UFFI Reference Guide

Kevin M. Rosenberg

UFFI Reference Guide

Kevin M. Rosenberg
Copyright © 2002-2003 Kevin M. Rosenberg

¢ The UFFI package was designed and written by Kevin M. Rosenberg.

¢ Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation Li-
cense, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with the no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the licenseisincluded in the UFFI distribution.

* Allegro CL isaregistered trademark of Franz Inc.

« Lispworksisaregistered trademark of Xanalys Inc.

* Microsoft Windows is aregistered trademark of Microsoft Inc.

¢ Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents

1= = o Vi
O | g oo [T 1 o o PP 1
PUINDOSE .. et 1
BaCKgroUNdcoeiii e 1
Supported IMpPlEMENTALIONSiiei e e 1
7= o [1
(O o 1
[01 == P 2
2. Programming NOLESuuiiit ettt e e e e et e e et e et e e eaeaean e 3
Implementation SPECITIC NOLEScuiiniii e 3
N =" | (oL 3
[T 1o 3
CMUCGKL ..o e e e e e e e e e e e 3
Foreign Object Representation a0 ACCESSceevuuieieriee et eenens 3
Optimizing Code USING UFFT ... e 3
BaCkgroUndoooniii 3
Cross-Implementation OptimiZationccceuiveiiiieiiii e e 3

BT o - 1o = TSP SPPR
01 Y o= USSP 6
L1 PIIMITIVE TYPES ittt ettt ettt e et e et et e e e e et e e e eenaaeeees 7
(0[S B o0 g = | PR 8
(01 B o= o 0 Y] =P 9
LU I o P 10
1. AQOreOAE TYPES . ..eeeniiet ettt et e e e e et et e e e e e e en 11
(01, 0T 12
(0[S, S ok PP 14
(01 = [0 V7 1 TP 15
0T s o] 00 | 16
(01 =T - (Y 00 (= 17
(01 £ =11 - 1Y/ 18
(01, T 0T 20
Y O o 1= ol (PP PPPRT 21
All0CAE-TOr@IgN-ODJECEieeeiee et e e 22
free-foraign-0ObJECE ..o 23
WIth-TOr@igN-0BJECtoeeiiee e 24
LS =0 o = [0 1Y/ = 25
POINEEN-AAIESS ...ttt e e et e e e et eeeaba e eees 26
0= 0= B oo 11 1= S P T PP UPPPTI 27
ENSUNE-Char-CRaIraCLEYu ittt ea e ees 29
LS IS ST os g T] =0 = 30
MBKE-NUI-POINEES ...t e e e e e e e e e et e e eanaees 31
LU oo T 1 = o TP 32
FNUH-CSENG-POINTErF .ottt ettt e e e e eenans 33
WIth-Cast-POINTES ... e e 34
(015 B (o = Lo 0 - TR 36
RS T 0P 38
(o0 1Y 0 xS 40
(000 1Y 1 o1 1 o 41
FPEE-CSIMING et et 42
WITH=CSEIING ..t 43
CONVErt-fFrom-fOr@IgN-StHNGc.uieeiiii e e 45
CONVErt-t0-fOr@IgN-SIIINGiiniii e 46
o [FoTorz (= o (=T | ot 1] o 47

UFFI Reference Guide

V1 FUNCHONS & LIDIaIES oooveiiiiiiii et 48
Ef-FUNCLION .eee e et e e 49
[0A0-FOr@IgN-TIDrarycooouii e 51
fINA-FOraign-liBrary 53

AL TNSEAHTBLION ... et aas 55
DOWNIOBA UFFT ...ttt e e e e e e 55
07 o (] 0o P 55

L0535 56

Preface

This reference guide describes the usage and features of UFFI. The first chapter provides an overview to
the design of UFFI. Following that chapter is the reference section for all user accessible functions of
UFFI. The appendix covers the installation and implementati on-specifc features of UFFI.

Vi

Chapter 1. Introduction
Purpose

This reference guide describes UFFI, a package that provides a cross-implementation interface from
Common Lisp to C-language compatible libraries.

Background

Every Common Lisp implementation has a method for interfacing to C-language compatible libraries.
These methods are often termed a Foreign Function Library Interface (FFI). Unfortunately, these meth-
ods vary widely amongst implementations, thus preventing the writing of a portable FFI to a particular
C-library.

UFFI gathers a common subset of functionality between Common Lisp implementations. UFFI wraps
this common subset of functionality with it's own syntax and provides macro translation of uffi functions
into the specific syntax of supported Common Lisp implementations.

Developers who use UFFI to interface with C libraries will automatically have their code function in
each of uffi's supported implementations.

