UFFI Reference Guide

Kevin M. Rosenberg
Heart Hospital of New Mexico

kevin@rosenberg.net
504 EIm Street N.E.
Albuquerque
New Mexico
87102

UFFI Reference Guide
by Kevin M. Rosenberg

$ld: bookinfo.sgml,v 1.2 2002/03/14 16:53:27 kevin Exp $
File $Date: 2002/03/14 16:53:27 $

Copyright © 2002 by Kevin M. Rosenberg

« TheUFFI package was designed and written by Kevin M. Rosenberg.

- Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, with the no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in theJFFI distribution.

+ Allegro CL® is a registered trademark of Franz Inc.
- Lispworks® is a registered trademark of Xanalys Inc.
- Microsoft Windows® is a registered trademark of Microsoft Inc.

« Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents

PREIACE ..ottt i
IO [110 T 1 ox 1o T o ST PTTRRR 1
PUIMPOSEL. ..o bbb 1

2= Tl (o | (o]0 oo IR SRS P PR 1
Supported IMPIEMENTALIONS........cieiree ettt b ettt e saene e 1
D=2 o o OSSOSO PP 1

L@ YT 1 PSR 1

10 11T TSRS 2

2. Programming NOTES........ccciiiiiiiii s 3
Implementation SPECIfIC NOTES.........oiiiiirieiee e 3

[F=T o T TSRS 3

] 0110 TSP PSSTRN 3

CIMUCKL ..ttt bbb et b bt e bbbt et b bbb et et b bbbt e 3

Foreigh Object Representation and ACCESS........cooueirerirere ettt nnes 3
Optimizing Code USING UFEL.......oo et e e 3

= T3 (o [{0 11 o USRS 3
Cross-Implementation OptimIZatioN..........ccoceveeieni e e 3

(D T=Tod T = (0] 1SS PRSPPI 5
Lo LC] Y 0TSSR 6

L T8 T AT 1Y = 8
BT -CONSEANE. ...ttt n e bt r et nnnenas 9

(oL (0T =T o Y] o1 ST S ST RT 10
LT o= T o OSSO 11

LI T [(=To Eo L Y 01T TSP 13
L0 1= 1Y o 11 o S 14

L0 1= S 1o SRS 15
GOE-SIOT-VAIUR ...ttt bbbt b bbb s ekt se e b et be et e e b e 16

Lo <] 8] (0] o Jo T 1= SO TSRO SR PSSTPPRTPRRRPR 17

O -AITAY-POINIET. ...ttt ettt b et b et b e e ekt e bt se et e seebese e b e e b e e bene e 18
OBIET-BITAY. ... ettt b e e b et b et b et b et e e eb e s e eb e seebeseebene e b e e eb e e erene e 20

L0 1= T T TSRS 21

YO] oo £ USSR 23
AllOCAtE-TOrEIgN-0DJECT.t et s 24
frE@-TOr@IgN-0DJECL..... .ot et s b e e 25
WIth-fOr@IGN-0DJECL......couiieie bbb et s 26

SIV4= R o] 0] (=110 | A R 1Y o= USROS 27

[0T0 T a1 (=T = To [(= O 28

Lo == 0T 1) (= O 29
ENSUIE-ChAI-CRATACTEL.......c.i ittt r e e r e r e 30

(SIS 0T el g = T T 1 =T =] O 31

L= LT U] 0T T 1= O 33

LT 1 0]] (=T o o R 34

R LU EotSy (1o I 0T) (=Y 35

RV S 1] o OO PSP ST PTPTPRRTPRRRPRTN 36

CONVETIT-TIOM=CSIING. ..ttt ettt et b et b et b e b e b s b e b e e b nnas 37
LoTo]01Y/=T g B (o R o3 1] o o SO O U OTP T STURSTUPRTPRRPRR 37
FIEE-CSUING ...ttt h bbbt b e bbb bt e et e et en s 38
L1 =1 (] o TR OSSOSO TP PRSP 39
CONVETt-frOM-fOr@IgN-StIINGc ittt st b e 41
(ofo] 0V =T g (o (o] £ =T Lo BS] 1 o TSRO 42
U oTor=Y (= (o] £ =TT By 1 o TSRO 43
VI FUNCHONS & LIBFAriES ...ttt 45
OEF-TUNCHION. ...ttt r et r et ne bt e b neer e neer e r e r e nnas 46
(o= To B (o T (= o g I 1 o] = 1Y/ 47
LT L0 B {0 =TT [o 1] =Y oY 48
AL INSTAIALION .. ettt e r e e e r e r e nas 51
DOWNIOBAURFT ..ottt 51
INSTAIBLION.vveresee e r e rer e 51
L (0TS TT= VS 52

