

Condition Type

Class Precedence List

clsql-error , error , serious-condition , clsgl-condition , condition ,t

Description

This is the super-type of alLSQL-specific conditions that represent errors, as define@LyQL, or
any of it's database-specific interfaces. There are no defined initialization arguments nor any accessors.

CLSQL

CLSQL-SIMPLE-ERROR

Name
CLSQL-SIMPLE-ERROR— Unspecific simpleCLSQLerrors

Condition Type

Class Precedence List

clsql-simple-error , simple-condition , clsql-error , error , serious-condition ,
clsql-condition , condition ,t
Description

This condition is used in all instances of errors, where there exisBLS®L-specific condition that is
more specific. The valid initialization arguments and accessors are the samaiapl®condition

CLSQL-WARNING

Name
CLSQL-WARNING— the super-type of alCLSQL-specific warnings

Condition Type

Class Precedence List

clsgl-warning , warning , clsgl-condition , condition ,t

Description

This is the super-type of alLSQL-specific conditions that represent warnings, as definedlt§QL, or
any of it's database-specific interfaces. There are no defined initialization arguments nor any accessors.

CLSQL

CLSQL-SIMPLE-WARNING

Name
CLSQL-SIMPLE-WARNING— Unspecific simpleCLSQLwarnings

Condition Type

Class Precedence List

clsgl-simple-warning , simple-condition , Clsgl-warning , warning , clsgl-condition ,
condition ,t

Description

This condition is used in all instances of warnings, where there existd 8QL-specific condition that is
more specific. The valid initialization arguments and accessors are the samaiapl®condition

CLSQL-INVALID-SPEC-ERROR

Name

CLSQL-INVALID-SPEC-ERROR — condition representing errors because of invalid connection
specifications

Condition Type

Class Precedence List

clsql-invalid-spec-error , clsql-error , error , serious-condition , clsgl-condition ,
condition ,t

Description

This condition represents errors that occur because the user supplies an invalid connection specification
to eitherdatabase-name-from-spec orconnect . The following initialization arguments and
accessors exist:

Initarg: :connection-spec
Accessor: clsgl-invalid-spec-error-connection-spec
Description: The invalid connection specification used.

CLSQL

Initarg: :database-type
Accessor: clsql-invalid-spec-error-database-type
Description: The Database type used in the attempt.

Initarg: :template

Accessor: clsqgl-invalid-spec-error-template

Description: An argument describing the template that a valid connection specification must match for
this database type.

CLSQL-CONNECT-ERROR

Name
CLSQL-CONNECT-ERROR condition representing errors during connection

Condition Type

Class Precedence List

clsql-connect-error , clsql-error , error , serious-condition , clsgl-condition ,
condition ,t

Description

This condition represents errors that occur while trying to connect to a database. The following
initialization arguments and accessors exist:

Initarg: :database-type
Accessor: clsql-connect-error-database-type
Description: Database type for the connection attempt

Initarg: :connection-spec
Accessor: clsgl-connect-error-connection-spec
Description: The connection specification used in the connection attempt.

Initarg: :errno

Accessor: clsgl-connect-error-errno

Description: The numeric or symbolic error specification returned by the database back-end. The
values and semantics of this are interface specific.

Initarg: :error

Accessor: clsgl-connect-error-error

Description: A string describing the problem that occurred, possibly one returned by the database
back-end.

CLSQL

CLSQL-SQL-ERROR

Name
CLSQL-SQL-ERROR— condition representing errors during query or command execution

Condition Type

Class Precedence List

clsql-sql-error , clsql-error , error , serious-condition , clsgl-condition , condition
t

Description

This condition represents errors that occur while executing SQL statements, either as part of query
operations or command execution, either explicitly or implicitly, as caused ewjttyransaction
The following initialization arguments and accessors exist:

Initarg: :database
Accessor: clsqgl-sgl-error-database
Description: The database object that was involved in the incident.

Initarg: :expression
Accessor: clsql-sql-error-expression
Description: The SQL expression whose execution caused the error.

Initarg: :errno

Accessor: clsqgl-sql-error-errno

Description: The numeric or symbolic error specification returned by the database back-end. The
values and semantics of this are interface specific.

Initarg: :error

Accessor: clsgl-sqgl-error-error

Description: A string describing the problem that occurred, possibly one returned by the database
back-end.

CLSQL

CLSQL-EXISTS-CONDITION

Name

CLSQL-EXISTS-CONDITION — condition indicating situations arising because of existing
connections

Condition Type

Class Precedence List

clsgl-exists-condition , clsgl-condition , condition ,t

Description

This condition is the super-type of all conditions which represents problems that occur during calls to
connect , if a connection to the database exists already. Depending on the vaftexists to the

call of connect , either a warning, an error or no condition at all is signalled. If a warning or error is
signalled, eithetlsgl-exists-warning or clsgl-exists-error is signalled, which are subtypes

of clsql-exists-condition andclsgl-warning or clsgl-error . clsgl-exists-condition

is never signalled itself.

The following initialization arguments and accessors exist:

Initarg: :old-db
Accessor: clsqgl-exists-condition-old-db
Description: The database object that represents the existing connection. This slot is always filled.

