X-Git-Url: http://git.kpe.io/?p=ctsim.git;a=blobdiff_plain;f=libctsim%2Fprocsignal.cpp;h=1685f191857147033fa92fc0acbdab778f2cfbf4;hp=71a0e67bad2121c37eb063ca893f0e70f4e7919e;hb=5a6caa64e880f613b82e516031028d02fd127257;hpb=c00c639073653fac7463a88f2b000f263236550d diff --git a/libctsim/procsignal.cpp b/libctsim/procsignal.cpp index 71a0e67..1685f19 100644 --- a/libctsim/procsignal.cpp +++ b/libctsim/procsignal.cpp @@ -1,15 +1,15 @@ /***************************************************************************** ** File IDENTIFICATION ** -** Name: filter.cpp -** Purpose: Routines for signal-procesing filters -** Progammer: Kevin Rosenberg -** Date Started: Aug 1984 +** Name: procsignal.cpp +** Purpose: Routines for processing signals and projections +** Progammer: Kevin Rosenberg +** Date Started: Aug 1984 ** ** This is part of the CTSim program -** Copyright (C) 1983-2000 Kevin Rosenberg +** Copyright (c) 1983-2001 Kevin Rosenberg ** -** $Id: procsignal.cpp,v 1.14 2001/01/02 16:02:13 kevin Exp $ +** $Id: procsignal.cpp,v 1.32 2001/03/30 19:17:32 kevin Exp $ ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License (version 2) as @@ -27,6 +27,10 @@ #include "ct.h" +#ifdef HAVE_WXWINDOWS +#include "nographics.h" +#endif + // FilterMethod ID/Names const int ProcessSignal::FILTER_METHOD_INVALID = -1; const int ProcessSignal::FILTER_METHOD_CONVOLUTION = 0; @@ -37,17 +41,17 @@ const int ProcessSignal::FILTER_METHOD_FFT = 3; const int ProcessSignal::FILTER_METHOD_FFTW = 4; const int ProcessSignal::FILTER_METHOD_RFFTW =5 ; #endif -const char* ProcessSignal::s_aszFilterMethodName[] = { +const char* const ProcessSignal::s_aszFilterMethodName[] = { {"convolution"}, {"fourier"}, - {"fouier_table"}, + {"fouier-table"}, {"fft"}, #if HAVE_FFTW {"fftw"}, {"rfftw"}, #endif }; -const char* ProcessSignal::s_aszFilterMethodTitle[] = { +const char* const ProcessSignal::s_aszFilterMethodTitle[] = { {"Convolution"}, {"Fourier"}, {"Fouier Trigometric Table"}, @@ -63,11 +67,11 @@ const int ProcessSignal::s_iFilterMethodCount = sizeof(s_aszFilterMethodName) / const int ProcessSignal::FILTER_GENERATION_INVALID = -1; const int ProcessSignal::FILTER_GENERATION_DIRECT = 0; const int ProcessSignal::FILTER_GENERATION_INVERSE_FOURIER = 1; -const char* ProcessSignal::s_aszFilterGenerationName[] = { +const char* const ProcessSignal::s_aszFilterGenerationName[] = { {"direct"}, - {"inverse_fourier"}, + {"inverse-fourier"}, }; -const char* ProcessSignal::s_aszFilterGenerationTitle[] = { +const char* const ProcessSignal::s_aszFilterGenerationTitle[] = { {"Direct"}, {"Inverse Fourier"}, }; @@ -77,8 +81,11 @@ const int ProcessSignal::s_iFilterGenerationCount = sizeof(s_aszFilterGeneration // CLASS IDENTIFICATION // ProcessSignal // -ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength, SGP* pSGP) -: m_adFourierCosTable(NULL), m_adFourierSinTable(NULL), m_adFilter(NULL), m_fail(false) +ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, + double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, + const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, + int iGeometry, double dFocalLength, double dSourceDetectorLength, SGP* pSGP) + : m_adFourierCosTable(NULL), m_adFourierSinTable(NULL), m_adFilter(NULL), m_fail(false) { m_idFilterMethod = convertFilterMethodNameToID (szFilterMethodName); if (m_idFilterMethod == FILTER_METHOD_INVALID) { @@ -109,12 +116,17 @@ ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMeth return; } - init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry, dFocalLength, pSGP); + init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, + m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry, dFocalLength, + dSourceDetectorLength, pSGP); } void -ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength, SGP* pSGP) +ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, + int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, + const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry, + double dFocalLength, double dSourceDetectorLength, SGP* pSGP) { int i; m_idFilter = idFilter; @@ -123,6 +135,7 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_idFilterGeneration = idFilterGeneration; m_idGeometry = iGeometry; m_dFocalLength = dFocalLength; + m_dSourceDetectorLength = dSourceDetectorLength; if (m_idFilter == SignalFilter::FILTER_INVALID || m_idDomain == SignalFilter::DOMAIN_INVALID || m_idFilterMethod == FILTER_METHOD_INVALID || m_idFilterGeneration == FILTER_GENERATION_INVALID) { m_fail = true; @@ -138,11 +151,12 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_iZeropad = iZeropad; m_iPreinterpolationFactor = iPreinterpolationFactor; - // scale signalInc/BW to signalInc/2 to adjust for imaginary detector - // through origin of phantom, see Kak-Slaney Fig 3.22, for Collinear + // scale signalInc/BW to adjust for imaginary detector through origin of phantom + // see Kak-Slaney Fig 3.22, for Collinear diagram if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { - m_dSignalInc /= 2; - m_dBandwidth *= 2; + double dEquilinearScale = m_dSourceDetectorLength / m_dFocalLength; + m_dSignalInc /= dEquilinearScale; + m_dBandwidth *= dEquilinearScale; } if (m_idFilterMethod == FILTER_METHOD_FFT) { @@ -179,46 +193,40 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_adFilter = new double[ m_nFilterPoints ]; double* adFrequencyFilter = new double [m_nFilterPoints]; filter.copyFilterData (adFrequencyFilter, 0, m_nFilterPoints); -#ifdef HAVE_SGP - EZPlot* pEZPlot = NULL; - if (pSGP && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot = new EZPlot (); - pEZPlot->ezset ("title Filter Response: Natural Order"); - pEZPlot->ezset ("ylength 0.25"); - pEZPlot->addCurve (adFrequencyFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Response: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (adFrequencyFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } #endif Fourier::shuffleNaturalToFourierOrder (adFrequencyFilter, m_nFilterPoints); #ifdef HAVE_SGP - if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot->ezset ("title Filter Response: Fourier Order"); - pEZPlot->ezset ("ylength 0.25"); - pEZPlot->ezset ("yporigin 0.25"); - pEZPlot->addCurve (adFrequencyFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Response: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (adFrequencyFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } #endif ProcessSignal::finiteFourierTransform (adFrequencyFilter, m_adFilter, m_nFilterPoints, FORWARD); delete adFrequencyFilter; -#ifdef HAVE_SGP - if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot->ezset ("title Inverse Fourier Frequency: Fourier Order"); - pEZPlot->ezset ("ylength 0.25"); - pEZPlot->ezset ("yporigin 0.50"); - pEZPlot->addCurve (m_adFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Inverse Fourier Frequency: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } #endif Fourier::shuffleFourierToNaturalOrder (m_adFilter, m_nFilterPoints); -#ifdef HAVE_SGP - if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot->ezset ("title Inverse Fourier Frequency: Natural Order"); - pEZPlot->ezset ("ylength 0.25"); - pEZPlot->ezset ("yporigin 0.75"); - pEZPlot->addCurve (m_adFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); - delete pEZPlot; +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Inverse Fourier Frequency: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } #endif for (i = 0; i < m_nFilterPoints; i++) { @@ -231,14 +239,18 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { for (i = 0; i < m_nFilterPoints; i++) { int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); - double sinScale = sin (iDetFromZero * m_dSignalInc); - if (fabs(sinScale) < 1E-7) - sinScale = 1; - else - sinScale = (iDetFromZero * m_dSignalInc) / sinScale; + double sinScale = 1 / SignalFilter::sinc (iDetFromZero * m_dSignalInc); double dScale = 0.5 * sinScale * sinScale; m_adFilter[i] *= dScale; } +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Scaled Inverse Fourier Frequency: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif } // if (geometry) } // if (spatial filtering) @@ -246,22 +258,10 