Supported Implementations

The primary tested and supported platforms for UFFI are:

» AllegroCL v6.2 on Debian GNU/Linux FreeBSD 4.5, Solaris v2.8, and Microsoft Windows XP.
e Lispworksv4.2 on Debian GNU/Linux and Microsoft Windows XP.

+ CMUCL 18d on Debian GNU/Linux, FreeBSD 4.5, and Solaris 2.8

e SBCL 0.7.8 on Debian GNU/Linux

e SCL 1.1.1 on Debian GNU/Linux

e OpenMCL 0.13 on Dehian GNU/Linux for PowerPC
Beta code isincluded with UFFI for

* OpenMCL and MCL with MacOSX

Design

Overview

UFFI was designed as a cross-implementation compatible Foreign Function Interface. Necessarily, only
a common subset of functionality can be provided. Likewise, not every optimization for that a specific
implementation provides can be supported. Wherever possible, though, implementation-specific optim-
izations are invoked.

Introduction

Priorities

The design of UFFI isdictated by the order of these priorities:

e Code using UFFI must operate correctly on all supported implementations.

» Take advantage of implementation-specific optimizations. Ideally, there will not a situation where an
implementation-specific FFI will be chosen due to lack of optimizationsin UFFI.

» Provide asimpleinterface to developers using UFFI. This priority is quite a bit lower than the above
priorities. This lower priority is manifest by programmers having to pass types in pointer and array
dereferencing, needing to use cst r i ng wrapper functions, and the use of ensure-char-character and
ensure-char-integer functions. My hope is that the developer inconvenience will be outweighed by
the generation of optimized code that is cross-implementation compatible.

Chapter 2. Programming Notes
Implementation Specific Notes

AllegroCL
Lispworks

CMUCL

Foreign Object Representation and Access

There are two main approaches used to represent foreign objects: an integer that represents an addressin
memory, and a object that also includes run-time typing. The advantage of run-time typing is the system
can dereference pointers and perform array access without those functions requiring a type at the cost of
additional overhead to generate and store the run-time typing. The advantage of integer representation,
at least for AllegroCL, is that the compiler can generate inline code to dereference pointers. Further, the
overhead of the run-time type information is eliminated. The disadvantage is the program must then sup-

ply the type to the functions to dereference objects and array.
Optimizing Code Using UFFI

Background

Two implementions have different techniques to optimize (open-code) foreign objects. AllegroCL can
open-code foreign object access if pointers are integers and the type of object is specified in the access
function. Thus, UFFI represents objectsin AllegroCL asintegers which don't have type information.

CMUCL works best when keeping objects as typed objects. However, it's compiler can open-code ob-
ject access when the object type is specified in decl ar e commandsand in : t ype specifiersin def -

struct anddef cl ass.

Lispworks, in converse to AllegroCL and CMUCL does not do any open coding of object access. Lisp-

works, by default, maintains objects with run-time typing.

Cross-Implementation Optimization

To fully optimize across platforms, both explicit type information must be passed to dereferencing of
pointers and arrays. Though this optimization only helps with AllegroCL, UFFI is designed to require
this type information be passed the dereference functions. Second, declarations of type should be made
in functions, structures, and classes where foreign objects will be help. This will optimize access for

Lispworks

Here is an example that should both methods being used for maximum cross-implementation optimiza-

tion:

Programming Notes

(uffi:def-type the-struct-type-def the-struct-type)

(let ((a-foreign-struct (allocate-foreign-object 'the-struct-type)))
(declare '"the-struct-type-def a-foreign-struct)
(get-slot-value a-foreign-struct 'the-struct-type 'field-nane))

Declarations

Overview

Declarations are used to give the compiler optimizing information about foreign types. Currently, only
CMUCL supports declarations. On AllegroCL and Lispworks, these expressions declare the type gener-
icalyasT

Name

def-type -- Defines a Common Lisp type.

def-type

Syntax

def-type nane type

Arguments and Values

nane A symbol naming the type

type A formthatisevaluated that specifiesthe UFFI type.

Description

Defines a Common Lisp type based on a UFFI type.

Examples

(def-type char-ptr '(* :char))

tdéfun foo (ptr)
(declare (type char-ptr ptr))

Side Effects

Defines anew ANSI Common Lisp type.

Affected by

None.

Exceptional Situations

None.

Primitive Types

Overview

Primitive types have a single value, these include characters, numbers, and pointers. They are all sym-
bols in the keyword package.