Preface

This reference guide describes the usage and featutéBFHif. The first chapter provides an overview to
the design ofJFFI. Following that chapter is the reference section for all user accessible functions of
UFFI. The appendix covers the installation and implementation-specifc featutdsrof

Chapter 1. Introduction

Purpose

This reference guide describe&FI, a package that provides a cross-implementation interface from
Common Lisp to C-language compatible libraries.

Background

Every Common Lisp implementation has a method for interfacing to C-language compatible libraries.
These methods are often termeBaageign Function Library InterfacéFFI). Unfortunately, these

methods vary widely amongst implementations, thus preventing the writing of a portable FFI to a
particular C-library.

UFFI gathers a common subset of functionality between Common Lisp implementatieRk wraps
this common subset of functionality with it's own syntax and provides macro translation of uffi functions
into the specific syntax of supported Common Lisp implementations.

Developers who usgFFI to interface with C libraries will automatically have their code function in
each of uffi’'s supported implementations.

Supported Implementations
The primary tested and supported platformsUéi-| are:

 AllegroCL v6.2 on Debian GNU/Linux FreeBSD 4.5, Solaris v2.8, and Microsoft Windows XP.
 Lispworks v4.2 on Debian GNU/Linux and Microsoft Windows XP.

* CMUCL 18d on Debian GNU/Linux, FreeBSD 4.5, and Solaris 2.8

» SBCL 0.7.8 on Debian GNU/Linux

* SCL 0.7.8 on Debian GNU/Linux

* OpenMCL 0.13 on Debian GNU/Linux for PowerPC

Beta code is included witbFFI for

* OpenMCL and MCL with MacOSX

Design

Overview

UFFI was designed as a cross-implementation compaireign Function InterfaceNecessarily, only
a common subset of functionality can be provided. Likewise, not every optimization for that a specific

Chapter 1. Introduction

implementation provides can be supported. Wherever possible, though, implementation-specific
optimizations are invoked.

Priorities
The design ofJFFI is dictated by the order of these priorities:

« Code usindgJFFI must operate correctly on all supported implementations.

Take advantage of implementation-specific optimizations. Ideally, there will not a situation where an
implementation-specific FFI will be chosen due to lack of optimizationshi| .

- Provide a simple interface to developers uditgF|. This priority is quite a bit lower than the above
priorities. This lower priority is manifest by programmers having to pass types in pointer and array
dereferencing, needing to ussring wrapper functions, and the use of ensure-char-character and
ensure-char-integer functions. My hope is that the developer inconvenience will be outweighed by the

generation of optimized code that is cross-implementation compatible.

Chapter 2. Programming Notes

Implementation Specific Notes

AllegroCL
Lispworks

CMUCL

Foreign Object Representation and Access

There are two main approaches used to represent foreign objects: an integer that represents an address in
memory, and a object that also includes run-time typing. The advantage of run-time typing is the system
can dereference pointers and perform array access without those functions requiring a type at the cost of
additional overhead to generate and store the run-time typing. The advantage of integer representation, at
least for AllegroCL, is that the compiler can generate inline code to dereference pointers. Further, the
overhead of the run-time type information is eliminated. The disadvantage is the program must then
supply the type to the functions to dereference objects and array.

Optimizing Code Using UFFI

Background

Two implementions have different techniques to optimize (open-code) foreign objects. AllegroCL can
open-code foreign object access if pointers are integers and the type of object is specified in the access
function. ThusUFFI represents objects in AllegroCL as integers which don'’t have type information.

CMUCL works best when keeping objects as typed objects. However, it's compiler can open-code object
access when the object type is specifieddnlare commands and inype specifiers indefstruct
anddefclass

Lispworks, in converse to AllegroCL and CMUCL does not do any open coding of object access.
Lispworks, by default, maintains objects with run-time typing.

