X-Git-Url: http://git.kpe.io/?p=ctsim.git;a=blobdiff_plain;f=libctsim%2Fprocsignal.cpp;h=cd44cf834d8bd0d2b776c1a0a48f958229114329;hp=5c10c9e9ff2a44b6b9ba602c5352c52bf6c1094e;hb=6afa21de8aa00b405de47584efe108c71df33e1b;hpb=a05f3cb550877e94aa118cc04b361c0c8fdb3dc3 diff --git a/libctsim/procsignal.cpp b/libctsim/procsignal.cpp index 5c10c9e..cd44cf8 100644 --- a/libctsim/procsignal.cpp +++ b/libctsim/procsignal.cpp @@ -9,7 +9,7 @@ ** This is part of the CTSim program ** Copyright (C) 1983-2000 Kevin Rosenberg ** -** $Id: procsignal.cpp,v 1.5 2000/08/31 08:38:58 kevin Exp $ +** $Id: procsignal.cpp,v 1.9 2000/12/16 02:44:26 kevin Exp $ ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License (version 2) as @@ -77,7 +77,7 @@ const int ProcessSignal::s_iFilterGenerationCount = sizeof(s_aszFilterGeneration // CLASS IDENTIFICATION // ProcessSignal // -ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength) +ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMethodName, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const char* szDomainName, const char* szFilterGenerationName, int iZeropad, int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength, SGP* pSGP) : m_adFourierCosTable(NULL), m_adFourierSinTable(NULL), m_adFilter(NULL), m_fail(false) { m_idFilterMethod = convertFilterMethodNameToID (szFilterMethodName); @@ -109,13 +109,14 @@ ProcessSignal::ProcessSignal (const char* szFilterName, const char* szFilterMeth return; } - init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry, dFocalLength); + init (m_idFilter, m_idFilterMethod, dBandwidth, dSignalIncrement, nSignalPoints, dFilterParam, m_idDomain, m_idFilterGeneration, iZeropad, iPreinterpolationFactor, iTraceLevel, iGeometry, dFocalLength, pSGP); } void -ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength) -{ +ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandwidth, double dSignalIncrement, int nSignalPoints, double dFilterParam, const int idDomain, const int idFilterGeneration, const int iZeropad, const int iPreinterpolationFactor, int iTraceLevel, int iGeometry, double dFocalLength, SGP* pSGP) +{ + int i; m_idFilter = idFilter; m_idDomain = idDomain; m_idFilterMethod = idFilterMethod; @@ -176,65 +177,59 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1); SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, m_nFilterPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_FREQUENCY); m_adFilter = new double[ m_nFilterPoints ]; - double adFrequencyFilter [m_nFilterPoints]; + double* adFrequencyFilter = new double [m_nFilterPoints]; filter.copyFilterData (adFrequencyFilter, 0, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Response: Natural Order"); - ezplot.addCurve (adFrequencyFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); +#ifdef HAVE_SGP + EZPlot* pEZPlot = NULL; + if (pSGP && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot = new EZPlot (*pSGP); + pEZPlot->ezset ("title Filter Response: Natural Order"); + pEZPlot->ezset ("ylength 0.25"); + pEZPlot->addCurve (adFrequencyFilter, m_nFilterPoints); + pEZPlot->plot(); } - +#endif shuffleNaturalToFourierOrder (adFrequencyFilter, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Fourier Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Response: Fourier Order"); - ezplot.addCurve (adFrequencyFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); +#ifdef HAVE_SGP + if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot->ezset ("title Filter Response: Fourier Order"); + pEZPlot->ezset ("ylength 0.25"); + pEZPlot->ezset ("yporigin 0.25"); + pEZPlot->addCurve (adFrequencyFilter, m_nFilterPoints); + pEZPlot->plot(); } +#endif ProcessSignal::finiteFourierTransform (adFrequencyFilter, m_adFilter, m_nFilterPoints, -1); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Inverse Fourier Frequency: Fourier Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Inverse Fourier Frequency: Fourier Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); + delete adFrequencyFilter; +#ifdef HAVE_SGP + if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot->ezset ("title Inverse Fourier Frequency: Fourier Order"); + pEZPlot->ezset ("ylength 0.25"); + pEZPlot->ezset ("yporigin 0.50"); + pEZPlot->addCurve (m_adFilter, m_nFilterPoints); + pEZPlot->plot(); } +#endif shuffleFourierToNaturalOrder (m_adFilter, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Inverse Fourier Frequency: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Inverse Fourier Frequency: Natural Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); +#ifdef HAVE_SGP + if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot->ezset ("title Inverse Fourier Frequency: Natural Order"); + pEZPlot->ezset ("ylength 0.25"); + pEZPlot->ezset ("yporigin 0.75"); + pEZPlot->addCurve (m_adFilter, m_nFilterPoints); + pEZPlot->plot(); + delete pEZPlot; } - for (int i = 0; i < m_nFilterPoints; i++) { +#endif + for (i = 0; i < m_nFilterPoints; i++) { m_adFilter[i] /= m_dSignalInc; } } if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { - for (int i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < m_nFilterPoints; i++) m_adFilter[i] *= 0.5; } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { - for (int i = 0; i < m_nFilterPoints; i++) { + for (i = 0; i < m_nFilterPoints; i++) { int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); double sinScale = sin (iDetFromZero * m_dSignalInc); if (fabs(sinScale) < 1E-7) @@ -259,8 +254,10 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw nextPowerOf2++; nextPowerOf2 += (m_iZeropad - 1); m_nFilterPoints = 1 << nextPowerOf2; +#ifdef DEBUG if (m_traceLevel >= Trace::TRACE_CONSOLE) - cout << "nFilterPoints = " << m_nFilterPoints << endl; + cout << "nFilterPoints = " << m_nFilterPoints << endl; +#endif } m_nOutputPoints = m_nFilterPoints * m_iPreinterpolationFactor; @@ -279,11 +276,13 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_adFilter = new double [m_nFilterPoints]; filter.copyFilterData (m_adFilter, 0, m_nFilterPoints); + // This doesn't work! + // Need to add filtering for divergent geometries & Frequency/Direct filtering if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { - for (int i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < m_nFilterPoints; i++) m_adFilter[i] *= 0.5; } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { - for (int i = 0; i < m_nFilterPoints; i++) { + for (i = 0; i < m_nFilterPoints; i++) { int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); double sinScale = sin (iDetFromZero * m_dSignalInc); if (fabs(sinScale) < 1E-7) @@ -291,32 +290,31 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw else sinScale = (iDetFromZero * m_dSignalInc) / sinScale; double dScale = 0.5 * sinScale * sinScale; - // m_adFilter[i] *= dScale; + m_adFilter[i] *= dScale; } } - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Filter: Natural Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); +#ifdef HAVE_SGP + EZPlot* pEZPlot = NULL; + if (pSGP && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot = new EZPlot (*pSGP); + pEZPlot->ezset ("title Filter Filter: Natural Order"); + pEZPlot->ezset ("ylength 0.50"); + pEZPlot->ezset ("yporigin 0.00"); + pEZPlot->addCurve (m_adFilter, m_nFilterPoints); + pEZPlot->plot(); } +#endif shuffleNaturalToFourierOrder (m_adFilter, m_nFilterPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Frequency Filter: Fourier Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Filter Filter: Fourier Order"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); - } +#ifdef HAVE_SGP + if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot->ezset ("title Filter Filter: Fourier Order"); + pEZPlot->ezset ("ylength 0.50"); + pEZPlot->ezset ("yporigin 0.50"); + pEZPlot->addCurve (m_adFilter, m_nFilterPoints); + pEZPlot->plot(); + delete pEZPlot; + } +#endif } else if (m_idFilterGeneration == FILTER_GENERATION_INVERSE_FOURIER) { // calculate number of filter points with zeropadding int nSpatialPoints = 2 * (m_nSignalPoints - 1) + 1; @@ -333,27 +331,30 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_nFilterPoints = 1 << nextPowerOf2; } m_nOutputPoints = m_nFilterPoints * m_iPreinterpolationFactor; +#ifdef DEBUG if (m_traceLevel >= Trace::TRACE_CONSOLE) cout << "nFilterPoints = " << m_nFilterPoints << endl; - double adSpatialFilter [m_nFilterPoints]; +#endif + double* adSpatialFilter = new double [m_nFilterPoints]; SignalFilter filter (m_idFilter, m_dFilterMin, m_dFilterMax, nSpatialPoints, m_dBandwidth, m_dFilterParam, SignalFilter::DOMAIN_SPATIAL); filter.copyFilterData (adSpatialFilter, 0, nSpatialPoints); - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Spatial Filter: Natural Order"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Spatial Filter: Natural Order"); - ezplot.addCurve (adSpatialFilter, nSpatialPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); +#ifdef HAVE_SGP + EZPlot* pEZPlot = NULL; + if (pSGP && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot = new EZPlot (*pSGP); + pEZPlot->ezset ("title Spatial Filter: Natural Order"); + pEZPlot->ezset ("ylength 0.50"); + pEZPlot->ezset ("yporigin 0.00"); + pEZPlot->addCurve (adSpatialFilter, nSpatialPoints); + pEZPlot->plot(); + delete pEZPlot; } +#endif if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { - for (int i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < m_nFilterPoints; i++) adSpatialFilter[i] *= 0.5; } else if (m_idGeometry == Scanner::GEOMETRY_EQUIANGULAR) { - for (int i = 0; i < m_nFilterPoints; i++) { + for (i = 0; i < m_nFilterPoints; i++) { int iDetFromZero = i - ((m_nFilterPoints - 1) / 2); double sinScale = sin (iDetFromZero * m_dSignalInc); if (fabs(sinScale) < 1E-7) @@ -363,37 +364,38 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw double dScale = 0.5 * sinScale * sinScale; adSpatialFilter[i] *= dScale; } - } - for (int i = nSpatialPoints; i < m_nFilterPoints; i++) + } + for (i = nSpatialPoints; i < m_nFilterPoints; i++) adSpatialFilter[i] = 0; m_adFilter = new double [m_nFilterPoints]; - complex acInverseFilter [m_nFilterPoints]; + complex* acInverseFilter = new complex [m_nFilterPoints]; finiteFourierTransform (adSpatialFilter, acInverseFilter, m_nFilterPoints, 1); - for (int i = 0; i < m_nFilterPoints; i++) - m_adFilter[i] = abs(acInverseFilter[i]) * m_dSignalInc; - if (m_traceLevel >= Trace::TRACE_PLOT) { - SGPDriver sgpDriver ("Spatial Filter: Inverse"); - SGP sgp (sgpDriver); - EZPlot