» :char - Signed 8-bits. A dereferenced :char pointer returns an character.

e :unsi gned- char - Unsigned 8-bits. A dereferenced :unsigned-char pointer returns an character.
» byt e - Signed 8-bits. A dereferenced :byte pointer returns an integer.

e :unsi gned- byt e - Unsigned 8-bits. A dereferenced :unsigned-byte pointer returns an integer.

e :short - Signed 16-hits.

e :unsigned-short - Unsigned 16-hits.

e :int -Signed 32-bits.

e :unsigned-int - Unsigned 32-hits.

* |l ong - Signed 32 or 64 hits, depending upon the platform.

e :unsi gned- | ong - Unsigned 32 or 64 bits, depending upon the platform.

o :float -32-bit floating point.

e :doubl e - 64-bit floating point.

e :cstring-A NULL terminated string used for passing and returning characters strings with a C
function.

e :voi d - The absence of avalue. Used to indicate that a function does not return avalue.
* :pointer-void - Pointsto ageneric object.

e * - Usedto declare a pointer to an object

Name

def-constant -- Binds a symbol to a constant.

def-constant

Syntax

def - constant nane val ue &key export

Arguments and Values

nane A symbol that will be bound to the value.
val ue Anevauated form that is bound the the name.

export When T, the nameis exported from the current package. The default isNI L

Description

This is a thin wrapper around def const ant . It evaluates at compile-time and optionally exports the
symbol from the package.

Examples

(def-constant pi2 (* 2 pi))
(def-constant exported-pi2 (* 2 pi) :export t)

Side Effects

Creates anew specia variable..

Affected by

None.

Exceptional Situations

None.

Name

def-foreign-type -- Defines a new foreign type.

def-foreign-type

Syntax

def-forei gn-type nane type

Arguments and Values

nane A symbol naming the new foreign type.

val ue A formthat isnot evaluated that defines the new foreign type.

Description

Defines anew foreign type.

Examples

(def -forei gn-type mny-generic-pointer :pointer-void)
(def-foreign-type a-doubl e-float :double-float)
(def-foreign-type char-ptr (* :char))

Side Effects

Defines anew foreign type.

Affected by

None.

Exceptional Situations

None.

Name
null-char-p -- Tests a character for NULL value.

null-char-p

Syntax

nul |l -char-p char => is-null

Arguments and Values

char A character or integer.

i s-null A boolean flag indicating if char isaNULL value.

Description
A predicate testing if a character or integer is NULL. This abstracts the difference in implementations

where some return a char act er and some return a i nt eger whence dereferencing a C character
pointer.

Examples

(def-array-poi nter ca :unsigned-char)

(let ((fs (convert-to-foreign-string "ab")))
(values (null-char-p (deref-array fs '"ca 0))
(null-char-p (deref-array fs 'ca 2))))

=> N L

T

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

10

Aggregate Types

Overview

Aggregate types are comprised of one or more primitive types.

11

Name

def-enum -- Defines a C enumeration.

def-enum

Syntax

def -enum nane fiel ds &key separator-string

Arguments and Values

nane A symbol that names the enumeration.

fields A list of field defintions. Each definition can be a symbol or alist of two ele-
ments. Symbols get assigned a value of the current counter which starts at 0
and increments by 1 for each subsequent symbol. It the field definition is a
list, the first position is the symbol and the second position is the value to as-
sign the the symbol. The current counter gets set to 1+ thisvalue.

separator-string A stringthat governsthe creation of constants. The default is" #" .

Description

Declares a C enumeration. It generates constants with integer values for the elements of the enumera-
tion. The symbols for the these constant values are created by the concat enat i on of the enumeration
name, separator-string, and field symbol. Also creates aforeign type with the name nane of type: i nt .

Examples

(def-enumabc (:a :b :c))
;; Creates constants abc#a (1), abc#b (2), abc#c (3) and defi nes
the foreign type "abc" to be :int
(def-enumefoo (:el (:e2 10) :e3) :separator-string "-")
;; Creates constants efoo-el (1), efoo-e2 (10), efoo-e3 (11) and defines
;; the foreign type efoo to be :int

Side Effects

Creates a:int foreign type, defines constants.

Affected by

None.

12

def-enum

Exceptional Situations

None.

13

Name

def-struct -- Defines a C structure.

def-struct

Syntax

def-struct nane &rest fields

Arguments and Values

nane A symbol that names the structure.

fields A variablenumber of field defintions. Each definition isalist consisting of a symbol naming
the field followed by its foreign type.

Description

Declares a structure. A special type is available as a dot in the field. It is a pointer that points to an in-
stance of the parent structure. It'stypeis: poi nt er - sel f.

Examples

(def-struct foo (a :unsigned-int)
(b (* :char))
(c (:array :int 10))
(next :pointer-self))

Side Effects

Creates aforeign type.

