X-Git-Url: http://git.kpe.io/?p=ctsim.git;a=blobdiff_plain;f=libctsim%2Fprojections.cpp;h=3eab99c4fe9a8a8725bc2108492eb86302e50a64;hp=970b437f6552143074786c921ccfd106ed7e8874;hb=4433641931aa27fd6a2b5ecd0102e6c5bbbccc46;hpb=c5e7140bd08b8c8f527713e8dc861bcb7ee5f633 diff --git a/libctsim/projections.cpp b/libctsim/projections.cpp index 970b437..3eab99c 100644 --- a/libctsim/projections.cpp +++ b/libctsim/projections.cpp @@ -8,7 +8,7 @@ ** This is part of the CTSim program ** Copyright (c) 1983-2001 Kevin Rosenberg ** -** $Id: projections.cpp,v 1.47 2001/02/08 06:25:07 kevin Exp $ +** $Id: projections.cpp,v 1.63 2001/03/13 08:24:41 kevin Exp $ ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License (version 2) as @@ -33,14 +33,14 @@ const int Projections::POLAR_INTERP_NEAREST = 0; const int Projections::POLAR_INTERP_BILINEAR = 1; const int Projections::POLAR_INTERP_BICUBIC = 2; -const char* Projections::s_aszInterpName[] = +const char* const Projections::s_aszInterpName[] = { {"nearest"}, {"bilinear"}, // {"bicubic"}, }; -const char* Projections::s_aszInterpTitle[] = +const char* const Projections::s_aszInterpTitle[] = { {"Nearest"}, {"Bilinear"}, @@ -150,11 +150,12 @@ Projections::initFromScanner (const Scanner& scanner) m_rotInc = scanner.rotInc(); m_detInc = scanner.detInc(); + m_detStart = scanner.detStart(); m_geometry = scanner.geometry(); m_dFocalLength = scanner.focalLength(); + m_dSourceDetectorLength = scanner.sourceDetectorLength(); m_dViewDiameter = scanner.viewDiameter(); m_rotStart = 0; - m_detStart = -(scanner.detLen() / 2); m_dFanBeamAngle = scanner.fanBeamAngle(); } @@ -232,6 +233,7 @@ Projections::headerWrite (fnetorderstream& fs) kfloat64 _detInc = m_detInc; kfloat64 _viewDiameter = m_dViewDiameter; kfloat64 _focalLength = m_dFocalLength; + kfloat64 _sourceDetectorLength = m_dSourceDetectorLength; kfloat64 _fanBeamAngle = m_dFanBeamAngle; fs.seekp(0); @@ -250,6 +252,7 @@ Projections::headerWrite (fnetorderstream& fs) fs.writeFloat64 (_detInc); fs.writeFloat64 (_viewDiameter); fs.writeFloat64 (_focalLength); + fs.writeFloat64 (_sourceDetectorLength); fs.writeFloat64 (_fanBeamAngle); fs.writeInt16 (_year); fs.writeInt16 (_month); @@ -279,7 +282,7 @@ Projections::headerRead (fnetorderstream& fs) { kuint16 _hsize, _signature, _year, _month, _day, _hour, _minute, _second, _remarksize = 0; kuint32 _nView, _nDet, _geom; - kfloat64 _calcTime, _rotStart, _rotInc, _detStart, _detInc, _focalLength, _viewDiameter, _fanBeamAngle; + kfloat64 _calcTime, _rotStart, _rotInc, _detStart, _detInc, _focalLength, _sourceDetectorLength, _viewDiameter, _fanBeamAngle; fs.seekg(0); if (! fs) @@ -297,6 +300,7 @@ Projections::headerRead (fnetorderstream& fs) fs.readFloat64 (_detInc); fs.readFloat64 (_viewDiameter); fs.readFloat64 (_focalLength); + fs.readFloat64 (_sourceDetectorLength); fs.readFloat64 (_fanBeamAngle); fs.readInt16 (_year); fs.readInt16 (_month); @@ -342,6 +346,7 @@ Projections::headerRead (fnetorderstream& fs) m_detStart = _detStart; m_detInc = _detInc; m_dFocalLength = _focalLength; + m_dSourceDetectorLength = _sourceDetectorLength; m_dViewDiameter = _viewDiameter; m_dFanBeamAngle = _fanBeamAngle; m_year = _year; @@ -630,11 +635,11 @@ Projections::printProjectionData (int startView, int endView) printf("Projections Data\n\n"); printf("Description: %s\n", m_remark.c_str()); printf("Geometry: %s\n", Scanner::convertGeometryIDToName (m_geometry)); - printf("nView = %8d nDet = %8d\n", m_nView, m_nDet); - printf("focalLength = %8.4f ViewDiameter = %8.4f\n", m_dFocalLength, m_dViewDiameter); - printf("fanBeamAngle= %8.4f\n", convertRadiansToDegrees(m_dFanBeamAngle)); - printf("rotStart = %8.4f rotInc = %8.4f\n", m_rotStart, m_rotInc); - printf("detStart = %8.4f detInc = %8.4f\n", m_detStart, m_detInc); + printf("nView = %8d nDet = %8d\n", m_nView, m_nDet); + printf("focalLength = %8.4f ViewDiameter = %8.4f\n", m_dFocalLength, m_dViewDiameter); + printf("fanBeamAngle= %8.4f SourceDetector = %8.4f\n", convertRadiansToDegrees(m_dFanBeamAngle), m_dSourceDetectorLength); + printf("rotStart = %8.4f rotInc = %8.4f\n", m_rotStart, m_rotInc); + printf("detStart = %8.4f detInc = %8.4f\n", m_detStart, m_detInc); if (m_projData != NULL) { if (startView < 0) startView = 0; @@ -662,6 +667,7 @@ Projections::printScanInfo (std::ostringstream& os) const os << "Description: " << m_remark.c_str()<< "\n"; os << "Geometry: " << Scanner::convertGeometryIDToName (m_geometry)<< "\n"; os << "Focal Length: " << m_dFocalLength<< "\n"; + os << "Source Detector Length: " << m_dSourceDetectorLength << "\n"; os << "View Diameter: " << m_dViewDiameter<< "\n"; os << "Fan Beam Angle: " << convertRadiansToDegrees(m_dFanBeamAngle) << "\n"; os << "detStart: " << m_detStart<< "\n"; @@ -681,28 +687,36 @@ Projections::convertPolar (ImageFile& rIF, int iInterpolationID) if (! v || nx == 0 || ny == 0) return false; + + Projections* pProj = this; + if (m_geometry == Scanner::GEOMETRY_EQUIANGULAR || m_geometry == Scanner::GEOMETRY_EQUILINEAR) + pProj = interpolateToParallel(); Array2d adView (nx, ny); Array2d adDet (nx, ny); double** ppdView = adView.getArray(); double** ppdDet = adDet.getArray(); - calcArrayPolarCoordinates (nx, ny, ppdView, ppdDet); + if (! pProj->calcArrayPolarCoordinates (nx, ny, ppdView, ppdDet)) + return false; std::complex** ppcDetValue = new std::complex* [m_nView]; unsigned int iView; for (iView = 0; iView < m_nView; iView++) { ppcDetValue[iView] = new std::complex [m_nDet]; for (unsigned int iDet = 0; iDet < m_nDet; iDet++) - ppcDetValue[iView][iDet] = std::complex(getDetectorArray (iView).detValues()[iDet], 0); + ppcDetValue[iView][iDet] = std::complex(pProj->getDetectorArray (iView).detValues()[iDet], 0); } - interpolatePolar (v, vImag, nx, ny, ppcDetValue, ppdView, ppdDet, m_nView, m_nDet, iInterpolationID); + pProj->interpolatePolar (v, vImag, nx, ny, ppcDetValue, ppdView, ppdDet, pProj->m_nView, pProj->m_nDet, iInterpolationID); for (iView = 0; iView < m_nView; iView++) delete [] ppcDetValue[iView]; delete [] ppcDetValue; + if (m_geometry == Scanner::GEOMETRY_EQUIANGULAR || m_geometry == Scanner::GEOMETRY_EQUILINEAR) + delete pProj; + return true; } @@ -720,6 +734,11 @@ Projections::convertFFTPolar (ImageFile& rIF, int iInterpolationID, int iZeropad if (! v || nx == 0 || ny == 0) return false; + if (m_geometry != Scanner::GEOMETRY_PARALLEL) { + sys_error (ERR_WARNING, "convertFFTPolar