Chapter 2. Programming Notes

Cross-Implementation Optimization

To fully optimize across platforms, both explicit type information must be passed to dereferencing of
pointers and arrays. Though this optimization only helps with Allegrd@F| is designed to require

this type information be passed the dereference functions. Second, declarations of type should be made
in functions, structures, and classes where foreign objects will be help. This will optimize access for
Lispworks

Here is an example that should both methods being used for maximum cross-implementation
optimization:

(uffi:def-type the-struct-type-def the-struct-type)

(let ((a-foreign-struct (allocate-foreign-object 'the-struct-type)))
(declare ’the-struct-type-def a-foreign-struct)
(get-slot-value a-foreign-struct 'the-struct-type ’'field-name))

|. Declarations

Overview

Declarations are used to give the compiler optimizing information about foreign types. Currently, only
CMUCL supports declarations. On AllegroCL and Lispworks, these expressions declare the type
generically ag

def-type

Name
def-type — Defines a Common Lisp type.

Macro

Syntax

def-type name type

Arguments and Values

name

A symbol naming the type

type
A form that is evaluated that specifies tHEFI type.

Description
Defines a Common Lisp type based ob&FI type.

Examples
(def-type char-ptr '(* :char))

(defun foo (ptr)
(declare (type char-ptr ptr))

Side Effects

Defines a new ANSI Common Lisp type.

Declarations

Affected by

None.

Exceptional Situations

None.

ll. Primitive Types

Overview

Primitive types have a single value, these include characters, numbers, and pointers. They are all symbols
in the keyword package.

- :char - Signed 8-bits. A dereferenced :char pointer returns an character.

+ :unsigned-char - Unsigned 8-bits. A dereferenced :unsigned-char pointer returns an character.
- :byte - Signed 8-bits. A dereferenced :byte pointer returns an integer.

+ :unsigned-byte - Unsigned 8-bits. A dereferenced :unsigned-byte pointer returns an integer.

« :short - Signed 16-bits.

« :unsigned-short - Unsigned 16-bits.
- :int - Signed 32-bits.
« :unsigned-int - Unsigned 32-bits.

« :long - Signed 32-bits.

- :unsigned-long - Unsigned 32-hits.
. :float - 32-bit floating point.

+ :double - 64-bit floating point.

- :cstring - A NULLterminated string used for passing and returning characters strings @ith a
function.

. wvoid - The absence of a value. Used to indicate that a function does not return a value.
« :pointer-void - Points to a generic object.

. * - Used to declare a pointer to an object

def-constant

Name
def-constant — Binds a symbol to a constant.

Macro

Syntax

def-constant name value &key export

Arguments and Values

name
A symbol that will be bound to the value.
value
An evaluated form that is bound the the name.
export

WhenT, the name is exported from the current package. The defauit is

Description

This is a thin wrapper arountkfconstant . It evaluates at compile-time and optionally exports the
symbol from the package.

Examples

(def-constant pi2 (* 2 pi)
(def-constant exported-pi2 (* 2 pi) :export t)

Side Effects

Creates a new special variable..

Affected by

None.

Exceptional Situations

None.

def-foreign-type

name

value

Name
def-foreign-type — Defines a new foreign type.
Macro
Syntax
def-foreign-type name type

Arguments and Values

A symbol naming the new foreign type.

A form that is not evaluated that defines the new foreign type.

Description

Defines a new foreign type.

Examples

(def-foreign-type my-generic-pointer :pointer-void)
(def-foreign-type a-double-float :double-float)
(def-foreign-type char-ptr (* :char))

Primitive Types

10

Primitive Types

Side Effects

Defines a new foreign type.

Affected by

None.

Exceptional Situations

None.

null-char-p

Name
null-char-p — Tests a character fovULL value.

Macro

Syntax

null-char-p char => is-null

Arguments and Values

char

A character or integer.

is-null

A boolean flag indicating if char isMULL value.

Description

A predicate testing if a character or integeNiSLL This abstracts the difference in implementations
where some returneharacter and some returniateger whence dereferencing@character
pointer.

11

Examples

(def-array-pointer ca :unsigned-char)
(let ((fs (convert-to-foreign-string “"ab")))
(values (null-char-p (deref-array fs 'ca 0))
(null-char-p (deref-array fs 'ca 2))))
=> NIL
T

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

Primitive Types

12

lll. Aggregate Types

Overview

Aggregate types are comprised of one or more primitive types.

def-enum

name

fields

Name
def-enum — Defines aC enumeration.