Initarg: :new-db

Accessor: clsgl-exists-condition-new-db

Description: The database object that will be used and returned by this call to connect, if execution
continues normally. This can be eithér , indicating that a new database object is to be created on
continuation, or a database object representing the newly created continuation, or the same database
object asld-db , indicating that the existing database object will be reused. This slot is always filled
and defaults tail

CLSQL-EXISTS-WARNING

Name

CLSQL-EXISTS-WARNING— condition representing warnings arising because of existing

CLSQL

connections

Condition Type

Class Precedence List

clsgl-exists-warning , Clsql-exists-condition , Clsgl-warning ,warning ,
clsql-condition , condition ,t

Description

This condition is a subtype afsql-exists-condition , and is signalled during calls tmnnect
when there is an existing connection, afdxists is either:.warn-new or:warn-old . In the

former casenew-db will be the newly created database object, in the latter case it will be the existing
old database object.

The initialization arguments and accessors are the same esdegxists-condition

CLSQL-EXISTS-ERROR

Name
CLSQL-EXISTS-ERROR— condition representing errors arising because of existing connections

Condition Type

Class Precedence List

clsql-exists-error , Clsgl-exists-condition , Clsql-error , error , serious-condition ,
clsql-condition , condition ,t

Description

This condition is a subtype afsgl-exists-condition , and is signalled during calls tmnnect
when there is an existing connection, afdxists is :error . In this casepew-db will be nil ,

indicating that the database object to be returneddoyiect depends on user action in continuing from
this correctable error.

The initialization arguments and accessors are the same esdegxists-condition

CLSQL

CLSQL-CLOSED-ERROR

Name
CLSQL-CLOSED-ERROR- condition representing errors because the database has already been closed

Condition Type

Class Precedence List

clsql-closed-error , Clsql-error , error , serious-condition , clsgl-condition ,
condition ,t

Description

This condition represents errors that occur because the user invokes an operation on the given database
object, although the database is invalid becalissmnnect has already been called on this database
object.

Functions which signal this error when called with a closed database will usually prosttéraie
restart, that will just return nil from the function.

The following initialization arguments and accessors exist:

Initarg: :database
Accessor: clsqgl-closed-error-database
Description: The database object that was involved in the incident.

DEFAULT-DATABASE-TYPE

Name
DEFAULT-DATABASE-TYPE— The default database type to use

Variable

Value Type
Any keyword representing a valid database back-er@dL&QL, or nil .

CLSQL

Initial Value

nil

Description

The value of this variable is used in callsitgialize-database-type andconnect as the default
value of thedatabase-type parameter.

Caution

If the value of this variable is nil , then all calls to initialize-database-type or
connect Wwill have to specify the database-type to use, or a general-purpose
error will be signalled.

Examples
(setf *default-database-type* :mysql)
=> :mysq|

(initialize-database-type)
=> t

Affected By

None.

See Also

None.

Notes

None.

CLSQL

INITIALIZED-DATABASE-TYPES

Name
INITIALIZED-DATABASE-TYPES — List of all initialized database types

Variable

Value Type

A list of all initialized database types, each of which represented by it's corresponding keyword.

Initial Value

nil

Description

This variable is updated whenevsttialize-database-type is called for a database type which
hasn’t already been initialized before, as determined by this variable. In that case the keyword
representing the database type is pushed onto the list stofédTmALIZED-DATABASE-TYPES*

Caution

Attempts to modify the value of this variable will result in undefined behaviour.

Examples

(setf *default-database-type* :mysql)
=> :mysq|

(initialize-database-type)

=>t

initialized-database-types

=> (:MYSQL)

Affected By

initialize-database-type

See Also

None.

10

CLSQL

Notes

Direct access to this variable is primarily provided because of compatibility with Harlequin’s Common
SQL.

INITIALIZE-DATABASE-TYPE

Name
INITIALIZE-DATABASE-TYPE — Initializes a database type

Function

Syntax

initialize-database-type &key database-type => result

Arguments and Values

database-type

result

The database type to initialize, i.e. a keyword symbol denoting a known database back-end.
Defaults to the value ofdefault-database-type*

Eithernil if the initialization attempt fails, or otherwise.

Description

If the back-end specified lyatabase-type has not already been initialized, as seen from
initialized-database-types , an attempt is made to initialize the database. If this attempt
succeeds, or the back-end has already been initialized, the function returns t, and places the keyword
denoting the database type onto the list storethitialized-database-types* , if not already
present.

If initialization fails, the function returnsil , and/or signals an error of tymésql-error . The kind of

action taken depends on the back-end and the cause of the problem.

Examples

initialized-database-types
=> NIL

11

CLSQL

(setf *default-database-type* :mysql)
=> :MYSQL
(initialize-database-type)

>> Compiling LAMBDA (#:G897 #:G898 #:G901 #:G902):
>> Compiling Top-Level Form:

>>

= T

initialized-database-types

=> (:MYSQL)
(initialize-database-type)

= T

initialized-database-types

=> (:MYSQL)

Side Effects

The database back-end corresponding to the database type specified is initialized, unless it has already
been initialized. This can involve any number of other side effects, as determined by the back-end
implementation (like e.g. loading of foreign code, calling of foreign code, networking operations, etc.). If
initialization is attempted and succeeds, da¢abase-type is pushed onto the list stored in
initialized-database-types

Affected by

default-database-type
initialized-database-types

Exceptional Situations

If an error is encountered during the initialization attempt, the back-end may signal errors of kind
clsql-error

See Also

None.

Notes

None.

12

CLSQL

CONNECT-IF-EXISTS

Name
CONNECT-IF-EXISTS — Default value for thef-exists parameter otonnect .