supports Parallel only"); + return false; + } + #ifndef HAVE_FFT return false; #else @@ -750,20 +769,21 @@ Projections::convertFFTPolar (ImageFile& rIF, int iInterpolationID, int iZeropad fftw_destroy_plan (plan); delete [] pcIn; - calcArrayPolarCoordinates (nx, ny, ppdView, ppdDet); + bool bError = calcArrayPolarCoordinates (nx, ny, ppdView, ppdDet); - interpolatePolar (v, vImag, nx, ny, ppcDetValue, ppdView, ppdDet, m_nView, m_nDet, iInterpolationID); + if (! bError) + interpolatePolar (v, vImag, nx, ny, ppcDetValue, ppdView, ppdDet, m_nView, m_nDet, iInterpolationID); for (iView = 0; iView < m_nView; iView++) delete [] ppcDetValue[iView]; delete [] ppcDetValue; - return true; + return bError; #endif } -void +bool Projections::calcArrayPolarCoordinates (unsigned int nx, unsigned int ny, double** ppdView, double** ppdDet) { double xMin = -phmLen() / 2; @@ -776,11 +796,6 @@ Projections::calcArrayPolarCoordinates (unsigned int nx, unsigned int ny, double int iDetCenter = (m_nDet - 1) / 2; // index refering to L=0 projection - if (m_geometry != Scanner::GEOMETRY_PARALLEL) { - sys_error (ERR_WARNING, "convertPolar supports Parallel only"); - return; - } - // Calculates polar coordinates (view#, det#) for each point on phantom grid double x = xMin + xInc / 2; // Rectang coords of center of pixel for (unsigned int ix = 0; ix < nx; x += xInc, ix++) { @@ -800,6 +815,8 @@ Projections::calcArrayPolarCoordinates (unsigned int nx, unsigned int ny, double ppdDet[ix][iy] = (r / m_detInc) + iDetCenter; } } + + return true; } void @@ -810,8 +827,8 @@ Projections::interpolatePolar (ImageFileArray& v, ImageFileArray& vImag, for (unsigned int ix = 0; ix < ny; ix++) { for (unsigned int iy = 0; iy < ny; iy++) { if (iInterpolationID == POLAR_INTERP_NEAREST) { - int iView = nearest (ppdView[ix][iy]); - int iDet = nearest (ppdDet[ix][iy]); + unsigned int iView = nearest (ppdView[ix][iy]); + unsigned int iDet = nearest (ppdDet[ix][iy]); if (iView == nView) { iView = 0; // iDet = m_nDet - iDet; @@ -826,9 +843,9 @@ Projections::interpolatePolar (ImageFileArray& v, ImageFileArray& vImag, v[ix][iy] = 0; } } else if (iInterpolationID == POLAR_INTERP_BILINEAR) { - int iFloorView = static_cast(ppdView[ix][iy]); + unsigned int iFloorView = static_cast(ppdView[ix][iy]); double dFracView = ppdView[ix][iy] - iFloorView; - int iFloorDet = static_cast(ppdDet[ix][iy]); + unsigned int iFloorDet = static_cast(ppdDet[ix][iy]); double dFracDet = ppdDet[ix][iy] - iFloorDet; if (iFloorDet >= 0 && iFloorView >= 0) { @@ -870,4 +887,319 @@ Projections::interpolatePolar (ImageFileArray& v, ImageFileArray& vImag, } } +bool +Projections::initFromSomatomAR_STAR (int iNViews, int iNDets, unsigned char* pData, unsigned long lDataLength) +{ + init (iNViews, iNDets); + m_geometry = Scanner::GEOMETRY_EQUIANGULAR; + m_dFocalLength = 510; + m_dSourceDetectorLength = 890; + m_detInc = convertDegreesToRadians (3.06976 / 60); + m_dFanBeamAngle = (iNDets + 1) * m_detInc; + m_detStart = -(m_dFanBeamAngle / 2); + m_rotInc = TWOPI / static_cast(iNViews); + m_rotStart = HALFPI; + m_dViewDiameter = sin (m_dFanBeamAngle / 2) * m_dFocalLength * 2; + + if (! ((iNViews == 750 && lDataLength == 1560000L) || (iNViews == 950 && lDataLength == 1976000L) + || (iNViews == 1500 && lDataLength == 3120000))) + return false; + + double dCenter = (iNDets - 1.) / 2.; // change from (Nm+1)/2 because of 0 vs. 1 indexing + double* pdCosScale = new double [iNDets]; + for (int i = 0; i < iNDets; i++) + pdCosScale[i] = 1. / cos ((i - dCenter) * m_detInc); + + long lDataPos = 0; + for (int iv = 0; iv < iNViews; iv++) { + unsigned char* pArgBase = pData + lDataPos; + unsigned char* p = pArgBase+0; SwapBytes4IfLittleEndian (p); + long lProjNumber = *reinterpret_cast(p); + + p = pArgBase+20; SwapBytes4IfLittleEndian (p); + long lEscale = *reinterpret_cast(p); + + p = pArgBase+28; SwapBytes4IfLittleEndian (p); + long lTime = *reinterpret_cast(p); + + p = pArgBase + 4; SwapBytes4IfLittleEndian (p); + double dAlpha = *reinterpret_cast(p) + HALFPI; + + p = pArgBase+12; SwapBytes4IfLittleEndian (p); + double dAlign = *reinterpret_cast(p); + + p = pArgBase + 16; SwapBytes4IfLittleEndian (p); + double dMaxValue = *reinterpret_cast(p); + + DetectorArray& detArray = getDetectorArray (iv); + detArray.setViewAngle (dAlpha); + DetectorValue* detval = detArray.detValues(); + + double dViewScale = 1. / (2294.4871 * ::pow (2.0, -lEscale)); + lDataPos += 32; + for (int id = 0; id < iNDets; id++) { + int iV = pData[lDataPos+1] + (pData[lDataPos] << 8); + if (iV > 32767) // two's complement signed conversion + iV = iV - 65536; + detval[id] = iV * dViewScale * pdCosScale[id]; + lDataPos += 2; + } + } + + delete pdCosScale; + return true; +} + +Projections* +Projections::interpolateToParallel () const +{ + if (m_geometry == Scanner::GEOMETRY_PARALLEL) + return const_cast(this); + + int nDet = m_nDet; + int nView = m_nView; + Projections* pProjNew = new Projections (nView, nDet); + pProjNew->m_geometry = Scanner::GEOMETRY_PARALLEL; + pProjNew->m_dFocalLength = m_dFocalLength; + pProjNew->m_dSourceDetectorLength = m_dSourceDetectorLength; + pProjNew->m_dViewDiameter = m_dViewDiameter; + pProjNew->m_dFanBeamAngle = m_dFanBeamAngle; + pProjNew->m_calcTime = 0; + pProjNew->m_remark = m_remark; + pProjNew->m_remark += "; Interpolate to Parallel"; + pProjNew->m_label.setLabelType (Array2dFileLabel::L_HISTORY); + pProjNew->m_label.setLabelString (pProjNew->m_remark); + pProjNew->m_label.setCalcTime (pProjNew->m_calcTime); + pProjNew->m_label.setDateTime (pProjNew->m_year, pProjNew->m_month, pProjNew->m_day, pProjNew->m_hour, pProjNew->m_minute, pProjNew->m_second); + + pProjNew->m_rotStart = 0; +#ifdef CONVERT_PARALLEL_PI + pProjNew->m_rotInc = PI / nView;; +#else + pProjNew->m_rotInc = TWOPI / nView; +#endif + pProjNew->m_detStart = -m_dViewDiameter / 2; + pProjNew->m_detInc = m_dViewDiameter / nDet; + if (nDet % 2 == 0) // even + pProjNew->m_detInc = m_dViewDiameter / (nDet - 1); + + ParallelRaysums parallel (this, ParallelRaysums::THETA_RANGE_NORMALIZE_TO_TWOPI); + + double* pdThetaValuesForT = new double [pProjNew->nView()]; + double* pdRaysumsForT = new double [pProjNew->nView()]; + + // interpolate to evenly spaced theta (views) + double dDetPos = pProjNew->m_detStart; + for (int iD = 0; iD < pProjNew->nDet(); iD++, dDetPos += pProjNew->m_detInc) { + parallel.getThetaAndRaysumsForT (iD, pdThetaValuesForT, pdRaysumsForT); + + double dViewAngle = m_rotStart; + int iLastFloor = -1; + for (int iV = 0; iV < pProjNew->nView(); iV++, dViewAngle += pProjNew->m_rotInc) { + DetectorValue* detValues = pProjNew->getDetectorArray (iV).detValues(); + + detValues[iD] = parallel.interpolate (pdThetaValuesForT, pdRaysumsForT, pProjNew->nView(), dViewAngle, &iLastFloor); + } + } + delete pdThetaValuesForT; + delete pdRaysumsForT; + + // interpolate to evenly space t (detectors) + double* pdOriginalDetPositions = new double [pProjNew->nDet()]; + parallel.getDetPositions (pdOriginalDetPositions); + + double* pdDetValueCopy = new double [pProjNew->nDet()]; + double dViewAngle = m_rotStart; + for (int iV = 0; iV < pProjNew->nView(); iV++, dViewAngle += pProjNew->m_rotInc) { + DetectorArray& detArray = pProjNew->getDetectorArray (iV); + DetectorValue* detValues = detArray.detValues(); + detArray.setViewAngle (dViewAngle); + + for (int i = 0; i < pProjNew->nDet(); i++) + pdDetValueCopy[i] = detValues[i]; + + double dDetPos = pProjNew->m_detStart; + int iLastFloor = -1; + for (int iD = 0; iD < pProjNew->nDet(); iD++, dDetPos += pProjNew->m_detInc) { + detValues[iD] = parallel.interpolate (pdOriginalDetPositions, pdDetValueCopy, pProjNew->nDet(), dDetPos, &iLastFloor); + } + } + delete pdDetValueCopy; + delete pdOriginalDetPositions; + + return pProjNew; +} + + +/////////////////////////////////////////////////////////////////////////////// +// +// Class ParallelRaysums +// +// Used for converting divergent beam raysums into Parallel raysums +// +/////////////////////////////////////////////////////////////////////////////// + +ParallelRaysums::ParallelRaysums (const Projections* pProjections, int iThetaRange) +: m_iNumCoordinates(0), m_iNumView(pProjections->nView()), m_iNumDet(pProjections->nDet()), + m_iThetaRange (iThetaRange), m_pCoordinates(NULL) +{ + int iGeometry = pProjections->geometry(); + double dDetInc = pProjections->detInc(); + double dDetStart = pProjections->detStart(); + double dFocalLength = pProjections->focalLength(); + + m_iNumCoordinates = m_iNumView * m_iNumDet; + m_pCoordinates = new ParallelRaysumCoordinate [m_iNumCoordinates]; + m_vecpCoordinates.reserve (m_iNumCoordinates); + for (int i = 0; i < m_iNumCoordinates; i++) + m_vecpCoordinates[i] = m_pCoordinates + i; + + int iCoordinate = 0; + for (int iV = 0; iV < m_iNumView; iV++) { + double dViewAngle = pProjections->getDetectorArray(iV).viewAngle(); + const DetectorValue* detValues = pProjections->getDetectorArray(iV).detValues(); + + double dDetPos = dDetStart; + for (int iD = 0; iD < m_iNumDet; iD++) { + ParallelRaysumCoordinate* pC = m_vecpCoordinates[iCoordinate++]; + + if (iGeometry == Scanner::GEOMETRY_PARALLEL) { + pC->m_dTheta = dViewAngle; + pC->m_dT = dDetPos; + } else if (iGeometry == Scanner::GEOMETRY_EQUILINEAR) { + double dFanAngle = atan (dDetPos / pProjections->sourceDetectorLength()); + pC->m_dTheta = dViewAngle + dFanAngle; + pC->m_dT = dFocalLength * sin(dFanAngle); + + } else if (iGeometry == Scanner::GEOMETRY_EQUIANGULAR) { + // fan angle is same as dDetPos + pC->m_dTheta = dViewAngle + dDetPos; + pC->m_dT = dFocalLength * sin (dDetPos); + } + if (m_iThetaRange != THETA_RANGE_UNCONSTRAINED) { + pC->m_dTheta = normalizeAngle (pC->m_dTheta); + if (m_iThetaRange == THETA_RANGE_FOLD_TO_PI && pC->m_dTheta >= PI) { + pC->m_dTheta -= PI; + pC->m_dT = -pC->m_dT; + } + } + pC->m_dRaysum = detValues[iD]; + dDetPos += dDetInc; + } + } +} + +ParallelRaysums::~ParallelRaysums() +{ + delete m_pCoordinates; +} + +ParallelRaysums::CoordinateContainer& +ParallelRaysums::getSortedByTheta() +{ + if (m_vecpSortedByTheta.size() == 0) { + m_vecpSortedByTheta.resize (m_iNumCoordinates); + for (int i = 0; i < m_iNumCoordinates; i++) + m_vecpSortedByTheta[i] = m_vecpCoordinates[i]; + std::sort (m_vecpSortedByTheta.begin(), m_vecpSortedByTheta.end(), ParallelRaysumCoordinate::compareByTheta); + } + + return m_vecpSortedByTheta; +} + +ParallelRaysums::CoordinateContainer& +ParallelRaysums::getSortedByT() +{ + if (m_vecpSortedByT.size() == 0) { + m_vecpSortedByT.resize (m_iNumCoordinates); + for (int i = 0; i < m_iNumCoordinates; i++) + m_vecpSortedByT[i] = m_vecpCoordinates[i]; + std::sort (m_vecpSortedByT.begin(), m_vecpSortedByT.end(), ParallelRaysumCoordinate::compareByT); + } + + return m_vecpSortedByT; +} + + +void +ParallelRaysums::getLimits (double* dMinT, double* dMaxT, double* dMinTheta, double* dMaxTheta) const +{ + if (m_iNumCoordinates <= 0) + return; + + *dMinT = *dMaxT = m_vecpCoordinates[0]->m_dT; + *dMinTheta = *dMaxTheta = m_vecpCoordinates[0]->m_dTheta; + + for (int i = 0; i < m_iNumCoordinates; i++) { + double dT = m_vecpCoordinates[i]->m_dT; + double dTheta = m_vecpCoordinates[i]->m_dTheta; + + if (dT < *dMinT) + *dMinT = dT; + else if (dT > *dMaxT) + *dMaxT = dT; + + if (dTheta < *dMinTheta) + *dMinTheta = dTheta; + else if (dTheta > *dMaxTheta) + *dMaxTheta = dTheta; + } +} + +void +ParallelRaysums::getThetaAndRaysumsForT (int iTheta, double* pTheta, double* pRaysum) +{ + const CoordinateContainer& coordsT = getSortedByT(); + + int iBase = iTheta * m_iNumView; + for (int i = 0; i < m_iNumView; i++) { + int iPos = iBase + i; + pTheta[i] = coordsT[iPos]->m_dTheta; + pRaysum[i] = coordsT[iPos]->m_dRaysum; + } +} + +void +ParallelRaysums::getDetPositions (double* pdDetPos) +{ + const CoordinateContainer& coordsT = getSortedByT(); + + int iPos = 0; + for (int i = 0; i < m_iNumDet; i++) { + pdDetPos[i] = coordsT[iPos]->m_dT; + iPos += m_iNumView; + } +} + +// locate by bisection, O(log2(n)) +// iLastFloor is used when sequential calls to interpolate have monotonically increasing dX +double +ParallelRaysums::interpolate (double* pdX, double* pdY, int n, double dX, int* iLastFloor) +{ + int iLower = -1; + int iUpper = n; + if (iLastFloor && *iLastFloor >= 0 && pdX[*iLastFloor] < dX) + iLower = *iLastFloor; + + while (iUpper - iLower > 1) { + int iMiddle = (iUpper + iLower) >> 1; + if (dX >= pdX[iMiddle]) + iLower = iMiddle; + else + iUpper = iMiddle; + } + if (dX <= pdX[0]) + return pdY[0]; + else if (dX >= pdX[n-1]) + return pdY[1]; + + if (iLower < 0 || iLower >= n) { + sys_error (ERR_SEVERE, "Coordinate out of range [locateThetaBase]"); + return 0; + } + + if (iLastFloor) + *iLastFloor = iLower; + return pdY[iLower] + (pdY[iUpper] - pdY[iLower]) * ((dX - pdX[iLower]) / (pdX[iUpper] - pdX[iLower])); +}