X-Git-Url: http://git.kpe.io/?p=ctsim.git;a=blobdiff_plain;f=libctsim%2Fprocsignal.cpp;h=67641fd52f5b306fde9469c25845c107bb749c07;hp=41895ac06a37308f297e000bf8cf9b1ad5b43551;hb=7f8f356151b0c8db0dbbf1c1896cc22630d6c774;hpb=9b2bb510160bdb56f04847f5b55ab61dd8a47976 diff --git a/libctsim/procsignal.cpp b/libctsim/procsignal.cpp index 41895ac..67641fd 100644 --- a/libctsim/procsignal.cpp +++ b/libctsim/procsignal.cpp @@ -9,7 +9,7 @@ ** This is part of the CTSim program ** Copyright (C) 1983-2000 Kevin Rosenberg ** -** $Id: procsignal.cpp,v 1.13 2001/01/02 05:34:57 kevin Exp $ +** $Id: procsignal.cpp,v 1.19 2001/01/12 16:41:56 kevin Exp $ ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License (version 2) as @@ -27,6 +27,10 @@ #include "ct.h" +#ifdef HAVE_WXWINDOWS +#include "../src/dlgezplot.h" +#endif + // FilterMethod ID/Names const int ProcessSignal::FILTER_METHOD_INVALID = -1; const int ProcessSignal::FILTER_METHOD_CONVOLUTION = 0; @@ -77,7 +81,10 @@ const int ProcessSignal::s_iFilterGenerationCount = sizeof(s_aszFilterGeneration // CLASS IDENTIFICATION // ProcessSignal // -ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength, SGP* pSGP) +ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, + double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, + const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, + int iGeometry, double dFocalLength, SGP* pSGP) : m_adFourierCosTable(NULL), m_adFourierSinTable(NULL), m_adFilter(NULL), m_fail(false) { m_idFilterMethod = convertFilterMethodNameToID (szFilterMethodName); @@ -109,13 +116,17 @@ ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMeth return; } - init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry, dFocalLength, pSGP); + init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, + m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry, dFocalLength, pSGP); } void -ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength, SGP* pSGP) -{ +ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, + int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, + const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry, + double dFocalLength, SGP* pSGP) +{ int i; m_idFilter = idFilter; m_idDomain = idDomain; @@ -139,7 +150,8 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_iPreinterpolationFactor = iPreinterpolationFactor; // scale signalInc/BW to signalInc/2 to adjust for imaginary detector - // through origin of phantom, see Kak-Slaney Fig 3.22, for Collinear + // through origin of phantom rather than 2 times distance to detector, + // see Kak-Slaney Fig 3.22, for Collinear diagram if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { m_dSignalInc /= 2; m_dBandwidth *= 2; @@ -200,7 +212,7 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw } #endif ProcessSignal::finiteFourierTransform (adFrequencyFilter, m_adFilter, m_nFilterPoints, FORWARD); - delete adFrequencyFilter; + delete adFrequencyFilter; #ifdef HAVE_SGP if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { pEZPlot->ezset ("title Inverse Fourier Frequency: Fourier Order"); @@ -272,12 +284,16 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_dFilterMax -= m_dFilterInc; } - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, + m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); m_adFilter = new double [m_nFilterPoints]; filter.copyFilterData (m_adFilter, 0, m_nFilterPoints); // This doesn't work! // Need to add filtering for divergent geometries & Frequency/Direct filtering + // Jan 2001: Direct seems to work for equilinear and equiangular + // however, inverse_fourier doesn't work for equiangular on all versions of CTSim tested + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { for (i = 0; i < m_nFilterPoints; i++) m_adFilter[i] *= 0.5; @@ -335,21 +351,23 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw if (m_traceLevel >= Trace::TRACE_CONSOLE) std::cout << "nFilterPoints = " << m_nFilterPoints << endl; #endif - double* adSpatialFilter = new double [m_nFilterPoints]; - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, nSpatialPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); + double* adSpatialFilter = new double [m_nFilterPoints]; + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, nSpatialPoints, m_dBandwidth, + m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); filter.copyFilterData (adSpatialFilter, 0, nSpatialPoints); -#ifdef HAVE_SGP - EZPlot* pEZPlot = NULL; - if (pSGP && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot = new EZPlot; - pEZPlot->ezset ("title Spatial Filter: Natural Order"); - pEZPlot->ezset ("ylength 0.50"); - pEZPlot->ezset ("yporigin 0.00"); - pEZPlot->addCurve (adSpatialFilter, nSpatialPoints); - pEZPlot->plot (pSGP); - delete pEZPlot; +#if defined(HAVE_WXWINDOWS) && defined(DEBUG) + EZPlotDialog pEZPlotDlg = NULL; + if (g_bRunningWXWindows && m_traceLevel > 0) { + pEZPlotDlg = new EZPlotDialog; + pEZPlot->getEZPlot()->ezset ("title Spatial Filter: Natural Order"); + pEZPlot->getEZPlot()->ezset ("ylength 0.50"); + pEZPlot->getEZPlot()->ezset ("yporigin 0.00"); + pEZPlot->getEZPlot()->addCurve (adSpatialFilter, nSpatialPoints); } #endif + +// #define PRE_JAN_2001 1 +#ifdef PRE_JAN_2001 if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { for (i = 0; i < m_nFilterPoints; i++) adSpatialFilter[i] *= 0.5; @@ -364,25 +382,57 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw double dScale = 0.5 * sinScale * sinScale; adSpatialFilter[i] *= dScale; } - } + } for (i = nSpatialPoints; i < m_nFilterPoints; i++) adSpatialFilter[i] = 0; m_adFilter = new double [m_nFilterPoints]; - std::complex* acInverseFilter = new std::complex [m_nFilterPoints]; + std::complex* acInverseFilter = new std::complex [m_nFilterPoints]; finiteFourierTransform (adSpatialFilter, acInverseFilter, m_nFilterPoints, BACKWARD); - delete adSpatialFilter; + delete adSpatialFilter; for (i = 0; i < m_nFilterPoints; i++) m_adFilter[i] = std::abs (acInverseFilter[i]) * m_dSignalInc; - delete acInverseFilter; -#ifdef HAVE_SGP - if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { - pEZPlot->ezset ("title Spatial Filter: Inverse"); - pEZPlot->ezset ("ylength 0.50"); - pEZPlot->ezset ("yporigin 0.50"); - pEZPlot->addCurve (m_adFilter, m_nFilterPoints); - pEZPlot->plot (pSGP); - delete pEZPlot; + delete acInverseFilter; +#else + for (i = nSpatialPoints; i < m_nFilterPoints; i++) + adSpatialFilter[i] = 0; + +// for (i = 0; i < m_nFilterPoints; i++) +// adSpatialFilter[i] /= m_dSignalInc; + + std::complex* acInverseFilter = new std::complex [m_nFilterPoints]; + finiteFourierTransform (adSpatialFilter, acInverseFilter, m_nFilterPoints, FORWARD); + delete adSpatialFilter; + m_adFilter = new double [m_nFilterPoints]; + for (i = 0; i < m_nFilterPoints; i++) + m_adFilter[i] = std::abs(acInverseFilter[i]); + delete acInverseFilter; + + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { + for (i = 0; i < m_nFilterPoints; i++) + m_adFilter[i] *= 0.5; + } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { + for (i = 0; i < m_nFilterPoints; i++) { + int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); + double sinScale = sin (iDetFromZero * m_dSignalInc); + if (fabs(sinScale) < 1E-7) + sinScale = 1; + else + sinScale = (iDetFromZero * m_dSignalInc) / sinScale; + double dScale = 0.5 * sinScale * sinScale; + m_adFilter[i] *= dScale; + } + } +#endif + +#if defined(HAVE_WXWINDOWS) && defined(DEBUG) + if (g_bRunningWXWindows && pEZPlotDlg && m_traceLevel > 0) { + pEZPlotDlg->getEZPlot()->ezset ("title Spatial Filter: Inverse"); + pEZPlotDlg->getEZPlot()->ezset ("ylength 0.50"); + pEZPlotDlg->getEZPlot()->ezset ("yporigin 0.50"); + pEZPlotDlg->getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + pEZPlotDlg->ShowModal(); + delete pEZPlotDlg; } #endif } @@ -528,7 +578,7 @@ void ProcessSignal::filterSignal (const float constInput[], double output[]) const { double* input = new double [m_nSignalPoints]; - int i; + int i; for (i = 0; i < m_nSignalPoints; i++) input[i] = constInput[i]; @@ -542,7 +592,7 @@ ProcessSignal::filterSignal (const float constInput[], double output[]) const int iDetFromCenter = i - (m_nSignalPoints / 2); input[i] *= m_dFocalLength * cos (iDetFromCenter * m_dSignalInc); } - } + } if (m_idFilterMethod == FILTER_METHOD_CONVOLUTION) { for (i = 0; i < m_nSignalPoints; i++) output[i] = convolve (input, m_dSignalInc, i, m_nSignalPoints); @@ -553,15 +603,15 @@ ProcessSignal::filterSignal (const float constInput[], double output[]) const for (i = m_nSignalPoints; i < m_nFilterPoints; i++) inputSignal[i] = 0; // zeropad std::complex* fftSignal = new std::complex [m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, m_nFilterPoints, FORWARD); + finiteFourierTransform (inputSignal, fftSignal, m_nFilterPoints, FORWARD); delete inputSignal; for (i = 0; i < m_nFilterPoints; i++) fftSignal[i] *= m_adFilter[i]; double* inverseFourier = new double [m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, m_nFilterPoints, BACKWARD); + finiteFourierTransform (fftSignal, inverseFourier, m_nFilterPoints, BACKWARD); delete fftSignal; for (i = 0; i < m_nSignalPoints; i++) - output[i] = inverseFourier[i]; + output[i] = inverseFourier[i]; delete inverseFourier; } else if (m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE) { double* inputSignal = new double [m_nFilterPoints]; @@ -570,15 +620,15 @@ ProcessSignal::filterSignal (const float constInput[], double output[]) const for (i = m_nSignalPoints; i < m_nFilterPoints; i++) inputSignal[i] = 0; // zeropad std::complex* fftSignal = new std::complex [m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, FORWARD); + finiteFourierTransform (inputSignal, fftSignal, FORWARD); delete inputSignal; for (i = 0; i < m_nFilterPoints; i++) fftSignal[i] *= m_adFilter[i]; double* inverseFourier = new double [m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, BACKWARD); + finiteFourierTransform (fftSignal, inverseFourier, BACKWARD); delete fftSignal; for (i = 0; i < m_nSignalPoints; i++) - output[i] = inverseFourier[i]; + output[i] = inverseFourier[i]; delete inverseFourier; } #if HAVE_FFTW @@ -589,7 +639,7 @@ ProcessSignal::filterSignal (const float constInput[], double output[]) const fftw_real* fftOutput = new fftw_real [ m_nFilterPoints ]; rfftw_one (m_realPlanForward, m_adRealFftInput, fftOutput); for (i = 0; i < m_nFilterPoints; i++) - m_adRealFftSignal[i] = m_adFilter[i] * fftOutput[i]; + m_adRealFftSignal[i] = m_adFilter[i] * fftOutput[i]; delete [] fftOutput; for (i = m_nFilterPoints; i < m_nOutputPoints; i++) m_adRealFftSignal[i] = 0; @@ -597,7 +647,7 @@ ProcessSignal::filterSignal (const float constInput[], double output[]) const fftw_real* ifftOutput = new fftw_real [ m_nOutputPoints ]; rfftw_one (m_realPlanBackward, m_adRealFftSignal, ifftOutput); for (i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) - output[i] = ifftOutput[i]; + output[i] = ifftOutput[i]; delete [] ifftOutput; } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { for (i = 0; i < m_nSignalPoints; i++) @@ -608,15 +658,15 @@ ProcessSignal::filterSignal (const float constInput[], double output[]) const for (i = 0; i < m_nFilterPoints; i++) { m_adComplexFftSignal[i].re = m_adFilter[i] * fftOutput[i].re; m_adComplexFftSignal[i].im = m_adFilter[i] * fftOutput[i].im; - } + } delete [] fftOutput; fftw_complex* ifftOutput = new fftw_complex [ m_nOutputPoints ]; fftw_one (m_complexPlanBackward, m_adComplexFftSignal, ifftOutput); for (i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) - output[i] = ifftOutput[i].re; + output[i] = ifftOutput[i].re; delete [] ifftOutput; } -#endif +#endif delete input; } @@ -690,7 +740,7 @@ ProcessSignal::finiteFourierTransform (const double input[], double output[], co finiteFourierTransform (input, complexOutput, n, direction); for (int i = 0; i < n; i++) - output[i] = complexOutput[i].real(); + output[i] = complexOutput[i].real(); delete [] complexOutput; } @@ -733,8 +783,8 @@ ProcessSignal::finiteFourierTransform (const std::complex input[], std:: std::complex sum (0,0); for (int j = 0; j < n; j++) { double angle = i * j * angleIncrement; - std::complex exponentTerm (cos(angle), sin(angle)); - sum += input[j] * exponentTerm; + std::complex exponentTerm (cos(angle), sin(angle)); + sum += input[j] * exponentTerm; } if (direction < 0) { sum /= n;