Variable

Value Type

A valid argument to thé-exists parameter ofonnect , i.e. one ofnew , :warn-new , :error
‘warn-old ,:old .

Initial Value

.error

Description

The value of this variable is used in callsdannect as the default value of thiéexists parameter.
Seeconnect for the semantics of the valid values for this variable.

Examples

None.

Affected By

None.

See Also

connect

Notes

None.

13

CLSQL

CONNECTED-DATABASES

Name
CONNECTED-DATABASES Return the list of active database objects.

Function

Syntax

connected-databases => databases

Arguments and Values

databases

The list of active database objects.

Description

This function returns the list of active database objects, i.e. all those database objects created by calls to
connect , which have not been closed by callidigconnect on them.

Caution
The consequences of modifying the list returned by connected-databases are
undefined.
Examples

(connected-databases)

=> NIL

(connect ’(nil "templatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>

(connect ’("dent" "newesim" "dent" "dent") :database-type :mysql)

=> #<CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>

(connected-databases)

=> (# <CLSQL-MYSQL:MYSQL-DATABASE {4830C5AD}>
#<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)

(disconnect)

= T

(connected-databases)

=> (# <CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {4830BC65}>)

(disconnect)

= T

14

CLSQL

(connected-databases)
=> NIL

Side Effects

None.

Affected By

connect
disconnect

Exceptional Situations

None.

See Also

None.

Notes

None.

DEFAULT-DATABASE

Name
DEFAULT-DATABASE— The default database object to use

Variable

Value Type

Any object of typedatabase , or nil to indicate no default database.

Initial Value

nil

15

CLSQL

Description

Any function or macro irCLSQLthat operates on a database uses the value of this variable as the default
value for it'sdatabase parameter.

The value of this parameter is changed by callsaimnect , which setsdefault-database* to the
database object it returns. It is also changed by callistmnnect , when the database object being
disconnected is the same as the valuglefault-database* . In this casealisconnect sets
default-database to the first database that remains in the list of active databases as returned by
connected-databases , ornil if no further active databases exist.

The user may changeefault-database* at any time to a valid value of his choice.

Caution

If the value of *default-database* is nil , then all calls to CLSQL functions on
databases must provide a suitable database parameter, or an error will be
signalled.

Examples

(connected-databases)

=> NIL

(connect ’("dent" "newesim" "dent" “"dent") :database-type :mysql)

=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>

(connect ’(nil "templatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(connect ’("dent" "newesim" "dent" "dent") :database-type :mysql :if-exists :new)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>
default-database

=> #<CLSQL-MYSQL:MYSQL-DATABASE {48387265}>

(disconnect)

== T

default-database

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {483868FD}>
(disconnect)

= T

default-database

=> #<CLSQL-MYSQL:MYSQL-DATABASE {48385F55}>

(disconnect)

= T

default-database

=> NIL

(connected-databases)

=> NIL

Affected By

connect
disconnect

16

CLSQL

See Also

connected-databases

Notes

Note: This variable is intended to facilitate working with CLSQL in an interactive fashion at the
top-level loop, and because of this, connect and disconnect provide some fairly complex behaviour
to keep *default-database* set to useful values. Programmatic use of CLSQL should never
depend on the value of *default-database* and should provide correct database objects via the
database parameter to functions called.

DATABASE

Name
DATABASE— The super-type of alLLSQLdatabases

Class

Class Precedence List

database , standard-object t

Description

This class is the superclass of @lLSQLdatabases. The different database back-ends derive subclasses
of this class to implement their databases. No instances of this class are ever creat&i{y

CLOSED-DATABASE

Name
CLOSED-DATABASE- The class representing all clos€d SQLdatabases

Class

17

CLSQL

Class Precedence List

closed-database , standard-object ot

Description

CLSQLdatabase instances are changed to this classohiange-class after they are closed via
disconnect . All functions and generic functions that take database objects as arguments will signal
errors of typeclsqgl-closed-error when they are called on instancesctafsed-database , with

the exception oflatabase-name , which will continue to work as for instances ddtabase .

DATABASE-NAME

database

name

Name
DATABASE-NAME- Get the name of a database object

Generic Function

Syntax

database-name database => name

Arguments and Values

A database object, either of typatabase or of typeclosed-database

A string describing the identity of the database to which this database object is connected to.

Description

This function returns the database name of the given database. The database name is a string which
somehow describes the identity of the database to which this database object is or has been connected.
The database name of a database object is determiredract time, when a call to
database-name-from-spec derives the database name from the connection specification passed to

connect in theconnection-spec parameter.

The database name is used fiti@-database in connect to determine whether database connections
to the specified database exist already.

18

CLSQL

Usually the database name string will include indications of the host, database name, user, or port that
where used during the connection attempt. The only important thing is that this string shall try to identify
the database at the other end of the connection. Connection specifications parts like passwords and
credentials shall not be used as part of the database name.

Examples

(database-name-from-spec ’("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"

(connect ’("dent" "newesim" "dent" “"dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)

=> "dent/newesim/dent"

(database-name-from-spec ’(nil "templatel” "dent" nil) :postgresql)

=> "[templatel/dent"

(connect ’(nil "templatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)

=> "[templatel/dent"

(database-name-from-spec '("www.pmsf.de" "templatel” "dent" nil) :postgresql)
=> "www.pmsf.de/templatel/dent"

Side Effects

None.