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw if (m_idFilterGeneration == FILTER_GENERATION_DIRECT) { // calculate number of filter points with zeropadding - m_nFilterPoints = m_nSignalPoints; - if (m_iZeropad > 0) { - double logBase2 = log(m_nFilterPoints) / log(2); - int nextPowerOf2 = static_cast(floor(logBase2)); - if (logBase2 != floor(logBase2)) - nextPowerOf2++; - nextPowerOf2 += (m_iZeropad - 1); - m_nFilterPoints = 1 << nextPowerOf2; -#ifdef DEBUG - if (m_traceLevel >= Trace::TRACE_CONSOLE) - std::cout << "nFilterPoints = " << m_nFilterPoints << endl; -#endif - } + m_nFilterPoints = addZeropadFactor (m_nSignalPoints, m_iZeropad); m_nOutputPoints = m_nFilterPoints * m_iPreinterpolationFactor; - if (m_nFilterPoints % 2) { // Odd + if (isOdd (m_nFilterPoints)) { // Odd m_dFilterMin = -1. / (2 * m_dSignalInc); m_dFilterMax = 1. / (2 * m_dSignalInc); m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); @@ -272,49 +272,54 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_dFilterMax -= m_dFilterInc; } - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, + m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); m_adFilter = new double [m_nFilterPoints]; filter.copyFilterData (m_adFilter, 0, m_nFilterPoints); - // This doesn't work! - // Need to add filtering for divergent geometries & Frequency/Direct filtering +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Frequency Filter: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + + // This works fairly well. I'm not sure why since scaling for geometries is done on + // frequency filter rather than spatial filter as it should be. + // It gives values slightly off than freq/inverse filtering if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { for (i = 0; i < m_nFilterPoints; i++) m_adFilter[i] *= 0.5; } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { for (i = 0; i < m_nFilterPoints; i++) { int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); - double sinScale = sin (iDetFromZero * m_dSignalInc); - if (fabs(sinScale) < 1E-7) - sinScale = 1; - else - sinScale = (iDetFromZero * m_dSignalInc) / sinScale; + double sinScale = 1 / SignalFilter::sinc (iDetFromZero * m_dSignalInc); double dScale = 0.5 * sinScale * sinScale; m_adFilter[i] *= dScale; } } -#ifdef HAVE_SGP - EZPlot* pEZPlot = NULL; - if (pSGP && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot = new EZPlot; - pEZPlot->ezset ("title Filter Filter: Natural Order"); - pEZPlot->ezset ("ylength 0.50"); - pEZPlot->ezset ("yporigin 0.00"); - pEZPlot->addCurve (m_adFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Geometry Scaled: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } #endif Fourier::shuffleNaturalToFourierOrder (m_adFilter, m_nFilterPoints); -#ifdef HAVE_SGP - if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot->ezset ("title Filter Filter: Fourier Order"); - pEZPlot->ezset ("ylength 0.50"); - pEZPlot->ezset ("yporigin 0.50"); - pEZPlot->addCurve (m_adFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); - delete pEZPlot; +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Geometry Scaled: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } #endif + + // FILTERING: FREQUENCY - INVERSE FOURIER + } else if (m_idFilterGeneration == FILTER_GENERATION_INVERSE_FOURIER) { // calculate number of filter points with zeropadding int nSpatialPoints = 2 * (m_nSignalPoints - 1) + 1; @@ -331,31 +336,29 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_nFilterPoints = 1 << nextPowerOf2; } m_nOutputPoints = m_nFilterPoints * m_iPreinterpolationFactor; -#ifdef DEBUG +#if defined(DEBUG) || defined(_DEBUG) if (m_traceLevel >= Trace::TRACE_CONSOLE) - std::cout << "nFilterPoints = " << m_nFilterPoints << endl; + sys_error (ERR_TRACE, "nFilterPoints = %d", m_nFilterPoints); #endif double* adSpatialFilter = new double [m_nFilterPoints]; - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, nSpatialPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, nSpatialPoints, m_dBandwidth, + m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); filter.copyFilterData (adSpatialFilter, 0, nSpatialPoints); -#ifdef HAVE_SGP - EZPlot* pEZPlot = NULL; - if (pSGP && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot = new EZPlot; - pEZPlot->ezset ("title Spatial Filter: Natural Order"); - pEZPlot->ezset ("ylength 0.50"); - pEZPlot->ezset ("yporigin 0.00"); - pEZPlot->addCurve (adSpatialFilter, nSpatialPoints); - pEZPlot->plot (pSGP); - delete pEZPlot; +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot;; + dlgEZPlot.getEZPlot()->ezset ("title Spatial Filter: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (adSpatialFilter, nSpatialPoints); + dlgEZPlot.ShowModal(); } #endif + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { - for (i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < nSpatialPoints; i++) adSpatialFilter[i] *= 0.5; } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { - for (i = 0; i < m_nFilterPoints; i++) { - int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); + for (i = 0; i < nSpatialPoints; i++) { + int iDetFromZero = i - ((nSpatialPoints - 1) / 2); double sinScale = sin (iDetFromZero * m_dSignalInc); if (fabs(sinScale) < 1E-7) sinScale = 1; @@ -365,6 +368,14 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw adSpatialFilter[i] *= dScale; } } +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot;; + dlgEZPlot.getEZPlot()->ezset ("title Scaled Spatial Filter: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (adSpatialFilter, nSpatialPoints); + dlgEZPlot.ShowModal(); + } +#endif for (i = nSpatialPoints; i < m_nFilterPoints; i++) adSpatialFilter[i] = 0; @@ -375,14 +386,12 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw for (i = 0; i < m_nFilterPoints; i++) m_adFilter[i] = std::abs (acInverseFilter[i]) * m_dSignalInc; delete acInverseFilter; -#ifdef HAVE_SGP - if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot->ezset ("title Spatial Filter: Inverse"); - pEZPlot->ezset ("ylength 0.50"); - pEZPlot->ezset ("yporigin 0.50"); - pEZPlot->addCurve (m_adFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); - delete pEZPlot; +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Fourier Scaled Spatial Filter: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } #endif } @@ -409,15 +418,15 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw } if (m_idFilterMethod == FILTER_METHOD_RFFTW) { - m_realPlanForward = rfftw_create_plan (m_nFilterPoints, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE); - m_realPlanBackward = rfftw_create_plan (m_nOutputPoints, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE); + m_realPlanForward = rfftw_create_plan (m_nFilterPoints, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE | FFTW_USE_WISDOM); + m_realPlanBackward = rfftw_create_plan (m_nOutputPoints, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE | FFTW_USE_WISDOM); m_adRealFftInput = new fftw_real [ m_nFilterPoints ]; m_adRealFftSignal = new fftw_real [ m_nOutputPoints ]; for (i = 0; i < m_nFilterPoints; i++) m_adRealFftInput[i] = 0; } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { - m_complexPlanForward = fftw_create_plan (m_nFilterPoints, FFTW_FORWARD, FFTW_ESTIMATE); - m_complexPlanBackward = fftw_create_plan (m_nOutputPoints, FFTW_BACKWARD, FFTW_ESTIMATE); + m_complexPlanForward = fftw_create_plan (m_nFilterPoints, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_USE_WISDOM); + m_complexPlanBackward = fftw_create_plan (m_nOutputPoints, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_USE_WISDOM); m_adComplexFftInput = new fftw_complex [ m_nFilterPoints ]; m_adComplexFftSignal = new fftw_complex [ m_nOutputPoints ]; for (i = 0; i < m_nFilterPoints; i++) @@ -855,3 +864,19 @@ ProcessSignal::finiteFourierTransform (const std::complex input[], doubl } } + +int +ProcessSignal::addZeropadFactor (int n, int iZeropad) +{ + if (iZeropad > 0) { + double dLogBase2 = log(n) / log(2); + int iLogBase2 = static_cast(floor (dLogBase2)); + int iPaddedN = 1 << (iLogBase2 + iZeropad); +#ifdef DEBUG + sys_error (ERR_TRACE, "Zeropadding %d to %d", n, iPaddedN); +#endif + return iPaddedN; + } + + return n; +}