X-Git-Url: http://git.kpe.io/?p=ctsim.git;a=blobdiff_plain;f=libctsim%2Ffilter.cpp;h=60f97c8e9b7f27319a3fc1a0dcb088f06e360b00;hp=544afecbb8074ec5de18466d2490b99d5219d167;hb=c00c639073653fac7463a88f2b000f263236550d;hpb=c4af77faf7f216b936f0782e918634d34980c63f diff --git a/libctsim/filter.cpp b/libctsim/filter.cpp index 544afec..60f97c8 100644 --- a/libctsim/filter.cpp +++ b/libctsim/filter.cpp @@ -9,7 +9,7 @@ ** This is part of the CTSim program ** Copyright (C) 1983-2000 Kevin Rosenberg ** -** $Id: filter.cpp,v 1.22 2000/07/23 01:49:03 kevin Exp $ +** $Id: filter.cpp,v 1.33 2001/01/02 16:02:13 kevin Exp $ ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License (version 2) as @@ -31,9 +31,9 @@ int SignalFilter::N_INTEGRAL=500; //static member const int SignalFilter::FILTER_INVALID = -1 ; const int SignalFilter::FILTER_ABS_BANDLIMIT = 0; // filter times |x = | -const int SignalFilter::FILTER_ABS_SINC = 1; -const int SignalFilter::FILTER_ABS_G_HAMMING = 2; -const int SignalFilter::FILTER_ABS_COSINE = 3; +const int SignalFilter::FILTER_ABS_G_HAMMING = 1; +const int SignalFilter::FILTER_ABS_COSINE = 2; +const int SignalFilter::FILTER_ABS_SINC = 3; const int SignalFilter::FILTER_SHEPP = 4; const int SignalFilter::FILTER_BANDLIMIT = 5; const int SignalFilter::FILTER_SINC = 6; @@ -43,9 +43,9 @@ const int SignalFilter::FILTER_TRIANGLE = 9; const char* SignalFilter::s_aszFilterName[] = { {"abs_bandlimit"}, - {"abs_sinc"}, {"abs_hamming"}, {"abs_cosine"}, + {"abs_sinc"}, {"shepp"}, {"bandlimit"}, {"sinc"}, @@ -56,9 +56,9 @@ const char* SignalFilter::s_aszFilterName[] = { const char* SignalFilter::s_aszFilterTitle[] = { {"Abs(w) * Bandlimit"}, - {"Abs(w) * Sinc"}, {"Abs(w) * Hamming"}, {"Abs(w) * Cosine"}, + {"Abs(w) * Sinc"}, {"Shepp"}, {"Bandlimit"}, {"Sinc"}, @@ -69,40 +69,6 @@ const char* SignalFilter::s_aszFilterTitle[] = { const int SignalFilter::s_iFilterCount = sizeof(s_aszFilterName) / sizeof(const char*); -const int SignalFilter::FILTER_METHOD_INVALID = -1; -const int SignalFilter::FILTER_METHOD_CONVOLUTION = 0; -const int SignalFilter::FILTER_METHOD_FOURIER = 1; -const int SignalFilter::FILTER_METHOD_FOURIER_TABLE = 2; -const int SignalFilter::FILTER_METHOD_FFT = 3; -#if HAVE_FFTW -const int SignalFilter::FILTER_METHOD_FFTW = 4; -const int SignalFilter::FILTER_METHOD_RFFTW =5 ; -#endif - -const char* SignalFilter::s_aszFilterMethodName[] = { - {"convolution"}, - {"fourier"}, - {"fouier_table"}, - {"fft"}, -#if HAVE_FFTW - {"fftw"}, - {"rfftw"}, -#endif -}; - -const char* SignalFilter::s_aszFilterMethodTitle[] = { - {"Convolution"}, - {"Direct Fourier"}, - {"Fouier Trigometric Table Lookout"}, - {"FFT"}, -#if HAVE_FFTW - {"FFTW"}, - {"Real/Half-Complex FFTW"}, -#endif -}; - -const int SignalFilter::s_iFilterMethodCount = sizeof(s_aszFilterMethodName) / sizeof(const char*); - const int SignalFilter::DOMAIN_INVALID = -1; const int SignalFilter::DOMAIN_FREQUENCY = 0; @@ -130,229 +96,132 @@ const int SignalFilter::s_iDomainCount = sizeof(s_aszDomainName) / sizeof(const * int filt_type Type of filter wanted * double bw Bandwidth of filter * double filterMin, filterMax Filter limits - * int nSignalPoints Number of points in signal + * int nFilterPoints Number of points in signal * double param General input parameter to filters * int domain FREQUENCY or SPATIAL domain wanted */ -SignalFilter::SignalFilter (const char* filterName, const char* filterMethodName, double bw, double signalIncrement, int nSignalPoints, double param, const char* domainName, int zeropad = 0, int preinterpolationFactor = 1) - : m_vecFilter(NULL), m_vecFourierCosTable(NULL), m_vecFourierSinTable(NULL), m_fail(false) +SignalFilter::SignalFilter (const char* szFilterName, double dFilterMinimum, double dFilterMaximum, int nFilterPoints, double dBandwidth, double dFilterParam, const char* szDomainName) + : m_adFilter(NULL), m_fail(false) { - m_idFilter = convertFilterNameToID (filterName); + m_idFilter = convertFilterNameToID (szFilterName); if (m_idFilter == FILTER_INVALID) { m_fail = true; m_failMessage = "Invalid Filter name "; - m_failMessage += filterName; + m_failMessage += szFilterName; return; } - m_idFilterMethod = convertFilterMethodNameToID (filterMethodName); - if (m_idFilterMethod == FILTER_METHOD_INVALID) { - m_fail = true; - m_failMessage = "Invalid filter method name "; - m_failMessage += filterMethodName; - return; - } - m_idDomain = convertDomainNameToID (domainName); + m_idDomain = convertDomainNameToID (szDomainName); if (m_idDomain == DOMAIN_INVALID) { m_fail = true; m_failMessage = "Invalid domain name "; - m_failMessage += domainName; + m_failMessage += szDomainName; return; } - init (m_idFilter, m_idFilterMethod, bw, signalIncrement, nSignalPoints, param, m_idDomain, zeropad, preinterpolationFactor); + init (m_idFilter, dFilterMinimum, dFilterMaximum, nFilterPoints, dBandwidth, dFilterParam, m_idDomain); } -SignalFilter::SignalFilter (const int filterID, const int filterMethodID, double bw, double signalIncrement, int nSignalPoints, double param, const int domainID, int zeropad = 0, int preinterpolationFactor = 1) - : m_vecFilter(NULL), m_vecFourierCosTable(NULL), m_vecFourierSinTable(NULL), m_fail(false) +SignalFilter::SignalFilter (const int idFilter, double dFilterMinimum, double dFilterMaximum, int nFilterPoints, double dBandwidth, double dFilterParam, const int idDomain) + : m_adFilter(NULL), m_fail(false) { - init (filterID, filterMethodID, bw, signalIncrement, nSignalPoints, param, domainID, zeropad, preinterpolationFactor); + init (idFilter, dFilterMinimum, dFilterMaximum, nFilterPoints, dBandwidth, dFilterParam, idDomain); } -SignalFilter::SignalFilter (const char* filterName, const char* domainName, double bw, double param) - : m_vecFilter(NULL), m_vecFourierCosTable(NULL), m_vecFourierSinTable(NULL), m_fail(false) +SignalFilter::SignalFilter (const char* szFilterName, const char* szDomainName, double dBandwidth, double dFilterParam) + : m_adFilter(NULL), m_fail(false) { - m_bw = bw; - m_nSignalPoints = 0; m_nFilterPoints = 0; - m_filterParam = param; - m_idFilter = convertFilterNameToID (filterName); + m_dBandwidth = dBandwidth; + m_dFilterParam = dFilterParam; + m_idFilter = convertFilterNameToID (szFilterName); if (m_idFilter == FILTER_INVALID) { m_fail = true; m_failMessage = "Invalid Filter name "; - m_failMessage += filterName; + m_failMessage += szFilterName; return; } - m_idDomain = convertDomainNameToID (domainName); + m_idDomain = convertDomainNameToID (szDomainName); if (m_idDomain == DOMAIN_INVALID) { m_fail = true; m_failMessage = "Invalid domain name "; - m_failMessage += domainName; + m_failMessage += szDomainName; return; } } void -SignalFilter::init (const int filterID, const int filterMethodID, double bw, double signalIncrement, int nSignalPoints, double filterParam, const int domainID, int zeropad, int preinterpolationFactor) +SignalFilter::init (const int idFilter, double dFilterMinimum, double dFilterMaximum, int nFilterPoints, double dBandwidth, double dFilterParam, const int idDomain) { - m_bw = bw; - m_idFilter = filterID; - m_idDomain = domainID; - m_idFilterMethod = filterMethodID; - if (m_idFilter == FILTER_INVALID || m_idDomain == DOMAIN_INVALID || m_idFilterMethod == FILTER_METHOD_INVALID) { + m_idFilter = idFilter; + m_idDomain = idDomain; + if (m_idFilter == FILTER_INVALID || m_idDomain == DOMAIN_INVALID) { m_fail = true; return; } - m_traceLevel = TRACE_NONE; - m_nameFilter = convertFilterIDToName (m_idFilter); - m_nameDomain = convertDomainIDToName (m_idDomain); - m_nameFilterMethod = convertFilterMethodIDToName (m_idFilterMethod); - m_nSignalPoints = nSignalPoints; - m_signalInc = signalIncrement; - m_filterParam = filterParam; - m_zeropad = zeropad; - m_preinterpolationFactor = preinterpolationFactor; - - m_vecFourierCosTable = NULL; - m_vecFourierSinTable = NULL; - m_vecFilter = NULL; - - if (m_idFilterMethod == FILTER_METHOD_FFT) { -#if HAVE_FFTW - m_idFilterMethod = FILTER_METHOD_RFFTW; -#else + if (nFilterPoints < 2) { m_fail = true; - m_failMessage = "FFT not yet implemented"; + m_failMessage = "Number of filter points "; + m_failMessage += nFilterPoints; + m_failMessage = " less than 2"; return; -#endif } - if (m_idFilterMethod == FILTER_METHOD_FOURIER || m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE || m_idFilterMethod == FILTER_METHOD_FFT -#if HAVE_FFTW - || m_idFilterMethod == FILTER_METHOD_FFTW || m_idFilterMethod == FILTER_METHOD_RFFTW -#endif - ) { - m_nFilterPoints = m_nSignalPoints; - if (m_zeropad > 0) { - double logBase2 = log(m_nSignalPoints) / log(2); - int nextPowerOf2 = static_cast(floor(logBase2)); - if (logBase2 != floor(logBase2)) - nextPowerOf2++; - nextPowerOf2 += (m_zeropad - 1); - m_nFilterPoints = 1 << nextPowerOf2; - if (m_traceLevel >= TRACE_TEXT) - cout << "nFilterPoints = " << m_nFilterPoints << endl; - } - m_nOutputPoints = m_nFilterPoints * m_preinterpolationFactor; - m_filterMin = -1. / (2 * m_signalInc); - m_filterMax = 1. / (2 * m_signalInc); - m_filterInc = (m_filterMax - m_filterMin) / m_nFilterPoints; - m_vecFilter = new double [m_nFilterPoints]; - int halfFilter = m_nFilterPoints / 2; - for (int i = 0; i <= halfFilter; i++) - m_vecFilter[i] = static_cast(i) / halfFilter/ (2. * m_signalInc); - for (int i = 1; i <= halfFilter; i++) - m_vecFilter[m_nFilterPoints - i] = static_cast(i) / halfFilter / (2. * m_signalInc); - } - - // precalculate sin and cosine tables for fourier transform - if (m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE) { - int nFourier = max(m_nFilterPoints,m_nOutputPoints) * max(m_nFilterPoints, m_nOutputPoints) + 1; - double angleIncrement = (2. * PI) / m_nFilterPoints; - m_vecFourierCosTable = new double[ nFourier ]; - m_vecFourierSinTable = new double[ nFourier ]; - double angle = 0; - for (int i = 0; i < nFourier; i++) { - m_vecFourierCosTable[i] = cos (angle); - m_vecFourierSinTable[i] = sin (angle); - angle += angleIncrement; - } - } + m_nameFilter = convertFilterIDToName (m_idFilter); + m_nameDomain = convertDomainIDToName (m_idDomain); + m_nFilterPoints = nFilterPoints; + m_dFilterParam = dFilterParam; + m_dBandwidth = dBandwidth; + m_dFilterMin = dFilterMinimum; + m_dFilterMax = dFilterMaximum; -#if HAVE_FFTW - if (m_idFilterMethod == FILTER_METHOD_FFTW || m_idFilterMethod == FILTER_METHOD_RFFTW) { - for (int i = 0; i < m_nFilterPoints; i++) //fftw uses unnormalized fft - m_vecFilter[i] /= m_nFilterPoints; - } + m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); + m_adFilter = new double [m_nFilterPoints]; - if (m_idFilterMethod == FILTER_METHOD_RFFTW) { - m_realPlanForward = rfftw_create_plan (m_nFilterPoints, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE); - m_realPlanBackward = rfftw_create_plan (m_nOutputPoints, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE); - m_vecRealFftInput = new fftw_real [ m_nFilterPoints ]; - m_vecRealFftSignal = new fftw_real [ m_nOutputPoints ]; - for (int i = 0; i < m_nFilterPoints; i++) - m_vecRealFftInput[i] = 0; - } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { - m_complexPlanForward = fftw_create_plan (m_nFilterPoints, FFTW_FORWARD, FFTW_ESTIMATE); - m_complexPlanBackward = fftw_create_plan (m_nOutputPoints, FFTW_BACKWARD, FFTW_ESTIMATE); - m_vecComplexFftInput = new fftw_complex [ m_nFilterPoints ]; - m_vecComplexFftSignal = new fftw_complex [ m_nOutputPoints ]; - for (int i = 0; i < m_nFilterPoints; i++) - m_vecComplexFftInput[i].re = m_vecComplexFftInput[i].im = 0; - for (int i = 0; i < m_nOutputPoints; i++) - m_vecComplexFftSignal[i].re = m_vecComplexFftSignal[i].im = 0; - } -#endif - - if (m_idFilterMethod == FILTER_METHOD_CONVOLUTION) { - m_nFilterPoints = 2 * m_nSignalPoints - 1; - m_filterMin = -m_signalInc * (m_nSignalPoints - 1); - m_filterMax = m_signalInc * (m_nSignalPoints - 1); - m_filterInc = (m_filterMax - m_filterMin) / (m_nFilterPoints - 1); - m_vecFilter = new double[ m_nFilterPoints ]; - - if (m_idFilter == FILTER_SHEPP) { - double a = 2 * m_bw; - double c = - 4. / (a * a); - int center = (m_nFilterPoints - 1) / 2; - int sidelen = center; - m_vecFilter[center] = 4. / (a * a); - - for (int i = 1; i <= sidelen; i++ ) - m_vecFilter [center + i] = m_vecFilter [center - i] = c / (4 * (i * i) - 1); - } else if (m_idDomain == DOMAIN_FREQUENCY) { - double x; - int i; - for (x = m_filterMin, i = 0; i < m_nFilterPoints; x += m_filterInc, i++) - m_vecFilter[i] = frequencyResponse (x, m_filterParam); - } else if (m_idDomain == DOMAIN_SPATIAL) { - double x; - int i; - for (x = m_filterMin, i = 0; i < m_nFilterPoints; x += m_filterInc, i++) - if (haveAnalyticSpatial(m_idFilter)) - m_vecFilter[i] = spatialResponseAnalytic (x, m_filterParam); - else - m_vecFilter[i] = spatialResponseCalc (x, m_filterParam); - } else { - m_failMessage = "Illegal domain name "; - m_failMessage += m_idDomain; - m_fail = true; - } - } + if (m_idDomain == DOMAIN_FREQUENCY) + createFrequencyFilter (m_adFilter); + else if (m_idDomain == DOMAIN_SPATIAL) + createSpatialFilter (m_adFilter); } + SignalFilter::~SignalFilter (void) { - delete [] m_vecFilter; - delete [] m_vecFourierSinTable; - delete [] m_vecFourierCosTable; - -#if HAVE_FFTW - if (m_idFilterMethod == FILTER_METHOD_FFTW) { - fftw_destroy_plan(m_complexPlanForward); - fftw_destroy_plan(m_complexPlanBackward); - delete [] m_vecComplexFftInput; - delete [] m_vecComplexFftSignal; - } - if (m_idFilterMethod == FILTER_METHOD_RFFTW) { - rfftw_destroy_plan(m_realPlanForward); - rfftw_destroy_plan(m_realPlanBackward); - delete [] m_vecRealFftInput; - delete [] m_vecRealFftSignal; - } -#endif + delete [] m_adFilter; +} + +void +SignalFilter::createFrequencyFilter (double* adFilter) const +{ + double x; + int i; + for (x = m_dFilterMin, i = 0; i < m_nFilterPoints; x += m_dFilterInc, i++) + adFilter[i] = frequencyResponse (x); } +void +SignalFilter::createSpatialFilter (double* adFilter) const +{ + if (m_idFilter == FILTER_SHEPP) { + double a = 2 * m_dBandwidth; + double c = - 4. / (a * a); + int center = (m_nFilterPoints - 1) / 2; + int sidelen = center; + m_adFilter[center] = 4. / (a * a); + + for (int i = 1; i <= sidelen; i++ ) + m_adFilter [center + i] = m_adFilter [center - i] = c / (4 * (i * i) - 1); + } else { + double x = m_dFilterMin; + for (int i = 0; i < m_nFilterPoints; i++, x += m_dFilterInc) { + if (haveAnalyticSpatial(m_idFilter)) + m_adFilter[i] = spatialResponseAnalytic (x); + else + m_adFilter[i] = spatialResponseCalc (x); + } + } +} + int SignalFilter::convertFilterNameToID (const char *filterName) { @@ -389,42 +258,6 @@ SignalFilter::convertFilterIDToTitle (const int filterID) return (title); } -int -SignalFilter::convertFilterMethodNameToID (const char* const filterMethodName) -{ - int fmID = FILTER_METHOD_INVALID; - - for (int i = 0; i < s_iFilterMethodCount; i++) - if (strcasecmp (filterMethodName, s_aszFilterMethodName[i]) == 0) { - fmID = i; - break; - } - - return (fmID); -} - -const char * -SignalFilter::convertFilterMethodIDToName (const int fmID) -{ - static const char *name = ""; - - if (fmID >= 0 && fmID < s_iFilterMethodCount) - return (s_aszFilterMethodName [fmID]); - - return (name); -} - -const char * -SignalFilter::convertFilterMethodIDToTitle (const int fmID) -{ - static const char *title = ""; - - if (fmID >= 0 && fmID < s_iFilterMethodCount) - return (s_aszFilterTitle [fmID]); - - return (title); -} - int SignalFilter::convertDomainNameToID (const char* const domainName) { @@ -461,74 +294,6 @@ SignalFilter::convertDomainIDToTitle (const int domainID) return (title); } -void -SignalFilter::filterSignal (const float input[], double output[]) const -{ - if (m_idFilterMethod == FILTER_METHOD_CONVOLUTION) { - for (int i = 0; i < m_nSignalPoints; i++) - output[i] = convolve (input, m_signalInc, i, m_nSignalPoints); - } else if (m_idFilterMethod == FILTER_METHOD_FOURIER) { - double inputSignal[m_nFilterPoints]; - for (int i = 0; i < m_nSignalPoints; i++) - inputSignal[i] = input[i]; - for (int i = m_nSignalPoints; i < m_nFilterPoints; i++) - inputSignal[i] = 0; // zeropad - complex fftSignal[m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, m_nFilterPoints, -1); - for (int i = 0; i < m_nFilterPoints; i++) - fftSignal[i] *= m_vecFilter[i]; - double inverseFourier[m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, m_nFilterPoints, 1); - for (int i = 0; i < m_nSignalPoints; i++) - output[i] = inverseFourier[i]; - } else if (m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE) { - double inputSignal[m_nFilterPoints]; - for (int i = 0; i < m_nSignalPoints; i++) - inputSignal[i] = input[i]; - for (int i = m_nSignalPoints; i < m_nFilterPoints; i++) - inputSignal[i] = 0; // zeropad - complex fftSignal[m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, -1); - for (int i = 0; i < m_nFilterPoints; i++) - fftSignal[i] *= m_vecFilter[i]; - double inverseFourier[m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, 1); - for (int i = 0; i < m_nSignalPoints; i++) - output[i] = inverseFourier[i]; - } -#if HAVE_FFTW - else if (m_idFilterMethod == FILTER_METHOD_RFFTW) { - for (int i = 0; i < m_nSignalPoints; i++) - m_vecRealFftInput[i] = input[i]; - - fftw_real fftOutput [ m_nFilterPoints ]; - rfftw_one (m_realPlanForward, m_vecRealFftInput, fftOutput); - for (int i = 0; i < m_nFilterPoints; i++) - m_vecRealFftSignal[i] = m_vecFilter[i] * fftOutput[i]; - for (int i = m_nFilterPoints; i < m_nOutputPoints; i++) - m_vecRealFftSignal[i] = 0; - - fftw_real ifftOutput [ m_nOutputPoints ]; - rfftw_one(m_realPlanBackward, m_vecRealFftSignal, ifftOutput); - for (int i = 0; i < m_nSignalPoints * m_preinterpolationFactor; i++) - output[i] = ifftOutput[i]; - } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { - for (int i = 0; i < m_nSignalPoints; i++) - m_vecComplexFftInput[i].re = input[i]; - - fftw_complex fftOutput [ m_nFilterPoints ]; - fftw_one(m_complexPlanForward, m_vecComplexFftInput, fftOutput); - for (int i = 0; i < m_nFilterPoints; i++) { - m_vecComplexFftSignal[i].re = m_vecFilter[i] * fftOutput[i].re; - m_vecComplexFftSignal[i].im = m_vecFilter[i] * fftOutput[i].im; - } - fftw_complex ifftOutput [ m_nOutputPoints ]; - fftw_one(m_complexPlanBackward, m_vecComplexFftSignal, ifftOutput); - for (int i = 0; i < m_nSignalPoints * m_preinterpolationFactor; i++) - output[i] = ifftOutput[i].re; - } -#endif -} double SignalFilter::response (double x) @@ -536,9 +301,9 @@ SignalFilter::response (double x) double response = 0; if (m_idDomain == DOMAIN_SPATIAL) - response = spatialResponse (m_idFilter, m_bw, x, m_filterParam); + response = spatialResponse (m_idFilter, m_dBandwidth, x, m_dFilterParam); else if (m_idDomain == DOMAIN_FREQUENCY) - response = frequencyResponse (m_idFilter, m_bw, x, m_filterParam); + response = frequencyResponse (m_idFilter, m_dBandwidth, x, m_dFilterParam); return (response); } @@ -553,6 +318,16 @@ SignalFilter::spatialResponse (int filterID, double bw, double x, double param) return spatialResponseCalc (filterID, bw, x, param, N_INTEGRAL); } +void +SignalFilter::copyFilterData (double* pdFilter, const int iStart, const int nPoints) const +{ + int iFirst = clamp (iStart, 0, m_nFilterPoints - 1); + int iLast = clamp (iFirst + nPoints - 1, 0, m_nFilterPoints - 1); + + for (int i = iFirst; i <= iLast; i++) + pdFilter[i - iFirst] = m_adFilter[i]; +} + /* NAME * filter_spatial_response_calc Calculate filter by discrete inverse fourier * transform of filters's frequency @@ -569,9 +344,9 @@ SignalFilter::spatialResponse (int filterID, double bw, double x, double param) */ double -SignalFilter::spatialResponseCalc (double x, double param) const +SignalFilter::spatialResponseCalc (double x) const { - return (spatialResponseCalc (m_idFilter, m_bw, x, param, N_INTEGRAL)); + return (spatialResponseCalc (m_idFilter, m_dBandwidth, x, m_dFilterParam, N_INTEGRAL)); } double @@ -589,12 +364,13 @@ SignalFilter::spatialResponseCalc (int filterID, double bw, double x, double par double zinc = (zmax - zmin) / (n - 1); double z = zmin; - double q [n]; + double* q = new double [n]; for (int i = 0; i < n; i++, z += zinc) q[i] = frequencyResponse (filterID, bw, z, param) * cos (TWOPI * z * x); double y = 2 * integrateSimpson (zmin, zmax, q, n); - + delete q; + return (y); } @@ -612,9 +388,9 @@ SignalFilter::spatialResponseCalc (int filterID, double bw, double x, double par */ double -SignalFilter::frequencyResponse (double u, double param) const +SignalFilter::frequencyResponse (double u) const { - return frequencyResponse (m_idFilter, m_bw, u, param); + return frequencyResponse (m_idFilter, m_dBandwidth, u, m_dFilterParam); } @@ -626,31 +402,31 @@ SignalFilter::frequencyResponse (int filterID, double bw, double u, double param switch (filterID) { case FILTER_BANDLIMIT: - if (au >= bw / 2) + if (fabs(au) >= fabs(bw / 2) + F_EPSILON) q = 0.; else q = 1; break; case FILTER_ABS_BANDLIMIT: - if (au >= bw / 2) + if (fabs(au) >= fabs(bw / 2) + F_EPSILON) q = 0.; else q = au; break; case FILTER_TRIANGLE: - if (au >= bw) + if (fabs(au) >= fabs(bw / 2) + F_EPSILON) q = 0; else q = 1 - au / bw; break; case FILTER_COSINE: - if (au >= bw / 2) + if (fabs(au) >= fabs(bw / 2) + F_EPSILON) q = 0; else q = cos(PI * u / bw); break; case FILTER_ABS_COSINE: - if (au >= bw / 2) + if (fabs(au) >= fabs(bw / 2) + F_EPSILON) q = 0; else q = au * cos(PI * u / bw); @@ -662,13 +438,13 @@ SignalFilter::frequencyResponse (int filterID, double bw, double u, double param q = au * bw * sinc (PI * bw * u, 1.); break; case FILTER_G_HAMMING: - if (au >= bw / 2) + if (fabs(au) >= fabs(bw / 2) + F_EPSILON) q = 0; else q = param + (1 - param) * cos (TWOPI * u / bw); break; case FILTER_ABS_G_HAMMING: - if (au >= bw / 2) + if (fabs(au) >= fabs(bw / 2) + F_EPSILON) q = 0; else q = au * (param + (1 - param) * cos(TWOPI * u / bw)); @@ -698,9 +474,9 @@ SignalFilter::frequencyResponse (int filterID, double bw, double u, double param */ double -SignalFilter::spatialResponseAnalytic (double x, double param) const +SignalFilter::spatialResponseAnalytic (double x) const { - return spatialResponseAnalytic (m_idFilter, m_bw, x, param); + return spatialResponseAnalytic (m_idFilter, m_dBandwidth, x, m_dFilterParam); } const bool @@ -809,234 +585,4 @@ SignalFilter::spatialResponseAnalytic (int filterID, double bw, double x, double * Returns the value of integral of u*cos(u)*dV for V = 0 to w */ -double -SignalFilter::integral_abscos (double u, double w) -{ - return (fabs (u) > F_EPSILON - ? (cos(u * w) - 1) / (u * u) + w / u * sin (u * w) - : (w * w / 2)); -} - - -/* NAME - * convolve Discrete convolution of two functions - * - * SYNOPSIS - * r = convolve (f1, f2, dx, n, np, func_type) - * double r Convolved result - * double f1[], f2[] Functions to be convolved - * double dx Difference between successive x values - * int n Array index to center convolution about - * int np Number of points in f1 array - * int func_type EVEN or ODD or EVEN_AND_ODD function f2 - * - * NOTES - * f1 is the projection data, its indices range from 0 to np - 1. - * The index for f2, the filter, ranges from -(np-1) to (np-1). - * There are 3 ways to handle the negative vertices of f2: - * 1. If we know f2 is an EVEN function, then f2[-n] = f2[n]. - * All filters used in reconstruction are even. - * 2. If we know f2 is an ODD function, then f2[-n] = -f2[n] - * 3. If f2 is both ODD AND EVEN, then we must store the value of f2 - * for negative indices. Since f2 must range from -(np-1) to (np-1), - * if we add (np - 1) to f2's array index, then f2's index will - * range from 0 to 2 * (np - 1), and the origin, x = 0, will be - * stored at f2[np-1]. - */ - -double -SignalFilter::convolve (const double func[], const double dx, const int n, const int np) const -{ - double sum = 0.0; - -#if UNOPTIMIZED_CONVOLUTION - for (int i = 0; i < np; i++) - sum += func[i] * m_vecFilter[n - i + (np - 1)]; -#else - double* f2 = m_vecFilter + n + (np - 1); - for (int i = 0; i < np; i++) - sum += *func++ * *f2--; -#endif - - return (sum * dx); -} - - -double -SignalFilter::convolve (const float func[], const double dx, const int n, const int np) const -{ - double sum = 0.0; - -#if UNOPTIMIZED_CONVOLUTION -for (int i = 0; i < np; i++) - sum += func[i] * m_vecFilter[n - i + (np - 1)]; -#else -double* f2 = m_vecFilter + n + (np - 1); -for (int i = 0; i < np; i++) - sum += *func++ * *f2--; -#endif - - return (sum * dx); -} - - -void -SignalFilter::finiteFourierTransform (const double input[], complex output[], const int n, int direction) -{ - if (direction < 0) - direction = -1; - else - direction = 1; - - double angleIncrement = direction * 2 * PI / n; - for (int i = 0; i < n; i++) { - double sumReal = 0; - double sumImag = 0; - for (int j = 0; j < n; j++) { - double angle = i * j * angleIncrement; - sumReal += input[j] * cos(angle); - sumImag += input[j] * sin(angle); - } - if (direction < 0) { - sumReal /= n; - sumImag /= n; - } - output[i] = complex (sumReal, sumImag); - } -} - - -void -SignalFilter::finiteFourierTransform (const complex input[], complex output[], const int n, int direction) -{ - if (direction < 0) - direction = -1; - else - direction = 1; - - double angleIncrement = direction * 2 * PI / n; - for (int i = 0; i < n; i++) { - complex sum (0,0); - for (int j = 0; j < n; j++) { - double angle = i * j * angleIncrement; - complex exponentTerm (cos(angle), sin(angle)); - sum += input[j] * exponentTerm; - } - if (direction < 0) { - sum /= n; - } - output[i] = sum; - } -} - -void -SignalFilter::finiteFourierTransform (const complex input[], double output[], const int n, int direction) -{ - if (direction < 0) - direction = -1; - else - direction = 1; - - double angleIncrement = direction * 2 * PI / n; - for (int i = 0; i < n; i++) { - double sumReal = 0; - for (int j = 0; j < n; j++) { - double angle = i * j * angleIncrement; - sumReal += input[j].real() * cos(angle) - input[j].imag() * sin(angle); - } - if (direction < 0) { - sumReal /= n; - } - output[i] = sumReal; - } -} - -void -SignalFilter::finiteFourierTransform (const double input[], complex output[], int direction) const -{ - if (direction < 0) - direction = -1; - else - direction = 1; - - for (int i = 0; i < m_nFilterPoints; i++) { - double sumReal = 0, sumImag = 0; - for (int j = 0; j < m_nFilterPoints; j++) { - int tableIndex = i * j; - if (direction > 0) { - sumReal += input[j] * m_vecFourierCosTable[tableIndex]; - sumImag += input[j] * m_vecFourierSinTable[tableIndex]; - } else { - sumReal += input[j] * m_vecFourierCosTable[tableIndex]; - sumImag -= input[j] * m_vecFourierSinTable[tableIndex]; - } - } - if (direction < 0) { - sumReal /= m_nFilterPoints; - sumImag /= m_nFilterPoints; - } - output[i] = complex (sumReal, sumImag); - } -} - -// (a+bi) * (c + di) = (ac - bd) + (ad + bc)i -void -SignalFilter::finiteFourierTransform (const complex input[], complex output[], int direction) const -{ - if (direction < 0) - direction = -1; - else - direction = 1; - - for (int i = 0; i < m_nFilterPoints; i++) { - double sumReal = 0, sumImag = 0; - for (int j = 0; j < m_nFilterPoints; j++) { - int tableIndex = i * j; - if (direction > 0) { - sumReal += input[j].real() * m_vecFourierCosTable[tableIndex] - - input[j].imag() * m_vecFourierSinTable[tableIndex]; - sumImag += input[j].real() * m_vecFourierSinTable[tableIndex] - + input[j].imag() * m_vecFourierCosTable[tableIndex]; - } else { - sumReal += input[j].real() * m_vecFourierCosTable[tableIndex] - - input[j].imag() * -m_vecFourierSinTable[tableIndex]; - sumImag += input[j].real() * -m_vecFourierSinTable[tableIndex] - + input[j].imag() * m_vecFourierCosTable[tableIndex]; - } - } - if (direction < 0) { - sumReal /= m_nFilterPoints; - sumImag /= m_nFilterPoints; - } - output[i] = complex (sumReal, sumImag); - } -} - -void -SignalFilter::finiteFourierTransform (const complex input[], double output[], int direction) const -{ - if (direction < 0) - direction = -1; - else - direction = 1; - - for (int i = 0; i < m_nFilterPoints; i++) { - double sumReal = 0; - for (int j = 0; j < m_nFilterPoints; j++) { - int tableIndex = i * j; - if (direction > 0) { - sumReal += input[j].real() * m_vecFourierCosTable[tableIndex] - - input[j].imag() * m_vecFourierSinTable[tableIndex]; - } else { - sumReal += input[j].real() * m_vecFourierCosTable[tableIndex] - - input[j].imag() * -m_vecFourierSinTable[tableIndex]; - } - } - if (direction < 0) { - sumReal /= m_nFilterPoints; - } - output[i] = sumReal; - } -} -