Affected By

database-name-from-spec

Exceptional Situations

Will signal an error if the object passed as ttetabase parameter is neither of typtatabase nor of
typeclosed-database

See Also

connect
find-database

Notes

None.

19

CLSQL

FIND-DATABASE

database

errorp

result

Name
FIND-DATABASE— Locate a database object through it's name.

Function

Syntax

find-database database &optional errorp => result

Arguments and Values

A database object or a string, denoting a database name.

A generalized boolean. Defaultstto

Either a database object, orgifrorp isnil , possiblynil

Description

find-database locates an active database object given the specificatidatabase . If database

is an object of typelatabase , find-database returns this. Otherwise it will search the active
databases as indicated by the list returneddmnected-databases for a database whose name (as
returned bydatabase-name is equal as pestring= to the string passed aatabase . If it succeeds,
it returns the first database found.

If it fails to find a matching database, it will signal an error of tyjsl-error if errorp s true. If
errorp isnil , it will return nil instead.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"

(connect ’'("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>

20

(database-name *default-database*)
=> "dent/newesim/dent"

(database-name-from-spec '(nil "templatel" "dent" nil) :postgresql)

=> "[templatel/dent"

(connect ’(nil "templatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)

=> "[templatel/dent"

(database-name-from-spec '("www.pmsf.de" "templatel” "dent" nil) :postgresql)
=> "www.pmsf.de/templatel/dent"

(find-database "dent/newesim/dent")

=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/templatel/dent")

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(find-database "www.pmsf.de/templatel/dent” nil)

=> NIL

(find-database **)

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

Side Effects

None.

Affected By

connected-databases

Exceptional Situations

Will signal an error of typelsgl-error if no matching database can be found, anabrp

CLSQL

is true.

Will signal an error if the value oflatabase is neither an object of typdatabase nor a string.

See Also

database-name
database-name-from-spec

Notes

None.

21

CLSQL

CONNECT

Name
CONNECT- create a connection to a database

Function

Syntax

connect connection-spec &key if-exists database-type pool => database

Arguments and Values

connection-spec

if-exists

A connection specification

This indicates the action to take if a connection to the same database exists already. See below for
the legal values and actions. It defaults to the valugafnect-if-exists*

database-type

pool

database

A database type specifier, i.e. a keyword. This defaults to the value of
default-database-type

A boolean flag. IfT, acquire connection from a pool of open connections. If the pool is empty, a
new connection is created. The defaullis .

The database object representing the connection.

Description

This function takes a connection specification and a database type and creates a connection to the
database specified by those. The type and structure of the connection specification depend on the
database type.

The parameteif-exists specifies what to do if a connection to the database specified exists already,
which is checked by callinfind-database on the database name returned by

database-name-from-spec when called with theonnection-spec anddatabase-type

parameters. The possible valuesfafxists are:

22

CLSQL

‘hew
Go ahead and create a new connection.

warn-new
This is just like:new , but also signals a warning of tyjsgl-exists-warning , indicating the
old and newly created databases.

-error
This will causeconnect to signal a correctable error of typeqgl-exists-error . The user
may choose to proceed, either by indicating that a new connection shall be created, via the restart
create-new , or by indicating that the existing connection shall be used, via the restasid

:old
This will causeconnect to use an old connection if one exists.

‘warn-old

This is just like:old , but also signals a warning of typ&gl-exists-warning , indicating the
old database used, via the slots-db andnew-db

The database name of the returned database object will be the samattingler as that which would
be returned by a call téatabase-name-from-spec with the givenconnection-spec and
database-type parameters.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"

(connect ’("dent" "newesim" "dent" “"dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}>
(database-name *)

=> "dent/newesim/dent"

(connect ’'("dent" "newesim" "dent" "dent") :database-type :mysql)

>> |In call to CONNECT:

>> There is an existing connection # <CLSQL-MYSQL:MYSQL-DATABASE {48036F6D}> to database de
>>

>> Restarts:

>> 0. [CREATE-NEW] Create a new connection.

>> 1: [USE-OLD] Use the existing connection.

>> 2. [ABORT] Return to Top-Level.

>>

>> Debug (type H for help)

>>

>> (CONNECT ("dent" "newesim" "dent" "dent") :IF-EXISTS NIL :DATABASE-TYPE ...
>> Source:

>> ; File: /prj/CLSQL/sql/sql.cl
>> (RESTART-CASE (ERROR 'CLSQL-EXISTS-ERROR :OLD-DB OLD-DB)

23

CLSQL

>> (CREATE-NEW NIL :REPORT "Create a new connection."
>> (SETQ RESULT #))

>> (USE-OLD NIL :REPORT "Use the existing connection."
>> (SETQ RESULT OLD-DB)))

>> 0] 0

=> #<CLSQL-MYSQL:MYSQL-DATABASE {480451F5}>

Side Effects

A database connection is established, and the resultant database object is registered, so as to appear in the
list returned byconnected-databases

Affected by

default-database-type
connect-if-exists

Exceptional Situations

If the connection specification is not syntactically or semantically correct for the given database type, an
error of typeclsgl-invalid-spec-error is signalled. If during the connection attempt an error is
detected (e.g. because of permission problems, network trouble or any other cause), an error of type
clsgl-connect-error is signalled.

If a connection to the database specifieccbynection-spec exists already, conditions are
signalled according to thi&exists parameter, as described above.

See Also

connected-databases
disconnect

Notes

None.

