X-Git-Url: http://git.kpe.io/?p=ctsim.git;a=blobdiff_plain;f=libctsim%2Fprocsignal.cpp;h=707ee382b96dbc75412ad35115a00c9950dc3830;hp=e38fae239f0095e9b499425599526cfe0460de54;hb=d3fa225aa232e132cc198672c4fc148f96a1ab8c;hpb=6bfb747f8163381d94a02c03a0351e9ca6815d22 diff --git a/libctsim/procsignal.cpp b/libctsim/procsignal.cpp index e38fae2..707ee38 100644 --- a/libctsim/procsignal.cpp +++ b/libctsim/procsignal.cpp @@ -7,9 +7,9 @@ ** Date Started: Aug 1984 ** ** This is part of the CTSim program -** Copyright (C) 1983-2000 Kevin Rosenberg +** Copyright (c) 1983-2001 Kevin Rosenberg ** -** $Id: procsignal.cpp,v 1.4 2000/08/27 20:32:55 kevin Exp $ +** $Id: procsignal.cpp,v 1.25 2001/02/11 04:56:37 kevin Exp $ ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License (version 2) as @@ -27,6 +27,10 @@ #include "ct.h" +#ifdef HAVE_WXWINDOWS +#include "dlgezplot.h" +#endif + // FilterMethod ID/Names const int ProcessSignal::FILTER_METHOD_INVALID = -1; const int ProcessSignal::FILTER_METHOD_CONVOLUTION = 0; @@ -40,7 +44,7 @@ const int ProcessSignal::FILTER_METHOD_RFFTW =5 ; const char* ProcessSignal::s_aszFilterMethodName[] = { {"convolution"}, {"fourier"}, - {"fouier_table"}, + {"fouier-table"}, {"fft"}, #if HAVE_FFTW {"fftw"}, @@ -65,7 +69,7 @@ const int ProcessSignal::FILTER_GENERATION_DIRECT = 0; const int ProcessSignal::FILTER_GENERATION_INVERSE_FOURIER = 1; const char* ProcessSignal::s_aszFilterGenerationName[] = { {"direct"}, - {"inverse_fourier"}, + {"inverse-fourier"}, }; const char* ProcessSignal::s_aszFilterGenerationTitle[] = { {"Direct"}, @@ -77,8 +81,11 @@ const int ProcessSignal::s_iFilterGenerationCount = sizeof(s_aszFilterGeneration // CLASS IDENTIFICATION // ProcessSignal // -ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, int iGeometry) - : m_adFourierCosTable(NULL), m_adFourierSinTable(NULL), m_adFilter(NULL), m_fail(false) +ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, + double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, + const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, + int iGeometry, double dFocalLength, SGP* pSGP) + : m_adFourierCosTable(NULL), m_adFourierSinTable(NULL), m_adFilter(NULL), m_fail(false) { m_idFilterMethod = convertFilterMethodNameToID (szFilterMethodName); if (m_idFilterMethod == FILTER_METHOD_INVALID) { @@ -108,20 +115,26 @@ ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMeth m_failMessage += szDomainName; return; } - - init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry); + + init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, + m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry, dFocalLength, pSGP); } void -ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry) +ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, + int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, + const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry, + double dFocalLength, SGP* pSGP) { + int i; m_idFilter = idFilter; m_idDomain = idDomain; m_idFilterMethod = idFilterMethod; m_idFilterGeneration = idFilterGeneration; m_idGeometry = iGeometry; - + m_dFocalLength = dFocalLength; + if (m_idFilter == SignalFilter::FILTER_INVALID || m_idDomain == SignalFilter::DOMAIN_INVALID || m_idFilterMethod == FILTER_METHOD_INVALID || m_idFilterGeneration == FILTER_GENERATION_INVALID) { m_fail = true; return; @@ -135,7 +148,15 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_dFilterParam = dFilterParam; m_iZeropad = iZeropad; m_iPreinterpolationFactor = iPreinterpolationFactor; - + + // scale signalInc/BW to signalInc/2 to adjust for imaginary detector + // through origin of phantom rather than 2 times distance to detector, + // see Kak-Slaney Fig 3.22, for Collinear diagram + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { + m_dSignalInc /= 2; + m_dBandwidth *= 2; + } + if (m_idFilterMethod == FILTER_METHOD_FFT) { #if HAVE_FFTW m_idFilterMethod = FILTER_METHOD_RFFTW; @@ -145,140 +166,170 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw return; #endif } - + bool m_bFrequencyFiltering = true; if (m_idFilterMethod == FILTER_METHOD_CONVOLUTION) m_bFrequencyFiltering = false; - + // Spatial-based filtering if (! m_bFrequencyFiltering) { - + if (m_idFilterGeneration == FILTER_GENERATION_DIRECT) { - m_nFilterPoints = 2 * (m_nSignalPoints - 1) + 1; - m_dFilterMin = -m_dSignalInc * (m_nSignalPoints - 1); - m_dFilterMax = m_dSignalInc * (m_nSignalPoints - 1); - m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); - m_adFilter = new double[ m_nFilterPoints ]; - filter.copyFilterData (m_adFilter, 0, m_nFilterPoints); + m_nFilterPoints = 2 * (m_nSignalPoints - 1) + 1; + m_dFilterMin = -m_dSignalInc * (m_nSignalPoints - 1); + m_dFilterMax = m_dSignalInc * (m_nSignalPoints - 