Macro

Syntax

def-enum name fields &key separator-string

Arguments and Values

A symbol that names the enumeration.

A list of field defintions. Each definition can be a symbol or a list of two elements. Symbols get
assigned a value of the current counter which stargsaatd increments by for each subsequent
symbol. It the field definition is a list, the first position is the symbol and the second position is the
value to assign the the symbol. The current counter gets getttus value.

separator-string

A string that governs the creation of constants. The defat#t'is

Description

Declares & enumeration. It generates constants with integer values for the elements of the enumeration.
The symbols for the these constant values are created lepithatenation of the enumeration name,
separator-string, and field symbol. Also creates a foreign type with the name of type:int

Examples

(def-enum abc (:a :b :c))
;; Creates constants abc#a (1), abc#b (2), abc#c (3) and defines
;; the foreign type "abc" to be :int

(def-enum efoo (el (:e2 10) :e3) :separator-string "-")

;; Creates constants efoo-el (1), efoo-e2 (10), efoo-e3 (11) and defines
; the foreign type efoo to be :int

14

Aggregate Types

Side Effects

Creates a :int foreign type, defines constants.

Affected by

None.

Exceptional Situations

None.

def-struct

Name
def-struct — Defines &C structure.

Macro

Syntax

def-struct name &rest fields

Arguments and Values

name

A symbol that names the structure.

fields

A variable number of field defintions. Each definition is a list consisting of a symbol naming the
field followed by its foreign type.

Description

Declares a structure. A special type is available as a slot in the field. It is a pointer that points to an
instance of the parent structure. It's typegsinter-self

15

Examples
(def-struct foo (a :unsigned-int)
(b (* :char))

(c (array :int 10))
(next :pointer-self))

Side Effects

Creates a foreign type.

Affected by

None.

Exceptional Situations

None.

get-slot-value

obj

type

Name

get-slot-value — Retrieves a value from a slot of a structure.

Macro

Syntax

get-slot-value obj type field

Arguments and Values

A pointer to foreign structure.

A name of the foreign structure.

Aggregate Types

16

Aggregate Types

field

A name of the desired field in foreign structure.

value

The value of the field in the structure.

Description

Accesses a slot value from a structure.

Examples

(get-slot-value foo-ptr foo-structure ‘field-name)

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

get-slot-pointer

Name
get-slot-pointer — Retrieves a pointer from a slot of a structure.
Macro
Syntax
get-slot-pointer obj type field => pointer

17

Aggregate Types

Arguments and Values

obj
A pointer to foreign structure.
type
A name of the foreign structure.
field
A name of the desired field in foreign structure.
pointer

The value of the field in the structure.

Description

This is similar toget-slot-value . Itis used when the value of a slot is a pointer type.

Examples

(get-slot-pointer foo-ptr 'foo-structure 'my-char-ptr)

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

18

def-array-pointer

name

type

Name
def-array-pointer — Defines a pointer to a array of type.
Macro
Syntax
def-array-pointer name type

Arguments and Values

A name of the new foreign type.

The foreign type of the array elements.

Description

Defines a type tat is a pointer to an array of type.

Examples

(def-array-pointer byte-array-pointer :unsigned-char)

Side Effects

Defines a new foreign type.

Affected by

None.

Exceptional Situations

None.

Aggregate Types

19

deref-array

array

type

position

value

Name
deref-array — Deference an array.
Macro
Syntax
deref-array array type positon => value

Arguments and Values

A foreign array.

The foreign type of the array.

An integer specifying the position to retrieve from the array.

The value stored in the position of the array.

Description

Dereferences (retrieves) the value of an array element.

Examples

(def-array ca :char)
(let ((fs (convert-to-foreign-string "ab")))
(values (null-char-p (deref-array fs 'ca 0))
(null-char-p (deref-array fs 'ca 2))))
=> NIL
T

Aggregate Types

20

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

def-union

name

fields

Name

def-union — Defines a foreign union type.

Macro

Syntax

def-union name &rest fields

Arguments and Values

A name of the new union type.

A list of fields of the union.

Description

Defines a foreign union type.