24

CLSQL

DISCONNECT

pool

database

Name
DISCONNECT— close a database connection

Function

Syntax

disconnect &key database pool =t

Arguments and Values

A boolean flag indicating whether to put the database into a pool of opened databasesthiér

than terminating the database connection, the connection is left open and the connection is placed
into a pool of connections. Subsequent callsdonect can then reuse this connection. The default

iS NIL .

The database to disconnect, which defaults to the database indicatdefdwt-database*

Description

This function takes database object as returned bgonnect , and closes the connection. The class of
the object passed is changedtlosed-database after the disconnection succeeds, thereby preventing
further use of the object as an argumen€tdSQLfunctions, with the exception afatabase-name . If

the user does pass a closed database object to anyQitB€)Lfunction, an error of type

clsql-closed-error is signalled.

Examples

(disconnect :database (find-database "dent/newesim/dent"))
= T

Side Effects

The database connection is closed, and the database object is removed from the list of connected
databases as returned énnnected-databases

The class of the database object is changetbt@d-database

25

CLSQL

If the database object passed is the same waglas the value ofdefault-database* , then
default-database is set to the first remaining database froonnected-databases or to nil if
no further active database exists.

Affected by

default-database

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of typesgl-error might be signalled.

See Also

connect
closed-database

Notes

None.

DISCONNECT-POOLED

Name
DISCONNECT-POOLEB- closes all pooled database connections

Function
Syntax

disconnect-pool =>t

Description

This function disconnects all database connections that have been placed into the pool. Connections are
placed in the pool by callingisconnection

26

CLSQL

Examples

(disconnect-pool)
= T

Side Effects

Database connections will be closed and entries in the pool are removed.

Affected by

disconnect

Exceptional Situations

If during the disconnection attempt an error is detected (e.g. because of network trouble or any other
cause), an error of typesgl-error might be signalled.

See Also

connect
closed-database

Notes

None.

DATABASE-NAME-FROM-SPEC

Name

DATABASE-NAME-FROM-SPEE- Return the database name string corresponding to the given
connection specification.

Generic Function

Syntax

database-name-from-spec connection-spec database-type => name

27

CLSQL

Arguments and Values

connection-spec

A connection specification, whose structure and interpretation are dependent on the
database-type

database-type

A database type specifier, i.e. a keyword.

name

A string denoting a database name.

Description

This generic function takes a connection specification and a database type and returns the database name
of the database object that would be createddeadect been called with the given connection
specification and database types.

This function is useful in determining a database name from the connection specification, since the way
the connection specification is converted into a database name is dependent on the database type.

Examples

(database-name-from-spec '("dent" "newesim" "dent" "dent") :mysql)
=> "dent/newesim/dent"

(connect '("dent" "newesim" "dent" "dent") :database-type :mysql)
=> #<CLSQL-MYSQL:MYSQL-DATABASE {48391DCD}>
(database-name *default-database*)

=> "dent/newesim/dent"

(database-name-from-spec '(nil "templatel" "dent" nil) :postgresql)

=> "[templatel/dent"

(connect ’(nil "templatel" "dent" nil) :database-type :postgresql)

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(database-name *default-database*)

=> "[templatel/dent"

(database-name-from-spec '("www.pmsf.de" "templatel" "dent" nil) :postgresql)
=> "www.pmsf.de/templatel/dent"

(find-database "dent/newesim/dent")

=> #<CLSQL-MYSQL:MYSQL-DATABASE {484E91C5}>
(find-database "/templatel/dent")

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>
(find-database "www.pmsf.de/templatel/dent" nil)

=> NIL

(find-database **)

=> #<CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {48392D2D}>

28

CLSQL

Side Effects

None.

Affected by

None.

Exceptional Situations

If the value ofconnection-spec is not a valid connection specification for the given database type,
an error of typeclsql-invalid-spec-error might be signalled.

See Also

connect

Notes

None.

EXECUTE-COMMAND

Name
EXECUTE-COMMANSD Execute an SQL command which returns no values.

Function
Syntax

execute-command sql-expression &key database =>t

Arguments and Values

sql-expression

An sql expressiothat represents an SQL statement which will return no values.

29

database

CLSQL

A database objecfThis will default to the value ofdefault-database*

Description

This will execute the command given byl-expression in thedatabase specified. If the
execution succeeds it will retutn otherwise an error of typesql-sql-error will be signalled.
Examples

(execute-command “create table eventlog (time char(30),event char(70))")
= T

(execute-command “create table eventlog (time char(30),event char(70))")

>>

>> While accessing database # <CLSQL-POSTGRESQL:POSTGRESQL-DATABASE {480B2B6D}>
>> with expression "create table eventlog (time char(30),event char(70))":

>> Error NIL: ERROR: amcreate: eventlog relation already exists

>> has occurred.

>>

>> Restarts:

>> 0: [ABORT] Return to Top-Level.

>>

>> Debug (type H for help)

>>

>> (CLSQL-POSTGRESQL::|(PCL::FAST-METHOD DATABASE-EXECUTE-COMMAND (T POSTGRESQL-DATABASE
>> #<unused-arg>

>> #<unused-arg>

>> #<unavailable-arg>

>> #<unavailable-arg>)

>> Source: (ERROR 'CLSQL-SQL-ERROR :DATABASE DATABASE :EXPRESSION ..)