ezplot (sgp); - - ezplot.ezset ("title Spatial Filter: Inverse"); - ezplot.addCurve (m_adFilter, m_nFilterPoints); - ezplot.plot(); - cio_put_str ("Press any key to continue"); - cio_kb_getc (); + delete adSpatialFilter; + for (i = 0; i < m_nFilterPoints; i++) + m_adFilter[i] = abs(acInverseFilter[i]) * m_dSignalInc; + delete acInverseFilter; +#ifdef HAVE_SGP + if (pEZPlot && m_traceLevel >= Trace::TRACE_PLOT) { + pEZPlot->ezset ("title Spatial Filter: Inverse"); + pEZPlot->ezset ("ylength 0.50"); + pEZPlot->ezset ("yporigin 0.50"); + pEZPlot->addCurve (m_adFilter, m_nFilterPoints); + pEZPlot->plot(); + delete pEZPlot; } +#endif } } // precalculate sin and cosine tables for fourier transform if (m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE) { - int nFourier = max(m_nFilterPoints,m_nOutputPoints) * max(m_nFilterPoints, m_nOutputPoints) + 1; + int nFourier = imax (m_nFilterPoints,m_nOutputPoints) * imax (m_nFilterPoints, m_nOutputPoints) + 1; double angleIncrement = (2. * PI) / m_nFilterPoints; m_adFourierCosTable = new double[ nFourier ]; m_adFourierSinTable = new double[ nFourier ]; double angle = 0; - for (int i = 0; i < nFourier; i++) { + for (i = 0; i < nFourier; i++) { m_adFourierCosTable[i] = cos (angle); m_adFourierSinTable[i] = sin (angle); angle += angleIncrement; @@ -402,7 +404,7 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw #if HAVE_FFTW if (m_idFilterMethod == FILTER_METHOD_FFTW || m_idFilterMethod == FILTER_METHOD_RFFTW) { - for (int i = 0; i < m_nFilterPoints; i++) //fftw uses unnormalized fft + for (i = 0; i < m_nFilterPoints; i++) //fftw uses unnormalized fft m_adFilter[i] /= m_nFilterPoints; } @@ -411,16 +413,16 @@ ProcessSignal::init (const int idFilter, const int idFilterMethod, double dBandw m_realPlanBackward = rfftw_create_plan (m_nOutputPoints, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE); m_adRealFftInput = new fftw_real [ m_nFilterPoints ]; m_adRealFftSignal = new fftw_real [ m_nOutputPoints ]; - for (int i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < m_nFilterPoints; i++) m_adRealFftInput[i] = 0; } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { m_complexPlanForward = fftw_create_plan (m_nFilterPoints, FFTW_FORWARD, FFTW_ESTIMATE); m_complexPlanBackward = fftw_create_plan (m_nOutputPoints, FFTW_BACKWARD, FFTW_ESTIMATE); m_adComplexFftInput = new fftw_complex [ m_nFilterPoints ]; m_adComplexFftSignal = new fftw_complex [ m_nOutputPoints ]; - for (int i = 0; i < m_nFilterPoints; i++) + for (i = 0; i < m_nFilterPoints; i++) m_adComplexFftInput[i].re = m_adComplexFftInput[i].im = 0; - for (int i = 0; i < m_nOutputPoints; i++) + for (i = 0; i < m_nOutputPoints; i++) m_adComplexFftSignal[i].re = m_adComplexFftSignal[i].im = 0; } #endif @@ -525,8 +527,9 @@ ProcessSignal::convertFilterGenerationIDToTitle (const int fgID) void ProcessSignal::filterSignal (const float constInput[], double output[]) const { - double input [m_nSignalPoints]; - for (int i = 0; i < m_nSignalPoints; i++) + double* input = new double [m_nSignalPoints]; + int i; + for (i = 0; i < m_nSignalPoints; i++) input[i] = constInput[i]; if (m_idGeometry == Scanner::GEOMETRY_EQUILINEAR) { @@ -539,71 +542,82 @@ ProcessSignal::filterSignal (const float constInput[], double output[]) const int iDetFromCenter = i - (m_nSignalPoints / 2); input[i] *= m_dFocalLength * cos (iDetFromCenter * m_dSignalInc); } - } + } if (m_idFilterMethod == FILTER_METHOD_CONVOLUTION) { - for (int i = 0; i < m_nSignalPoints; i++) + for (i = 0; i < m_nSignalPoints; i++) output[i] = convolve (input, m_dSignalInc, i, m_nSignalPoints); } else if (m_idFilterMethod == FILTER_METHOD_FOURIER) { - double inputSignal[m_nFilterPoints]; - for (int i = 0; i < m_nSignalPoints; i++) + double* inputSignal = new double [m_nFilterPoints]; + for (i = 0; i < m_nSignalPoints; i++) inputSignal[i] = input[i]; - for (int i = m_nSignalPoints; i < m_nFilterPoints; i++) + for (i = m_nSignalPoints; i < m_nFilterPoints; i++) inputSignal[i] = 0; // zeropad - complex fftSignal[m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, m_nFilterPoints, -1); - for (int i = 0; i < m_nFilterPoints; i++) + complex* fftSignal = new complex [m_nFilterPoints]; + finiteFourierTransform (inputSignal, fftSignal, m_nFilterPoints, -1); + delete inputSignal; + for (i = 0; i < m_nFilterPoints; i++) fftSignal[i] *= m_adFilter[i]; - double inverseFourier[m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, m_nFilterPoints, 1); - for (int i = 0; i < m_nSignalPoints; i++) - output[i] = inverseFourier[i]; + double* inverseFourier = new double [m_nFilterPoints]; + finiteFourierTransform (fftSignal, inverseFourier, m_nFilterPoints, 1); + delete fftSignal; + for (i = 0; i < m_nSignalPoints; i++) + output[i] = inverseFourier[i]; + delete inverseFourier; } else if (m_idFilterMethod == FILTER_METHOD_FOURIER_TABLE) { - double inputSignal[m_nFilterPoints]; - for (int i = 0; i < m_nSignalPoints; i++) + double* inputSignal = new double [m_nFilterPoints]; + for (i = 0; i < m_nSignalPoints; i++) inputSignal[i] = input[i]; - for (int i = m_nSignalPoints; i < m_nFilterPoints; i++) + for (i = m_nSignalPoints; i < m_nFilterPoints; i++) inputSignal[i] = 0; // zeropad - complex fftSignal[m_nFilterPoints]; - finiteFourierTransform (inputSignal, fftSignal, -1); - for (int i = 0; i < m_nFilterPoints; i++) + complex* fftSignal = new complex [m_nFilterPoints]; + finiteFourierTransform (inputSignal, fftSignal, -1); + delete inputSignal; + for (i = 0; i < m_nFilterPoints; i++) fftSignal[i] *= m_adFilter[i]; - double inverseFourier[m_nFilterPoints]; - finiteFourierTransform (fftSignal, inverseFourier, 1); - for (int i = 0; i < m_nSignalPoints; i++) - output[i] = inverseFourier[i]; + double* inverseFourier = new double [m_nFilterPoints]; + finiteFourierTransform (fftSignal, inverseFourier, 1); + delete fftSignal; + for (i = 0; i < m_nSignalPoints; i++) + output[i] = inverseFourier[i]; + delete inverseFourier; } #if HAVE_FFTW else if (m_idFilterMethod == FILTER_METHOD_RFFTW) { - for (int i = 0; i < m_nSignalPoints; i++) + for (i = 0; i < m_nSignalPoints; i++) m_adRealFftInput[i] = input[i]; - fftw_real fftOutput [ m_nFilterPoints ]; + fftw_real* fftOutput = new fftw_real [ m_nFilterPoints ]; rfftw_one (m_realPlanForward, m_adRealFftInput, fftOutput); - for (int i = 0; i < m_nFilterPoints; i++) - m_adRealFftSignal[i] = m_adFilter[i] * fftOutput[i]; - for (int i = m_nFilterPoints; i < m_nOutputPoints; i++) - m_adRealFftSignal[i] = 0; + for (i = 0; i < m_nFilterPoints; i++) + m_adRealFftSignal[i] = m_adFilter[i] * fftOutput[i]; + delete [] fftOutput; + for (i = m_nFilterPoints; i < m_nOutputPoints; i++) + m_adRealFftSignal[i] = 0; - fftw_real ifftOutput [ m_nOutputPoints ]; + fftw_real* ifftOutput = new fftw_real [ m_nOutputPoints ]; rfftw_one (m_realPlanBackward, m_adRealFftSignal, ifftOutput); - for (int i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) - output[i] = ifftOutput[i]; + for (i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) + output[i] = ifftOutput[i]; + delete [] ifftOutput; } else if (m_idFilterMethod == FILTER_METHOD_FFTW) { - for (int i = 0; i < m_nSignalPoints; i++) + for (i = 0; i < m_nSignalPoints; i++) m_adComplexFftInput[i].re = input[i]; - fftw_complex fftOutput [ m_nFilterPoints ]; + fftw_complex* fftOutput = new fftw_complex [ m_nFilterPoints ]; fftw_one (m_complexPlanForward, m_adComplexFftInput, fftOutput); - for (int i = 0; i < m_nFilterPoints; i++) { + for (i = 0; i < m_nFilterPoints; i++) { m_adComplexFftSignal[i].re = m_adFilter[i] * fftOutput[i].re; m_adComplexFftSignal[i].im = m_adFilter[i] * fftOutput[i].im; - } - fftw_complex ifftOutput [ m_nOutputPoints ]; + } + delete [] fftOutput; + fftw_complex* ifftOutput = new fftw_complex [ m_nOutputPoints ]; fftw_one (m_complexPlanBackward, m_adComplexFftSignal, ifftOutput); - for (int i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) - output[i] = ifftOutput[i].re; + for (i = 0; i < m_nSignalPoints * m_iPreinterpolationFactor; i++) + output[i] = ifftOutput[i].re; + delete [] ifftOutput; } -#endif +#endif + delete input; } @@ -672,11 +686,12 @@ for (int i = 0; i < np; i++) void ProcessSignal::finiteFourierTransform (const double input[], double output[], const int n, int direction) { - complex complexOutput[n]; + complex* complexOutput = new complex [n]; finiteFourierTransform (input, complexOutput, n, direction); for (int i = 0; i < n; i++) - output[i] = complexOutput[i].real(); + output[i] = complexOutput[i].real(); + delete [] complexOutput; } void @@ -850,25 +865,26 @@ ProcessSignal::finiteFourierTransform (const complex input[], double out void ProcessSignal::shuffleNaturalToFourierOrder (double* pdVector, const int n) { - double* pdTemp = new double [n]; + double* pdTemp = new double [n]; + int i; if (n % 2) { // Odd int iHalfN = (n - 1) / 2; pdTemp[0] = pdVector[iHalfN]; - for (int i = 0; i < iHalfN; i++) + for (i = 0; i < iHalfN; i++) pdTemp[i + 1] = pdVector[i + 1 + iHalfN]; - for (int i = 0; i < iHalfN; i++) + for (i = 0; i < iHalfN; i++) pdTemp[i + iHalfN + 1] = pdVector[i]; } else { // Even int iHalfN = n / 2; pdTemp[0] = pdVector[iHalfN]; - for (int i = 0; i < iHalfN; i++) + for (i = 0; i < iHalfN; i++) pdTemp[i + 1] = pdVector[i + iHalfN]; - for (int i = 0; i < iHalfN - 1; i++) + for (i = 0; i < iHalfN - 1; i++) pdTemp[i + iHalfN + 1] = pdVector[i]; } - for (int i = 0; i < n; i++) + for (i = 0; i < n; i++) pdVector[i] = pdTemp[i]; delete pdTemp; } @@ -877,25 +893,26 @@ ProcessSignal::shuffleNaturalToFourierOrder (double* pdVector, const int n) void ProcessSignal::shuffleFourierToNaturalOrder (double* pdVector, const int n) { - double* pdTemp = new double [n]; + double* pdTemp = new double [n]; + int i; if (n % 2) { // Odd int iHalfN = (n - 1) / 2; - pdTemp[iHalfN] = pdVector[0]; - for (int i = 0; i < iHalfN; i++) + pdTemp[iHalfN] = pdVector[0]; + for (i = 0; i < iHalfN; i++) pdTemp[i + 1 + iHalfN] = pdVector[i + 1]; - for (int i = 0; i < iHalfN; i++) + for (i = 0; i < iHalfN; i++) pdTemp[i] = pdVector[i + iHalfN + 1]; } else { // Even int iHalfN = n / 2; pdTemp[iHalfN] = pdVector[0]; - for (int i = 0; i < iHalfN; i++) + for (i = 0; i < iHalfN; i++) pdTemp[i] = pdVector[i + iHalfN]; - for (int i = 0; i < iHalfN - 1; i++) + for (i = 0; i < iHalfN - 1; i++) pdTemp[i + iHalfN + 1] = pdVector[i+1]; } - for (int i = 0; i < n; i++) + for (i = 0; i < n; i++) pdVector[i] = pdTemp[i]; delete pdTemp; }