Aggregate Types

21

Examples

(def-union test-union
(a-char :char)
(an-int :int))

(let ((u (allocate-foreign-object ’test-union))
(setf (get-slot-value u ’test-union 'an-int) (+ 65 (* 66 256)))

(progl
(ensure-char-character (get-slot-value u ‘test-union 'a-char))
(free-foreign-object u)))
= #\A

Side Effects

Defines a new foreign type.

Affected by

None.

Exceptional Situations

None.

Aggregate Types

22

IV. Objects

Overview

Objects are entities that can allocated, referred to by pointers, and can be freed.

allocate-foreign-object

type

size

ptr

Name
allocate-foreign-object — Allocates an instance of a foreign object.
Macro
Syntax
allocate-foreign-object type &optional size => ptr

Arguments and Values

The type of foreign object to allocate. This parameter is evaluated.

An optional size parameter that is evaluated. If specified, allocates and returns an &gy of
that issize members long. This parameter is evaluated.

A pointer to the foreign object.

Description

Allocates an instance of a foreign object. It returns a pointer to the object.

Examples

(def-struct ab (a :int) (b :double))
(allocate-foreign-object 'ab)
=> #<ptr >

Side Effects

None.

24

Objects

Affected by

None.

Exceptional Situations

None.

free-foreign-object

Name
free-foreign-object — Frees memory that was allocated for a foreign boject.

Macro
Syntax

free-foreign-object ptr

Arguments and Values

ptr
A pointer to the allocated foreign object to free.

Description

Frees the memory used by the allocation of a foreign object.

Side Effects

None.

Affected by

None.

25

Objects

Exceptional Situations

None.

with-foreign-object

var

type

Name
with-foreign-object — Wraps the allocation of a foreign object around a body of code.
Macro
Syntax
with-foreign-object (var type) &body body => form-return

Arguments and Values

The variable name to bind.

The type of foreign object to allocate. This parameter is evaluated.

form-return

The result of evaluating thigody .

Description

This function wraps the allocation, binding, and destruction of a foreign object. On CMUCL and
Lispworks platforms the object is stack allocated for efficiency. Benchmarks show that AllegroCL
performs much better with static allocation.

Examples

(defun gethostname2 ()
"Returns the hostname"
(uffi:with-foreign-object (name ’(:array :unsigned-char 256))
(if (zerop (c-gethostname (uffi:char-array-to-pointer name) 256))
(uffi:convert-from-foreign-string name)

26

Objects

(error "gethostname() failed."))))

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

size-of-foreign-type

Name
size-of-foreign-type — Returns the number of data bytes used by a foreign object type.

Macro

Syntax

size-of-foreign-type ftype

Arguments and Values

ftype
A foreign type specifier. This parameter is evaluated.

Description

Returns the number of data bytes used by a foreign object type. This does not include any Lisp storage
overhead.

27

Examples

(size-of-foreign-object :unsigned-byte)

= 1

(size-of-foreign-object 'my-100-byte-vector-type)
=> 100

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

pointer-address

ptr

Name
pointer-address — Returns the address of a pointer.
Macro
Syntax
pointer-address ptr => address

Arguments and Values

A pointer to a foreign object.

Objects

28

Objects

address

An integer representing the pointer’s address.

Description

Returns the address as an integer of a pointer.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

deref-pointer

Name
deref-pointer — Deferences a pointer.
Macro
Syntax
deref-pointer ptr type => value

Arguments and Values

ptr
A pointer to a foreign object.

type
A foreign type of the object being pointed to.

29

value

The value of the object where the pointer points.

Description

Returns the object to which a pointer points.

Examples

(let ((intp (allocate-foreign-object :int)))
(setf (deref-pointer intp :int) 10)
(progl

(deref-pointer intp :int)
(free-foreign-object intp)))
=> 10

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

ensure-char-character

Name

ensure-char-character — Ensures that a dereferencetar

Macro

pointer is a character.

Objects

30

Objects

Syntax

ensure-char-character object => char

Arguments and Values

object

Either a character or a integer specifying a character code.

char

A character.

Description

Ensures that an object obtained by dereferencimgaa pointer is a character.

Examples

(let ((fs (convert-to-foreign-string "a")))
(progl
(ensure-char-character (deref-pointer fs :char))
(free-foreign-object fs)))
=> #\a

Side Effects

None.

Affected by

None.

Exceptional Situations

Depending upon the implementation and wb&t1 expects, this macro may signal an error if the object
is not a character or integer.