1); + m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); + m_adFilter = new double[ m_nFilterPoints ]; + filter.copyFilterData (m_adFilter, 0, m_nFilterPoints); } else if (m_idFilterGeneration == FILTER_GENERATION_INVERSE_FOURIER) { - m_nFilterPoints = 2 * (m_nSignalPoints - 1) + 1; - m_dFilterMin = -1. / (2 * m_dSignalInc); - m_dFilterMax = 1. / (2 * m_dSignalInc); - m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); - m_adFilter = new double[ m_nFilterPoints ]; - double adFrequencyFilter [m_nFilterPoints]; - filter.copyFilterData (adFrequencyFilter, 0, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Response: Natural Order"); - ezplot.addCurve (adFrequencyFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); - } - - shuffleNaturalToFourierOrder (adFrequencyFilter, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Fourier Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Response: Fourier Order"); - ezplot.addCurve (adFrequencyFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); - } - ProcessSignal::finiteFourierTransform (adFrequencyFilter, m_adFilter, m_nFilterPoints, -1); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Inverse Fourier Frequency: Fourier Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Inverse Fourier Frequency: Fourier Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); - } - shuffleFourierToNaturalOrder (m_adFilter, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Inverse Fourier Frequency: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Inverse Fourier Frequency: Natural Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); - } - for (int i = 0; i < m_nFilterPoints; i++) { - m_adFilter[i] /= m_dSignalInc; - } + m_nFilterPoints = 2 * (m_nSignalPoints - 1) + 1; + m_dFilterMin = -1. / (2 * m_dSignalInc); + m_dFilterMax = 1. / (2 * m_dSignalInc); + m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); + m_adFilter = new double[ m_nFilterPoints ]; + double* adFrequencyFilter = new double [m_nFilterPoints]; + filter.copyFilterData (adFrequencyFilter, 0, m_nFilterPoints); +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Response: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (adFrequencyFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + Fourier::shuffleNaturalToFourierOrder (adFrequencyFilter, m_nFilterPoints); +#ifdef HAVE_SGP + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Response: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (adFrequencyFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + ProcessSignal::finiteFourierTransform (adFrequencyFilter, m_adFilter, m_nFilterPoints, FORWARD); + delete adFrequencyFilter; +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Inverse Fourier Frequency: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + Fourier::shuffleFourierToNaturalOrder (m_adFilter, m_nFilterPoints); +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Inverse Fourier Frequency: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + for (i = 0; i < m_nFilterPoints; i++) { + m_adFilter[i] /= m_dSignalInc; + } } - } - - // Frequency-based filtering - else if (m_bFrequencyFiltering) { - + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { + for (i = 0; i < m_nFilterPoints; i++) + m_adFilter[i] *= 0.5; + } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { + for (i = 0; i < m_nFilterPoints; i++) { + int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); + double sinScale = 1 / SignalFilter::sinc (iDetFromZero * m_dSignalInc); + double dScale = 0.5 * sinScale * sinScale; + m_adFilter[i] *= dScale; + } +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Scaled Inverse Fourier Frequency: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + } // if (geometry) + } // if (spatial filtering) + + else if (m_bFrequencyFiltering) { // Frequency-based filtering + if (m_idFilterGeneration == FILTER_GENERATION_DIRECT) { // calculate number of filter points with zeropadding m_nFilterPoints = m_nSignalPoints; if (m_iZeropad > 0) { - double logBase2 = log(m_nFilterPoints) / log(2); - int nextPowerOf2 = static_cast(floor(logBase2)); - if (logBase2 != floor(logBase2)) - nextPowerOf2++; - nextPowerOf2 += (m_iZeropad - 1); - m_nFilterPoints = 1 << nextPowerOf2; - if (m_traceLevel >= Trace::TRACE_CONSOLE) - cout << "nFilterPoints = " << m_nFilterPoints << endl; + double logBase2 = log(m_nFilterPoints) / log(2); + int nextPowerOf2 = static_cast(floor(logBase2)); + if (logBase2 != floor(logBase2)) + nextPowerOf2++; + nextPowerOf2 += (m_iZeropad - 1); + m_nFilterPoints = 1 << nextPowerOf2; +#if defined(DEBUG) || defined(_DEBUG) + if (m_traceLevel >= Trace::TRACE_CONSOLE) + sys_error (ERR_TRACE, "nFilterPoints = %d", m_nFilterPoints); +#endif } m_nOutputPoints = m_nFilterPoints * m_iPreinterpolationFactor; - + if (m_nFilterPoints % 2) { // Odd - m_dFilterMin = -1. / (2 * m_dSignalInc); - m_dFilterMax = 1. / (2 * m_dSignalInc); - m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); + m_dFilterMin = -1. / (2 * m_dSignalInc); + m_dFilterMax = 1. / (2 * m_dSignalInc); + m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); } else { // Even - m_dFilterMin = -1. / (2 * m_dSignalInc); - m_dFilterMax = 1. / (2 * m_dSignalInc); - m_dFilterInc = (m_dFilterMax - m_dFilterMin) / m_nFilterPoints; - m_dFilterMax -= m_dFilterInc; + m_dFilterMin = -1. / (2 * m_dSignalInc); + m_dFilterMax = 1. / (2 * m_dSignalInc); + m_dFilterInc = (m_dFilterMax - m_dFilterMin) / m_nFilterPoints; + m_dFilterMax -= m_dFilterInc; } - - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); + + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, + m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); m_adFilter = new double [m_nFilterPoints]; filter.copyFilterData (m_adFilter, 0, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Filter: Natural Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); + +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Frequency Filter: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + + // This works fairly well. I'm not sure why since scaling for geometries is done on + // frequency filter rather than spatial filter as it should be. + // It gives values slightly off than freq/inverse filtering + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { + for (i = 0; i < m_nFilterPoints; i++) + m_adFilter[i] *= 0.5; + } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { + for (i = 0; i < m_nFilterPoints; i++) { + int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); + double sinScale = 1 / SignalFilter::sinc (iDetFromZero * m_dSignalInc); + double dScale = 0.5 * sinScale * sinScale; + m_adFilter[i] *= dScale; + } } - shuffleNaturalToFourierOrder (m_adFilter, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Fourier Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Filter: Fourier Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); - } +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Geometry Scaled: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + Fourier::shuffleNaturalToFourierOrder (m_adFilter, m_nFilterPoints); +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Filter Geometry Scaled: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); + } +#endif + + // FILTERING: FREQUENCY - INVERSE FOURIER + } else if (m_idFilterGeneration == FILTER_GENERATION_INVERSE_FOURIER) { // calculate number of filter points with zeropadding int nSpatialPoints = 2 * (m_nSignalPoints - 1) + 1; @@ -287,87 +338,110 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (nSpatialPoints - 1); m_nFilterPoints = nSpatialPoints; if (m_iZeropad > 0) { - double logBase2 = log(nSpatialPoints) / log(2); - int nextPowerOf2 = static_cast(floor(logBase2)); - if (logBase2 != floor(logBase2)) - nextPowerOf2++; - nextPowerOf2 += (m_iZeropad - 1); - m_nFilterPoints = 1 << nextPowerOf2; + double logBase2 = log(nSpatialPoints) / log(2); + int nextPowerOf2 = static_cast(floor(logBase2)); + if (logBase2 != floor(logBase2)) + nextPowerOf2++; + nextPowerOf2 += (m_iZeropad - 1); + m_nFilterPoints = 1 << nextPowerOf2; } m_nOutputPoints = m_nFilterPoints * m_iPreinterpolationFactor; +#if defined(DEBUG) || defined(_DEBUG) if (m_traceLevel >= Trace::TRACE_CONSOLE) - cout << "nFilterPoints = " << m_nFilterPoints << endl; - double adSpatialFilter [m_nFilterPoints]; - SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, nSpatialPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); + sys_error (ERR_TRACE, "nFilterPoints = %d", m_nFilterPoints); +#endif + double* adSpatialFilter = new double [m_nFilterPoints]; + SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, nSpatialPoints, m_dBandwidth, + m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); filter.copyFilterData (adSpatialFilter, 0, nSpatialPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Spatial Filter: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Spatial Filter: Natural Order"); - ezplot.addCurve (adSpatialFilter, nSpatialPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot;; + dlgEZPlot.getEZPlot()->ezset ("title Spatial Filter: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (adSpatialFilter, nSpatialPoints); + dlgEZPlot.ShowModal(); } - for (int i = nSpatialPoints; i < m_nFilterPoints; i++) - adSpatialFilter[i] = 0; - +#endif + + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { + for (i = 0; i < nSpatialPoints; i++) + adSpatialFilter[i] *= 0.5; + } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { + for (i = 0; i < nSpatialPoints; i++) { + int iDetFromZero = i - ((nSpatialPoints - 1) / 2); + double sinScale = sin (iDetFromZero * m_dSignalInc); + if (fabs(sinScale) < 1E-7) + sinScale = 1; + else + sinScale = (iDetFromZero * m_dSignalInc) / sinScale; + double dScale = 0.5 * sinScale * sinScale; + adSpatialFilter[i] *= dScale; + } + } +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot;; + dlgEZPlot.getEZPlot()->ezset ("title Scaled Spatial Filter: Natural Order"); + dlgEZPlot.getEZPlot()->addCurve (adSpatialFilter, nSpatialPoints); + dlgEZPlot.ShowModal(); + } +#endif + for (i = nSpatialPoints; i < m_nFilterPoints; i++) + adSpatialFilter[i] = 0; + m_adFilter = new double [m_nFilterPoints]; - complex acInverseFilter [m_nFilterPoints]; - finiteFourierTransform (adSpatialFilter, acInverseFilter, m_nFilterPoints, 1); - for (int i = 0; i < m_nFilterPoints; i++) - m_adFilter[i] = abs(acInverseFilter[i]) * m_dSignalInc; - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Spatial Filter: Inverse"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Spatial Filter: Inverse"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); + std::complex* acInverseFilter = new std::complex [m_nFilterPoints]; + finiteFourierTransform (adSpatialFilter, acInverseFilter, m_nFilterPoints, BACKWARD); + delete adSpatialFilter; + for (i = 0; i < m_nFilterPoints; i++) + m_adFilter[i] = std::abs (acInverseFilter[i]) * m_dSignalInc; + delete acInverseFilter; +#if defined(HAVE_WXWINDOWS) && (defined(DEBUG) || defined(_DEBUG)) + if (g_bRunningWXWindows && m_traceLevel > 0) { + EZPlotDialog dlgEZPlot; + dlgEZPlot.getEZPlot()->ezset ("title Fourier Scaled Spatial Filter: Fourier Order"); + dlgEZPlot.getEZPlot()->addCurve (m_adFilter, m_nFilterPoints); + dlgEZPlot.ShowModal(); } +#endif } } // precalculate sin and cosine tables for fourier transform if (m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE) { - int nFourier = max(m_nFilterPoints,m_nOutputPoints) * max(m_nFilterPoints, m_nOutputPoints) + 1; + int nFourier = imax (m_nFilterPoints,m_nOutputPoints) * imax (m_nFilterPoints, m_nOutputPoints) + 1; double angleIncrement = (2. * PI) / m_nFilterPoints; m_adFourierCosTable = new double[ nFourier ]; m_adFourierSinTable = new double[ nFourier ]; double angle = 0; - for (int i = 0; i < nFourier; i++) { + for (i = 0; i < nFourier; i++) { m_adFourierCosTable[i] = cos (angle); m_adFourierSinTable[i] = sin (angle); angle += angleIncrement; } } - + #if HAVE_FFTW if (m_idFilterMethod == FILTER_METHOD_FFTW || m_idFilterMethod == FILTER_METHOD_RFFTW) { - for (int i = 0; i < m_nFilterPoints; i++) //fftw uses unnormalized fft + for (i = 0; i < m_nFilterPoints; i++) //fftw uses unnormalized fft m_adFilter[i] /= m_nFilterPoints; } - + if (m_idFilterMethod == FILTER_METHOD_RFFTW) { m_realPlanForward = rfftw_create_plan (m_nFilterPoints, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE); m_realPlanBackward = rfftw_create_plan (m_nOutputPoints, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE); m_adRealFftInput = new fftw_real [ m_nFilterPoints ]; m_adRealFftSignal = new fftw_real [ m_nOutputPoints ]; - for (int i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < m_nFilterPoints; i++) m_adRealFftInput[i] = 0; } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { m_complexPlanForward = fftw_create_plan (m_nFilterPoints, FFTW_FORWARD, FFTW_ESTIMATE); m_complexPlanBackward = fftw_create_plan (m_nOutputPoints, FFTW_BACKWARD, FFTW_ESTIMATE); m_adComplexFftInput = new fftw_complex [ m_nFilterPoints ]; m_adComplexFftSignal = new fftw_complex [ m_nOutputPoints ]; - for (int i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < m_nFilterPoints; i++) m_adComplexFftInput[i].re = m_adComplexFftInput[i].im = 0; - for (int i = 0; i < m_nOutputPoints; i++) + for (i = 0; i < m_nOutputPoints; i++) m_adComplexFftSignal[i].re = m_adComplexFftSignal[i].im = 0; } #endif @@ -376,23 +450,23 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw ProcessSignal::~ProcessSignal (void) { - delete [] m_adFourierSinTable; - delete [] m_adFourierCosTable; - delete [] m_adFilter; - + delete [] m_adFourierSinTable; + delete [] m_adFourierCosTable; + delete [] m_adFilter; + #if HAVE_FFTW - if (m_idFilterMethod == FILTER_METHOD_FFTW) { - fftw_destroy_plan(m_complexPlanForward); - fftw_destroy_plan(m_complexPlanBackward); - delete [] m_adComplexFftInput; - delete [] m_adComplexFftSignal; - } - if (m_idFilterMethod == FILTER_METHOD_RFFTW) { - rfftw_destroy_plan(m_realPlanForward); - rfftw_destroy_plan(m_realPlanBackward); - delete [] m_adRealFftInput; - delete [] m_adRealFftSignal; - } + if (m_idFilterMethod == FILTER_METHOD_FFTW) { + fftw_destroy_plan(m_complexPlanForward); + fftw_destroy_plan(m_complexPlanBackward); + delete [] m_adComplexFftInput; + delete [] m_adComplexFftSignal; + } + if (m_idFilterMethod == FILTER_METHOD_RFFTW) { + rfftw_destroy_plan(m_realPlanForward); + rfftw_destroy_plan(m_realPlanBackward); + delete [] m_adRealFftInput; + delete [] m_adRealFftSignal; + } #endif } @@ -400,24 +474,24 @@ int ProcessSignal::convertFilterMethodNameToID (const char* const filterMethodName) { int fmID = FILTER_METHOD_INVALID; - + for (int i = 0; i < s_iFilterMethodCount; i++) - if (strcasecmp (filterMethodName, s_aszFilterMethodName[i]) == 0) { + if (strcasecmp (filterMethodName, s_aszFilterMethodName[i]) == 0) { fmID = i; break; } - - return (fmID); + + return (fmID); } const char * ProcessSignal::convertFilterMethodIDToName (const int fmID) { static const char *name = ""; - + if (fmID >= 0 && fmID < s_iFilterMethodCount) - return (s_aszFilterMethodName [fmID]); - + return (s_aszFilterMethodName [fmID]); + return (name); } @@ -425,10 +499,10 @@ const char * ProcessSignal::convertFilterMethodIDToTitle (const int fmID) { static const char *title = ""; - + if (fmID >= 0 && fmID < s_iFilterMethodCount) - return (s_aszFilterMethodTitle [fmID]); - + return (s_aszFilterMethodTitle [fmID]); + return (title); } @@ -437,24 +511,24 @@ int ProcessSignal::convertFilterGenerationNameToID (const char* const fgName) { int fgID = FILTER_GENERATION_INVALID; - + for (int i = 0; i < s_iFilterGenerationCount; i++) - if (strcasecmp (fgName, s_aszFilterGenerationName[i]) == 0) { + if (strcasecmp (fgName, s_aszFilterGenerationName[i]) == 0) { fgID = i; break; } - - return (fgID); + + return (fgID); } const char * ProcessSignal::convertFilterGenerationIDToName (const int fgID) { static const char *name = ""; - + if (fgID >= 0 && fgID < s_iFilterGenerationCount) - return (s_aszFilterGenerationName [fgID]); - + return (s_aszFilterGenerationName [fgID]); + return (name); } @@ -462,114 +536,141 @@ const char * ProcessSignal::convertFilterGenerationIDToTitle (const int fgID) { static const char *name = ""; - + if (fgID >= 0 && fgID < s_iFilterGenerationCount) - return (s_aszFilterGenerationTitle [fgID]); - + return (s_aszFilterGenerationTitle [fgID]); + return (name); } void -ProcessSignal::filterSignal (const float input[], double output[], int iView) const +ProcessSignal::filterSignal (const float constInput[], double output[]) const { + double* input = new double [m_nSignalPoints]; + int i; + for (i = 0; i < m_nSignalPoints; i++) + input[i] = constInput[i]; + + if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { + for (int i = 0; i < m_nSignalPoints; i++) { + int iDetFromCenter = i - (m_nSignalPoints / 2); + input[i] *= m_dFocalLength / sqrt (m_dFocalLength * m_dFocalLength + iDetFromCenter * iDetFromCenter * m_dSignalInc * m_dSignalInc); + } + } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { + for (int i = 0; i < m_nSignalPoints; i++) { + int iDetFromCenter = i - (m_nSignalPoints / 2); + input[i] *= m_dFocalLength * cos (iDetFromCenter * m_dSignalInc); + } + } if (m_idFilterMethod == FILTER_METHOD_CONVOLUTION) { - for (int i = 0; i < m_nSignalPoints; i++) + for (i = 0; i < m_nSignalPoints; i++) output[i] = convolve (input, m_dSignalInc, i, m_nSignalPoints); } else if (m_idFilterMethod == FILTER_METHOD_FOURIER) { - double inputSignal[m_nFilterPoints]; - for (int i = 0; i < m_nSignalPoints; i++) + double* inputSignal = new double [m_nFilterPoints]; + for (i = 0; i < m_nSignalPoints; i++) inputSignal[i] = input[i]; - for (int i = m_nSignalPoints; i < m_nFilterPoints; i++) + for (i = m_nSignalPoints; i < m_nFilterPoints; i++) inputSignal[i] = 0; // zeropad - complex fftSignal[m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, m_nFilterPoints, -1); - for (int i = 0; i < m_nFilterPoints; i++) + std::complex* fftSignal = new std::complex [m_nFilterPoints]; + finiteFourierTransform (inputSignal, fftSignal, m_nFilterPoints, FORWARD); + delete inputSignal; + for (i = 0; i < m_nFilterPoints; i++) fftSignal[i] *= m_adFilter[i]; - double inverseFourier[m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, m_nFilterPoints, 1); - for (int i = 0; i < m_nSignalPoints; i++) + double* inverseFourier = new double [m_nFilterPoints]; + finiteFourierTransform (fftSignal, inverseFourier, m_nFilterPoints, BACKWARD); + delete fftSignal; + for (i = 0; i < m_nSignalPoints; i++) output[i] = inverseFourier[i]; + delete inverseFourier; } else if (m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE) { - double inputSignal[m_nFilterPoints]; - for (int i = 0; i < m_nSignalPoints; i++) + double* inputSignal = new double [m_nFilterPoints]; + for (i = 0; i < m_nSignalPoints; i++) inputSignal[i] = input[i]; - for (int i = m_nSignalPoints; i < m_nFilterPoints; i++) + for (i = m_nSignalPoints; i < m_nFilterPoints; i++) inputSignal[i] = 0; // zeropad - complex fftSignal[m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, -1); - for (int i = 0; i < m_nFilterPoints; i++) + std::complex* fftSignal = new std::complex [m_nFilterPoints]; + finiteFourierTransform (inputSignal, fftSignal, FORWARD); + delete inputSignal; + for (i = 0; i < m_nFilterPoints; i++) fftSignal[i] *= m_adFilter[i]; - double inverseFourier[m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, 1); - for (int i = 0; i < m_nSignalPoints; i++) + double* inverseFourier = new double [m_nFilterPoints]; + finiteFourierTransform (fftSignal, inverseFourier, BACKWARD); + delete fftSignal; + for (i = 0; i < m_nSignalPoints; i++) output[i] = inverseFourier[i]; + delete inverseFourier; } #if HAVE_FFTW else if (m_idFilterMethod == FILTER_METHOD_RFFTW) { - for (int i = 0; i < m_nSignalPoints; i++) - m_adRealFftInput[i] = input[i]; - - fftw_real fftOutput [ m_nFilterPoints ]; - rfftw_one (m_realPlanForward, m_adRealFftInput, fftOutput); - for (int i = 0; i < m_nFilterPoints; i++) - m_adRealFftSignal[i] = m_adFilter[i] * fftOutput[i]; - for (int i = m_nFilterPoints; i < m_nOutputPoints; i++) - m_adRealFftSignal[i] = 0; - - fftw_real ifftOutput [ m_nOutputPoints ]; - rfftw_one (m_realPlanBackward, m_adRealFftSignal, ifftOutput); - for (int i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) - output[i] = ifftOutput[i]; + for (i = 0; i < m_nSignalPoints; i++) + m_adRealFftInput[i] = input[i]; + + fftw_real* fftOutput = new fftw_real [ m_nFilterPoints ]; + rfftw_one (m_realPlanForward, m_adRealFftInput, fftOutput); + for (i = 0; i < m_nFilterPoints; i++) + m_adRealFftSignal[i] = m_adFilter[i] * fftOutput[i]; + delete [] fftOutput; + for (i = m_nFilterPoints; i < m_nOutputPoints; i++) + m_adRealFftSignal[i] = 0; + + fftw_real* ifftOutput = new fftw_real [ m_nOutputPoints ]; + rfftw_one (m_realPlanBackward, m_adRealFftSignal, ifftOutput); + for (i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) + output[i] = ifftOutput[i]; + delete [] ifftOutput; } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { - for (int i = 0; i < m_nSignalPoints; i++) - m_adComplexFftInput[i].re = input[i]; - - fftw_complex fftOutput [ m_nFilterPoints ]; - fftw_one (m_complexPlanForward, m_adComplexFftInput, fftOutput); - for (int i = 0; i < m_nFilterPoints; i++) { - m_adComplexFftSignal[i].re = m_adFilter[i] * fftOutput[i].re; - m_adComplexFftSignal[i].im = m_adFilter[i] * fftOutput[i].im; - } - fftw_complex ifftOutput [ m_nOutputPoints ]; - fftw_one (m_complexPlanBackward, m_adComplexFftSignal, ifftOutput); - for (int i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) - output[i] = ifftOutput[i].re; + for (i = 0; i < m_nSignalPoints; i++) + m_adComplexFftInput[i].re = input[i]; + + fftw_complex* fftOutput = new fftw_complex [ m_nFilterPoints ]; + fftw_one (m_complexPlanForward, m_adComplexFftInput, fftOutput); + for (i = 0; i < m_nFilterPoints; i++) { + m_adComplexFftSignal[i].re = m_adFilter[i] * fftOutput[i].re; + m_adComplexFftSignal[i].im = m_adFilter[i] * fftOutput[i].im; + } + delete [] fftOutput; + fftw_complex* ifftOutput = new fftw_complex [ m_nOutputPoints ]; + fftw_one (m_complexPlanBackward, m_adComplexFftSignal, ifftOutput); + for (i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) + output[i] = ifftOutput[i].re; + delete [] ifftOutput; } #endif + delete input; } /* NAME - * convolve Discrete convolution of two functions - * - * SYNOPSIS - * r = convolve (f1, f2, dx, n, np, func_type) - * double r Convolved result - * double f1[], f2[] Functions to be convolved - * double dx Difference between successive x values - * int n Array index to center convolution about - * int np Number of points in f1 array - * int func_type EVEN or ODD or EVEN_AND_ODD function f2 - * - * NOTES - * f1 is the projection data, its indices range from 0 to np - 1. - * The index for f2, the filter, ranges from -(np-1) to (np-1). - * There are 3 ways to handle the negative vertices of f2: - * 1. If we know f2 is an EVEN function, then f2[-n] = f2[n]. - * All filters used in reconstruction are even. - * 2. If we know f2 is an ODD function, then f2[-n] = -f2[n] - * 3. If f2 is both ODD AND EVEN, then we must store the value of f2 - * for negative indices. Since f2 must range from -(np-1) to (np-1), - * if we add (np - 1) to f2's array index, then f2's index will - * range from 0 to 2 * (np - 1), and the origin, x = 0, will be - * stored at f2[np-1]. - */ +* convolve Discrete convolution of two functions +* +* SYNOPSIS +* r = convolve (f1, f2, dx, n, np, func_type) +* double r Convolved result +* double f1[], f2[] Functions to be convolved +* double dx Difference between successive x values +* int n Array index to center convolution about +* int np Number of points in f1 array +* int func_type EVEN or ODD or EVEN_AND_ODD function f2 +* +* NOTES +* f1 is the projection data, its indices range from 0 to np - 1. +* The index for f2, the filter, ranges from -(np-1) to (np-1). +* There are 3 ways to handle the negative vertices of f2: +* 1. If we know f2 is an EVEN function, then f2[-n] = f2[n]. +* All filters used in reconstruction are even. +* 2. If we know f2 is an ODD function, then f2[-n] = -f2[n] +* 3. If f2 is both ODD AND EVEN, then we must store the value of f2 +* for negative indices. Since f2 must range from -(np-1) to (np-1), +* if we add (np - 1) to f2's array index, then f2's index will +* range from 0 to 2 * (np - 1), and the origin, x = 0, will be +* stored at f2[np-1]. +*/ double ProcessSignal::convolve (const double func[], const double dx, const int n, const int np) const { double sum = 0.0; - + #if UNOPTIMIZED_CONVOLUTION for (int i = 0; i < np; i++) sum += func[i] * m_adFilter[n - i + (np - 1)]; @@ -578,7 +679,7 @@ ProcessSignal::convolve (const double func[], const double dx, const int n, cons for (int i = 0; i < np; i++) sum += *func++ * *f2--; #endif - + return (sum * dx); } @@ -587,16 +688,16 @@ double ProcessSignal::convolve (const float func[], const double dx, const int n, const int np) const { double sum = 0.0; - + #if UNOPTIMIZED_CONVOLUTION -for (int i = 0; i < np; i++) - sum += func[i] * m_adFilter[n - i + (np - 1)]; + for (int i = 0; i < np; i++) + sum += func[i] * m_adFilter[n - i + (np - 1)]; #else -double* f2 = m_adFilter + n + (np - 1); -for (int i = 0; i < np; i++) - sum += *func++ * *f2--; + double* f2 = m_adFilter + n + (np - 1); + for (int i = 0; i < np; i++) + sum += *func++ * *f2--; #endif - + return (sum * dx); } @@ -604,21 +705,22 @@ for (int i = 0; i < np; i++) void ProcessSignal::finiteFourierTransform (const double input[], double output[], const int n, int direction) { - complex complexOutput[n]; - - finiteFourierTransform (input, complexOutput, n, direction); - for (int i = 0; i < n; i++) - output[i] = complexOutput[i].real(); + std::complex* complexOutput = new std::complex [n]; + + finiteFourierTransform (input, complexOutput, n, direction); + for (int i = 0; i < n; i++) + output[i] = complexOutput[i].real(); + delete [] complexOutput; } void -ProcessSignal::finiteFourierTransform (const double input[], complex output[], const int n, int direction) +ProcessSignal::finiteFourierTransform (const double input[], std::complex output[], const int n, int direction) { if (direction < 0) direction = -1; else direction = 1; - + double angleIncrement = direction * 2 * PI / n; for (int i = 0; i < n; i++) { double sumReal = 0; @@ -632,25 +734,25 @@ ProcessSignal::finiteFourierTransform (const double input[], complex out sumReal /= n; sumImag /= n; } - output[i] = complex (sumReal, sumImag); + output[i] = std::complex (sumReal, sumImag); } } void -ProcessSignal::finiteFourierTransform (const complex input[], complex output[], const int n, int direction) +ProcessSignal::finiteFourierTransform (const std::complex input[], std::complex output[], const int n, int direction) { if (direction < 0) direction = -1; else direction = 1; - + double angleIncrement = direction * 2 * PI / n; for (int i = 0; i < n; i++) { - complex sum (0,0); + std::complex sum (0,0); for (int j = 0; j < n; j++) { double angle = i * j * angleIncrement; - complex exponentTerm (cos(angle), sin(angle)); + std::complex exponentTerm (cos(angle), sin(angle)); sum += input[j] * exponentTerm; } if (direction < 0) { @@ -661,16 +763,16 @@ ProcessSignal::finiteFourierTransform (const complex input[], complex input[], double output[], const int n, int direction) +ProcessSignal::finiteFourierTransform (const std::complex input[], double output[], const int n, int direction) { if (direction < 0) direction = -1; else direction = 1; - + double angleIncrement = direction * 2 * PI / n; for (int i = 0; i < n; i++) { - double sumReal = 0; + double sumReal = 0; for (int j = 0; j < n; j++) { double angle = i * j * angleIncrement; sumReal += input[j].real() * cos(angle) - input[j].imag() * sin(angle); @@ -685,84 +787,84 @@ ProcessSignal::finiteFourierTransform (const complex input[], double out // Table-based routines void -ProcessSignal::finiteFourierTransform (const double input[], complex output[], int direction) const +ProcessSignal::finiteFourierTransform (const double input[], std::complex output[], int direction) const { if (direction < 0) direction = -1; else direction = 1; - + for (int i = 0; i < m_nFilterPoints; i++) { double sumReal = 0, sumImag = 0; for (int j = 0; j < m_nFilterPoints; j++) { int tableIndex = i * j; if (direction > 0) { - sumReal += input[j] * m_adFourierCosTable[tableIndex]; - sumImag += input[j] * m_adFourierSinTable[tableIndex]; + sumReal += input[j] * m_adFourierCosTable[tableIndex]; + sumImag += input[j] * m_adFourierSinTable[tableIndex]; } else { - sumReal += input[j] * m_adFourierCosTable[tableIndex]; - sumImag -= input[j] * m_adFourierSinTable[tableIndex]; + sumReal += input[j] * m_adFourierCosTable[tableIndex]; + sumImag -= input[j] * m_adFourierSinTable[tableIndex]; } } if (direction < 0) { sumReal /= m_nFilterPoints; sumImag /= m_nFilterPoints; } - output[i] = complex (sumReal, sumImag); + output[i] = std::complex (sumReal, sumImag); } } // (a+bi) * (c + di) = (ac - bd) + (ad + bc)i void -ProcessSignal::finiteFourierTransform (const complex input[], complex output[], int direction) const +ProcessSignal::finiteFourierTransform (const std::complex input[], std::complex output[], int direction) const { if (direction < 0) direction = -1; else direction = 1; - + for (int i = 0; i < m_nFilterPoints; i++) { double sumReal = 0, sumImag = 0; for (int j = 0; j < m_nFilterPoints; j++) { int tableIndex = i * j; if (direction > 0) { - sumReal += input[j].real() * m_adFourierCosTable[tableIndex] - - input[j].imag() * m_adFourierSinTable[tableIndex]; - sumImag += input[j].real() * m_adFourierSinTable[tableIndex] - + input[j].imag() * m_adFourierCosTable[tableIndex]; + sumReal += input[j].real() * m_adFourierCosTable[tableIndex] + - input[j].imag() * m_adFourierSinTable[tableIndex]; + sumImag += input[j].real() * m_adFourierSinTable[tableIndex] + + input[j].imag() * m_adFourierCosTable[tableIndex]; } else { - sumReal += input[j].real() * m_adFourierCosTable[tableIndex] - - input[j].imag() * -m_adFourierSinTable[tableIndex]; - sumImag += input[j].real() * -m_adFourierSinTable[tableIndex] - + input[j].imag() * m_adFourierCosTable[tableIndex]; + sumReal += input[j].real() * m_adFourierCosTable[tableIndex] + - input[j].imag() * -m_adFourierSinTable[tableIndex]; + sumImag += input[j].real() * -m_adFourierSinTable[tableIndex] + + input[j].imag() * m_adFourierCosTable[tableIndex]; } } if (direction < 0) { sumReal /= m_nFilterPoints; sumImag /= m_nFilterPoints; } - output[i] = complex (sumReal, sumImag); + output[i] = std::complex (sumReal, sumImag); } } void -ProcessSignal::finiteFourierTransform (const complex input[], double output[], int direction) const +ProcessSignal::finiteFourierTransform (const std::complex input[], double output[], int direction) const { if (direction < 0) direction = -1; else direction = 1; - + for (int i = 0; i < m_nFilterPoints; i++) { - double sumReal = 0; + double sumReal = 0; for (int j = 0; j < m_nFilterPoints; j++) { int tableIndex = i * j; if (direction > 0) { - sumReal += input[j].real() * m_adFourierCosTable[tableIndex] - - input[j].imag() * m_adFourierSinTable[tableIndex]; + sumReal += input[j].real() * m_adFourierCosTable[tableIndex] + - input[j].imag() * m_adFourierSinTable[tableIndex]; } else { - sumReal += input[j].real() * m_adFourierCosTable[tableIndex] - - input[j].imag() * -m_adFourierSinTable[tableIndex]; + sumReal += input[j].real() * m_adFourierCosTable[tableIndex] + - input[j].imag() * -m_adFourierSinTable[tableIndex]; } } if (direction < 0) { @@ -772,63 +874,3 @@ ProcessSignal::finiteFourierTransform (const complex input[], double out } } -// Odd Number of Points -// Natural Frequency Order: -(n-1)/2...-1,0,1...(n-1)/2 -// Fourier Frequency Order: 0, 1..(n-1)/2,-(n-1)/2...-1 -// Even Number of Points -// Natural Frequency Order: -n/2...-1,0,1...((n/2)-1) -// Fourier Frequency Order: 0,1...((n/2)-1),-n/2...-1 - -void -ProcessSignal::shuffleNaturalToFourierOrder (double* pdVector, const int n) -{ - double* pdTemp = new double [n]; - if (n % 2) { // Odd - int iHalfN = (n - 1) / 2; - - pdTemp[0] = pdVector[iHalfN]; - for (int i = 0; i < iHalfN; i++) - pdTemp[i + 1] = pdVector[i + 1 + iHalfN]; - for (int i = 0; i < iHalfN; i++) - pdTemp[i + iHalfN + 1] = pdVector[i]; - } else { // Even - int iHalfN = n / 2; - pdTemp[0] = pdVector[iHalfN]; - for (int i = 0; i < iHalfN; i++) - pdTemp[i + 1] = pdVector[i + iHalfN]; - for (int i = 0; i < iHalfN - 1; i++) - pdTemp[i + iHalfN + 1] = pdVector[i]; - } - - for (int i = 0; i < n; i++) - pdVector[i] = pdTemp[i]; - delete pdTemp; -} - - -void -ProcessSignal::shuffleFourierToNaturalOrder (double* pdVector, const int n) -{ - double* pdTemp = new double [n]; - if (n % 2) { // Odd - int iHalfN = (n - 1) / 2; - - pdTemp[iHalfN] = pdVector[0]; - for (int i = 0; i < iHalfN; i++) - pdTemp[i + 1 + iHalfN] = pdVector[i + 1]; - for (int i = 0; i < iHalfN; i++) - pdTemp[i] = pdVector[i + iHalfN + 1]; - } else { // Even - int iHalfN = n / 2; - pdTemp[iHalfN] = pdVector[0]; - for (int i = 0; i < iHalfN; i++) - pdTemp[i] = pdVector[i + iHalfN]; - for (int i = 0; i < iHalfN - 1; i++) - pdTemp[i + iHalfN + 1] = pdVector[i+1]; - } - - for (int i = 0; i < n; i++) - pdVector[i] = pdTemp[i]; - delete pdTemp; -} -