>> 0] 0

(execute-command "drop table eventlog")
= T

Side Effects

Whatever effects the execution of the SQL statement has on the underlying database, if any.

Affected by

None.

30

CLSQL

Exceptional Situations

If the execution of the SQL statement leads to any errors, an error otkygesqgl-error is
signalled.

See Also

query

Notes

None.

QUERY

Name
QUERY— Execute an SQL query and return the tuples as a list

Function

Syntax

query query-expression &key database types => result

Arguments and Values

guery-expression
An sql expressiotthat represents an SQL query which is expected to return a (possibly empty)
result set.

database

A database objecfThis will default to the value ofdefault-database*

types
A field type specififierThe default isNIL .

The purpose of this argument is ca@eSQLto import SQL numeric fields into numeric Lisp
objects rather than strings. This reduces the cost of allocating a temporary string &ibRe
users’ inconvenience of converting number strings into number objects.

31

result

CLSQL

Avalue of:auto causesCLSQLto automatically convert SQL fields into a numeric format where
applicable. The default value ofiL causes all fields to be returned as strings regardless of the SQL
type. Otherwise a list is expected which has a element for each field that specifies the conversion. If
the list is shorter than the number of fields, the a value isfassumed for the field. If the list is

longer than the number of fields, the extra elements are ignored.

int Field is imported as a signed integer, from 8-bits to 64-bits depending upon the field type.
:double Field is imported as a double-float number.
t Field is imported as a string.

A list representing the result set obtained. For each tuple in the result set, there is an element in this
list, which is itself a list of all the attribute values in the tuple.

Description

This will execute the query given lyuery-expression in thedatabase specified. If the
execution succeeds it will return the result set returned by the database, otherwise an error of type
clsgl-sql-error will be signalled.

Examples

(execute-command “create table simple (name char(50), salary numeric(10,2))")
= T

(execute-command "insert into simple values ('Mai, Pierre’,10000)")

= T

(execute-command "insert into simple values ('Hacker, Random J.’,8000.50)")
= T

(query "select * from simple")

=> (("Mai, Pierre" "10000.00") ("Hacker, Random J." "8000.50"))

(query "select salary from simple")

=> (("10000.00") ("8000.50"))

(query "select salary from simple where salary > 10000")

=> NIL

(query "select salary,name from simple where salary > 10000")

=> NIL

(query "select salary,name from simple where salary > 9000")

=> (("10000.00" "Mai, Pierre))

(query "select salary,name from simple where salary > 8000")

=> (("10000.00" "Mai, Pierre") ("8000.50" "Hacker, Random J."))

;1 MySQL-specific:

(query "show tables")
=> (("demo") ("log") ("newlog") ("simple”) ("spacetrial™))

32

CLSQL

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations

If the execution of the SQL query leads to any errors, an error of ¢cigoesgl-error is signalled.

See Also

execute-command

Notes

None.

MAP-QUERY

Name
MAP-QUERY— Map a function over all the tuples from a query

Function
Syntax

map-query output-type-spec function query-expression &key database types => result

Arguments and Values

output-type-spec

A sequence type specifier oit .

33

function

CLSQL

A function designatoffunction must take as many arguments as are attributes in the result set
returned by executing the SQJuery-expression

guery-expression

database

types

result

An sgl expressiotthat represents an SQL query which is expected to return a (possibly empty)
result set, where each tuple has as many attributamation takes arguments.

A database objecfThis will default to the value ofdefault-database*

A field type specififierThe default iNIL . Seequery for the semantics of this argument.

If output-type-spec is a type specifier other tharil , then a sequence of the type it denotes.
Otherwisenil is returned.

Description

Appliesfunction to the attributes of successive tuples in the result set returned by executing the SQL
guery-expression . If the output-type-spec isnil , then the result of each application of
function is discarded, anthap-query returnsnil . Otherwise the result of each successive

application offunction is collected in a sequence of typatput-type-spec , where the jths

element is the result of applyirfgnction to the attributes of the jths tuple in the result set. The
collected sequence is the result of the calntgp-query .

If the output-type-spec is a subtype ofist , the result will be dist

If the result-type is a subtype ofector , then if the implementation can determine the element
type specified for theesult-type , the element type of the resulting array is the resultpgrading
that element type; or, if the implementation can determine that the element type is unspecifieth@r
element type of the resulting arraytisotherwise, an error is signaled.

Examples

(map-query ’list #(lambda (salary name)
(declare (ignorable name))
(read-from-string salary))
"select salary,name from simple where salary > 8000")
=> (10000.0 8000.5)

(map-query ’‘(vector double-float)
#(lambda (salary name)
(declare (ignorable name))
(let ((*read-default-float-format* 'double-float))
(coerce (read-from-string salary) 'double-float))
"select salary,name from simple where salary > 8000"))

34

CLSQL

=> #(10000.0d0 8000.5d0)

(type-of *)
=> (SIMPLE-ARRAY DOUBLE-FLOAT (2))

(let (list)
(values (map-query nil #(lambda (salary name)
(push (cons name (read-from-string salary)) list))
"select salary,name from simple where salary > 8000")
list))
=> NIL
=> (("Hacker, Random J." . 8000.5) ("Mai, Pierre" . 10000.0))

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of ¢tigoesgl-error is signalled.

An error of typetype-error must be signaled if theutput-type-spec is not a recognizable
subtype ofist , not a recognizable subtype wdctor , and notil

An error of typetype-error ~ should be signaled dutput-type-spec specifies the number of
elements and the size of the result set is different from that number.