31

ensure-char-integer

object

int

Name
ensure-char-integer — Ensures that a dereferencebtar pointer is an integer.
Macro
Syntax
ensure-char-integer object => int

Arguments and Values

Either a character or a integer specifying a character code.

An integer.

Description

Ensures that an object obtained by dereferencigaa pointer is an integer.

Examples

(let ((fs (convert-to-foreign-string "a")))
(progl
(ensure-char-integer (deref-pointer fs :char))
(free-foreign-object fs)))
=> 96

Side Effects

None.

Affected by

None.

Objects

32

Objects

Exceptional Situations

Depending upon the implementation and wbi&| expects, this macro may signal an error if the object
is not a character or integer.

make-null-pointer

Name
make-null-pointer — Create aNULL pointer.
Macro
Syntax
make-null-pointer type => ptr

Arguments and Values

type
A type of object to which the pointer refers.

ptr
TheNULL pointer of typetype .

Description

Creates alULL pointer of a specified type.

Side Effects

None.

Affected by

None.

33

Exceptional Situations

None.

null-pointer-p

ptr

is-null

Name

null-pointer-p — Tests a pointer foNULL value.

Macro

Syntax

null-pointer-p ptr => is-null

Arguments and Values

A foreign object pointer.

The boolean flag.

Description

A predicate testing if a pointer is hasN&JLL value.

Side Effects

None.

Affected by

None.

Objects

34

Exceptional Situations

None.

+null-cstring-pointer+

Name

+null-cstring-pointer+ — A constantNULL cstring pointer.

Constant

Description
A NULL cstring pointer. This can be used for testing if a cstring returned by a functitulis

Objects

35

V. Strings

Overview

UFFI has functions to two types @compatible strings;stringandforeignstrings. cstrings are used as
parameters to and from functions. An implementation, such as CMUCL and Lispworks, a cstring may
not be a foreign type but rather the Lisp string itself while on other platforms a cstring is a newly
allocated foreign vector for storing characters. Thus, it is not possible to poettatea cstring.

In contrast, foreign strings are always a foreign vector of characters which have a memory allocated to
hold them. Because of this, if you need to allocate memory to hold the return value of a string, use a
foreign string and not a cstring.

convert-from-cstring

cstring

string

Name
convert-from-cstring — Converts a cstring to a Lisp string.
Macro
Syntax
convert-from-cstring cstring => string

Arguments and Values

A cstring.

A Lisp string.

Description

Converts a Lisp string to estring
function that returns a cstring.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

. This is most often used when processing the results of a foreign

37

Strings

convert-to-cstring

Name
convert-to-cstring — Converts a Lisp string to a cstring.
Macro
Syntax
convert-to-cstring string => cstring

Arguments and Values

string
A Lisp string.
cstring
A cstring.
Description

Converts a Lisp string toestring . Thecstring should be freed witlree-cstring

Side Effects

On some implementations, this function allocates memory.

Affected by

None.

Exceptional Situations

None.

38

free-cstring

cstring

Name
free-cstring — Free memory used by cstring.
Macro
Syntax
free-cstring cstring

Arguments and Values

A cstring.

Description

Frees any memory possibly allocateddaywvert-to-cstring

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

Strings

39

with-cstring

Name
with-cstring — Binds a newly created cstring.

Macro

Syntax

with-cstring (cstring string) {body}

Arguments and Values

cstring

A symbol naming the cstring to be created.
string

A Lisp string that will be translated to a cstring.
body

The body of where the cstring will be bound.

Description

Binds a symbol to a cstring created from conversion of a string. Automatically freestting

Examples

(def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)

(defun getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(with-cstring (key-cstring key)
(convert-from-cstring (c-getenv key-cstring))))

Strings

40

Strings

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

convert-from-foreign-string

Name
convert-from-foreign-string — Converts a foreign string into a Lisp string.
Macro
Syntax
convert-from-foreign-string foreign-string &key length null-terminated-p => string

Arguments and Values

foreign-string
A foreign string.
length

The length of the foreign string to convert. The default is the length of the string usitiLa
character is reached.

null-terminated-p

A boolean flag with a default value afWhen true, the string is converted until the fikgiLL
character is reached.

string

A Lisp string.