See Also

query
do-query

Notes

None.

35

CLSQL

DO-QUERY

Name
DO-QUERY~ Iterate over all the tuples of a query

Macro

Syntax

do-query ((&rest args) query-expression &key database types) &body body => nil

Arguments and Values

args

A list of variable names.

guery-expression
An sql expressiotthat represents an SQL query which is expected to return a (possibly empty)
result set, where each tuple has as many attributksia§on takes arguments.

database

A database objectThis will default to*default-database*

types
A field type specififierThe default isNIL . Seequery for the semantics of this argument.

body

A body of Lisp code, like in alestructuring-bind form.

Description

Executes théody of code repeatedly with the variable namesigs bound to the attributes of each
tuple in the result set returned by executing the SfQkry-expression on thedatabase
specified.

The body of code is executed in a block naméd which may be returned from prematurely via
return orreturn-from . In this case the result of evaluating tthequery form will be the one
supplied tareturn orreturn-from . Otherwise the result will bail .

The body of code appears also is if wrapped itestructuring-bind form, thus allowing

declarations at the start of the body, especially those pertaining to the bindings of the variables hamed in

args .

36

CLSQL

Examples

(do-query ((salary name) "select salary,name from simple")
(format t "~30A gets $~2,5$~%" name (read-from-string salary)))

>> Mai, Pierre gets $10000.00
>> Hacker, Random J. gets $08000.50
=> NIL

(do-query ((salary name) "select salary,name from simple")
(return (cons salary name)))
=> ("10000.00" . "Mai, Pierre")

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of ¢igoesgl-error is signalled.

If the number of variable names args and the number of attributes in the tuples in the result set don’t
match up, an error is signalled.

See Also

query
map-query

Notes

None.

37

CLSQL

LOOP-FOR-AS-TUPLES

var

type-spec

query

database

Name
LOOP-FOR-AS-TUPLES— lterate over all the tuples of a query via a loop clause

Loop Clause
Compatibility
Caution
loop-for-as-tuples only works with CMUCL.
Syntax
var [type-spec] being {each | the} {record | records | tuple | tuples} {in | of} query

Arguments and Values

A d-var-spec , as defined in the grammar flmop -clauses in the ANSI Standard for Common
Lisp. This allows for the usual loop-style destructuring.

An optionaltype-spec either simple or destructured, as defined in the grammaoder -clauses
in the ANSI Standard for Common Lisp.

An sgl expressiothat represents an SQL query which is expected to return a (possibly empty)
result set, where each tuple has as many attributeshaon takes arguments.

An optionaldatabase objectThis will default to the value ofdefault-database*

Description

This clause is an iteration driver farop , that binds the given variable (possibly destructured) to the
consecutive tuples (which are represented as lists of attribute values) in the result set returned by
executing the SQlquery expression on thdatabase specified.

38

[from

CLSQL

Examples

(defvar *my-db* (connect ’'("dent" "newesim" "dent" "dent"))
"My database"

=> *MY-DB*

(loop with time-graph = (make-hash-table :test #'equal)
with event-graph = (make-hash-table :test #'equal)
for (time event) being the tuples of "select time,event from log"
from *my-db*
do
(incf (gethash time time-graph 0))
(incf (gethash event event-graph 0))

finally

(flet ((show-graph (k v) (format t "~40A => ~5D~%" k V)))
(format t "~&Time-Graph:~%===========~%")
(maphash #show-graph time-graph)
(format t "~&~%Event-Graph:~%============~0%")

(maphash #show-graph event-graph))
(return (values time-graph event-graph)))
>> Time-Graph:

>> —=—=————=———=—=

>> D => 53000
>> X = 3
>> test-me => 3000
>>

>> Event-Graph:

>> === oomoooos

>> CLOS Benchmark entry. => 9000
>> Demo Text... = 3
>> doit-text => 3000
>> C Benchmark entry. => 12000
>> CLOS Benchmark entry => 32000

=> #<EQUAL hash table, 3 entries {48350A1D}>
=> #<EQUAL hash table, 5 entries {48350FCD}>

Side Effects

Whatever effects the execution of the SQL query has on the underlying database, if any.

Affected by

None.

Exceptional Situations
If the execution of the SQL query leads to any errors, an error of ¢tigoesgl-error is signalled.

Otherwise, any of the exceptional situationsoop applies.

39

See Also
query

map-query
do-query

Notes

None.

CLSQL

40

Il. CLSQL-SYS

This part gives a reference to all the symbols exported from the packa®@L-SYS which are not also
exported fromCLSQL These symbols are part of the interface for database back-ends, but not part of the
normal user-interface &LSQL

DATABASE-INITIALIZE-DATABASE-TYPE

Name
DATABASE-INITIALIZE-DATABASE-TYPE — Back-end part ofitialize-database-type

Generic Function

Syntax

database-initialize-database-type database-type => result

Arguments and Values

database-type
A keyword indicating the database type to initialize.

result

Eithert if the initialization succeeds @il if it fails.

Description

This generic function implements the main part of the database type initialization performed by
initialize-database-type . After initialize-database-type has checked that the given
database type has not been initialized before, as indicattiditiylized-database-types*)it

will call this function with the database type as it's sole parameter. Database back-ends are required to
define a method on this generic function which is specialized via an eql-specializer to the keyword
representing their database type.

Database back-ends shall indicate successful initialization by returrfiogn their method, andil

otherwise. Methods for this generic function are allowed to signal errors ofktygesrror or

subtypes thereof. They may also signal other types of conditions, if appropriate, but have to document
this.

Examples

Side Effects

All necessary side effects to initialize the database instance.

Affected By

None.

Exceptional Situations

Conditions of typeclsql-error
back-end.

See Also

initialize-database-type
initialized-database-types

Notes

None.

CLSQL-SYS

or other conditions may be signalled, depending on the database

Appendix A. Database Back-ends

MySQL

host

db

user

password

Libraries

The MySQL back-end needs access to the MySQL C client libtaryysglclient.so). The
location of this library is specified vianysgl-so-load-path* , Which defaults to
{usr/lib/libmysglclient.so . Additional flags to Id needed for linking are specified via
mysql-so-libraries , which defaults tq"-Ic")

Initialization

Use

(mk:load-system :clsqgl-mysq]l)

to load the MySQL back-end. The database type for the MySQL back-emgsgl .

Connection Specification

Syntax of connection-spec

(host db user password)

Description of connection-spec

String representing the hostname or IP address the MySQL server residesibn toiindicate the
localhost.

String representing the name of the database on the server to connect to.

String representing the user name to use for authenticatiori, oto use the current Unix user ID.

String representing the unencrypted password to use for authenticatioh, dithe authentication
record has an empty password field.

Appendix A. Database Back-ends

AODBC

Libraries
The AODBC back-end requires access to the ODBC interface of AllegroCL.

Initialization

Use
(mk:load-system :clsgl-aodbc)
to load the MySQL back-end. The database type for the AODBC back-eactisc .

Connection Specification

Syntax of connection-spec

(dsn user password)

Description of connection-spec

dsn
String representing the ODBC data source name.
user
String representing the user name to use for authentication.
password
String representing the unencrypted password to use for authentication.
PostgreSQL
Libraries
The PostgreSQL back-end needs access to the PostgreSQL C client libpargd). The location of
this library is specified viapostgresql-so-load-path* , which defaults tdusr/lib/libpg.so
Additional flags to Id needed for linking are specified ¥pastgresql-so-libraries* , Which

defaults to("-lcrypt" "-Ic")

host

db

user

password

port

options

tty

Appendix A. Database Back-ends

Initialization

Use
(mk:load-system :clsql-postgresql)

to load the PostgreSQL back-end. The database type for the PostgreSQL backpestdrisql

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

For every parameter in the connection-spdic, indicates that the PostgreSQL default environment
variables (see PostgreSQL documentation) will be used, or if those are unset, the compiled-in defaults of
the C client library are used.

String representing the hostname or IP address the PostgreSQL server resides on. Use the empty
string to indicate a connection to localhost via Unix-Domain sockets instead of TCP/IP.

String representing the name of the database on the server to connect to.

String representing the user name to use for authentication.

String representing the unencrypted password to use for authentication.

String representing the port to use for communication with the PostgreSQL server.

String representing further runtime options for the PostgreSQL server.

String representing the tty or file to use for debugging messages from the PostgreSQL server.

Appendix A. Database Back-ends

PostgreSQL Socket

host

db

user

password

Libraries

The PostgreSQL Socket back-end needaccess to the PostgreSQL C client library, since it
communicates directly with the PostgreSQL server using the published frontend/backend protocaol,
version 2.0. This eases installation and makes it possible to dump CMU CL images containing CLSQL
and this backend, contrary to backends which require FFI code.

Initialization

Use
(mk:load-system :clsql-postgresqgl-socket)

to load the PostgreSQL Socket back-end. The database type for the PostgreSQL Socket back-end is
:postgresql-socket

Connection Specification

Syntax of connection-spec

(host db user password &optional port options tty)

Description of connection-spec

If this is a string, it represents the hostname or IP address the PostgreSQL server resides on. In this
case communication with the server proceeds via a TCP connection to the given host and port.

If this is a pathname, then it is assumed to hame the directory that contains the server’s
Unix-Domain sockets. The full name to the socket is then constructed from this and the port number
passed, and communication will proceed via a connection to this unix-domain socket.

String representing the name of the database on the server to connect to.

String representing the user name to use for authentication.

String representing the unencrypted password to use for authentication. This can be the empty string

if no password is required for authentication.

Appendix A. Database Back-ends

port
Integer representing the port to use for communication with the PostgreSQL server. This defaults to
5432.

options
String representing further runtime options for the PostgreSQL server.

tty

String representing the tty or file to use for debugging messages from the PostgreSQL server.

Glossary

Note: This glossary is still very thinly populated, and not all references in the main text have been
properly linked and coordinated with this glossary. This will hopefully change in future revisions.

Active database

See:Database Object

Connection

See:Database Object

Closed Database

An object of typeclosed-database . This is in contrast to the terms connection, database, active
database odatabase objeowhich don’t include objects which are closed database.

database

See:Database Object

Foreign Function Interface (FFI)

An interface from Common Lisp to a external library which contains compiled functions written in
other programming languages, typically C.

Database Object

An object of typedatabase .

Field Types Specifier

A value that specifies the type of each field in a query.

Structured Query Language (SQL)

An ANSI standard language for storing and retrieving data in a relational database.

SQL Expression

Either a string containing a valid SQL statement, or an object of ¢gpexpression

Note: This has not been implemented yet, so only strings are valid SQL expressions for the
moment.