41

Strings

Description

Returns a Lisp string from a foreign string. Can translated ASCII and binary strings.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

convert-to-foreign-string

Name
convert-to-foreign-string — Converts a Lisp string to a foreign string.
Macro
Syntax
convert-to-foreign-string string => foreign-string

Arguments and Values

string

A Lisp string.

foreign-string

A foreign string.

42

Strings

Description

Converts a Lisp string to a foreign string. Memory should be freed frdthforeign-object

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

allocate-foreign-string

Name
allocate-foreign-string — Allocates space for a foreign string.
Macro
Syntax
allocate-foreign-string size &key unsigned => foreign-string

Arguments and Values
size
The size of the space to be allocated in bytes.

unsigned

A boolean flag with a default value of When true, marks the pointer as :ansigned-char

foreign-string

A foreign string which has undefined contents.

43

Strings

Description

Allocates space for a foreign string. Memory should be freed fadtiforeign-object

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

44

VI. Functions & Libraries

def-function

name

args

module

returning

Name
def-function — Declares a function.
Macro
Syntax
def-function name args &key module returning

Arguments and Values

A string or list specificying the function name. If it is a string, that names the foreign function. A
Lisp name is created by translating #_to #\- and by converting to upper-case in case-insensitive
Lisp implementations. If it is a list, the first item is a string specifying the foreign function name and
the second it is a symbol stating the Lisp name.

A list of argument declarations. MIL , indicates that the function does not take any arguments.

A string specifying which module (or library) that the foreign function resides. (Required by
Lispworks)

A declaration specifying the result type of the foreign functionvdfd indicates module does not
return any value.

Description

Declares a foreign function.

Examples

(def-function "gethostname"
((name (* :unsigned-char))
(len :int)
‘returning :int)

46

Functions & Libraries

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

load-foreign-library

Name
load-foreign-library — Loads a foreign library.
Function
Syntax
load-foreign-library filename &key module supporting-libraries => success

Arguments and Values

filename

A string or pathname specifying the library location in the filesystem. At least one implementation
(Lispworks) can not accept a logical pathname.

module

A string designating the name of the module to apply to functions in this library. (Required for
Lispworks)

supporting-libraries
A list of strings naming the libraries required to link the foreign library. (Required by CMUCL)

Success

A boolean flag if the library was able to be loaded successfully or if the library has been
previously loaded, otherwigeL .

47

Functions & Libraries

Description

Loads a foreign library. Applies a module name to functions within the library. Ensures that a library is
only loaded once during a session.

Examples
(load-foreign-library #p"/usr/lib/libmysglclient.so"
:module "mysql"

:supporting-libraries '("c"))
= T

Side Effects

Loads the foreign code into the Lisp system.

Affected by
Ability to load the file.

Exceptional Situations

None.

find-foreign-library

Name
find-foreign-library — Finds a foreign library file.
Function
Syntax
find-foreign-library names directories & drive-letters types => path

48

Functions & Libraries

Arguments and Values

names

A string or list of strings containing the base name of the library file.

directories

A string or list of strings containing the directory the library file.

drive-letters

A string or list of strings containing the drive letters for the library file.

types

A string or list of strings containing the file type of the library file. Defauliis . If NIL , will use a
default type based on the currently running implementation.

path
A path containing the path found, §iL if the library file was not found.

Description

Finds a foreign library by searching through a number of possible locations. Returns the path of the first
found file.

Examples

(find-foreign-library '("libomysqlclient" "libmysql")
'("lopt/mysgl/lib/mysql/* “/usr/local/lib/* "fusr/lib/" "/mysql/lib/opt/*)
‘types '("so" "dIl")
:drive-letters '("C" "D" "E"))

=> #P"D:\\mysq\lib\\opt\libmysql.dIl"

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

49

Functions & Libraries

50

Appendix A. Installation

Download UFFI

You need to download thgFFI package from its wehome(http://uffi.med-info.com). You also need to
have a copy of ASDF. If you need a copy of ASDF, it is included in ELAN
(http://Iwww.sourceforge.net/projects/cclan) package. You can download tkeffiiatem.lisp from
the CVStree (http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/asdf.lisp).

Installation

After downloading and installing ASDF, simppush the directory containing FFI into
asdf:*central-registry* variable. Whenever you want to load tb&F| package, use the function
(asdf:00s 'asdf:load-op :uffi)

51

Glossary

Foreign Function Interface FFI)

An interface to a C-compatible library.

52