Affected by

None.

Exceptional Situations

None.

14

Name

get-slot-value -- Retrieves avalue from a dot of a structure.

get-slot-value

Syntax

get-sl ot-val ue obj type field => val ue

Arguments and Values

obj A pointer to foreign structure.
type A name of theforeign structure.
field A nameof thedesiredfieldin foreign structure.

vaue The value of thefield in the structure.

Description

Accesses adot value from astructure. Thisis generalized and can be used with set f .

Examples

(get-slot-value foo-ptr 'foo-structure 'field-nane)
(setf (get-slot-value foo-ptr 'foo-structure 'field-nane) 10)

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

15

Name

get-slot-pointer -- Retrieves a pointer from adot of a structure.

get-slot-pointer

Syntax

get-slot-pointer obj type field => pointer

Arguments and Values

obj A pointer to foreign structure.
type A name of the foreign structure.
field A name of the desired field in foreign structure.

pointer The value of the field in the structure.

Description

Thisissimilar to get - sl ot - val ue. It isused when the value of adlot is apointer type.

Examples

(get-slot-pointer foo-ptr 'foo-structure 'my-char-ptr)

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

16

Name

def-array-pointer -- Defines a pointer to aarray of type.

def-array-pointer

Syntax

def -array-poi nter nanme type

Arguments and Values

nane A name of the new foreign type.

type Theforeigntype of the array elements.

Description

Defines atypetat is a pointer to an array of type.

Examples

(def -array-poi nter byte-array-pointer

Side Effects

Defines anew foreign type.

Affected by

None.

Exceptional Situations

None.

unsi gned- char)

17

Name

deref-array -- Deference an array.

deref-array

Syntax

deref-array array type positon => val ue

Arguments and Values

array A foreign array.
type The foreign type of the array.
posi tion Aninteger specifying the position to retrieve from the array.

value The value stored in the position of the array.

Description

Dereferences (retrieves) the value of an array element.

Examples

(def-array-pointer ca :char)
(let ((fs (convert-to-foreign-string "ab")))
(values (null-char-p (deref-array fs 'ca 0))
(nul'l-char-p (deref-array fs 'ca 2))))
=> NL
T

Notes

The TYPE argument is ignored for CL implementations other than AllegroCL. If you want to cast a
pointer to another type use WITH-CAST-POINTER together with DEREF-POINT-
ER/DEREF-ARRAY .

Side Effects

None.

Affected by

None.

18

deref-array

Exceptional Situations

None.

19

Name

def-union -- Defines aforeign union type.

def-union

Syntax

def-union nanme & est fields

Arguments and Values

nane A name of the new union type.

fields A listof fieldsof theunion.

Description

Defines aforeign union type.

Examples

(def -uni on test-union
(a-char :char)
(an-int :int))
(let ((u (allocate-foreign-object 'test-union))
(setf (get-slot-value u "test-union "an-int) (+ 65 (* 66 256)))
(progl
(ensure-char-character (get-slot-value u '"test-union 'a-char))

(free-foreign-object u)))
= #\ A

Side Effects

Defines anew foreign type.

Affected by

None.

Exceptional Situations

None.

20

Objects

Overview

Objects are entities that can allocated, referred to by pointers, and can be freed.

21

Name

allocate-foreign-object -- Allocates an instance of aforeign object.

allocate-foreign-object

Syntax

al | ocate-forei gn-object type &optional size => ptr

Arguments and Values

type Thetype of foreign object to allocate. This parameter is evaluated.

si ze Anoptiona size parameter that is evaluated. If specified, allocates and returns an array of t ype
that issi ze memberslong. This parameter is evaluated.

ptr A pointer to the foreign object.

Description

Allocates an instance of aforeign object. It returns a pointer to the object.

Examples

(def-struct ab (a :int) (b :double))
(al | ocat e-forei gn-object 'ab)
=> #<ptr>

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

22

Name

free-foreign-object -- Frees memory that was allocated for aforeign boject.

free-foreign-object

Syntax

free-foreign-object ptr

Arguments and Values

ptr A pointer to the allocated foreign object to free.

Description

Frees the memory used by the allocation of aforeign object.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

23

Name

with-foreign-object -- Wraps the allocation of aforeign object around a body of code.

with-foreign-object

Syntax

wi t h-forei gn-object (var type) &body body => formreturn

Arguments and Values

var The variable name to bind.

type The type of foreign object to allocate. This parameter is evaluated.
form-return The result of evaluating the body.

Description

This function wraps the alocation, binding, and destruction of a foreign object. On CMUCL and Lisp-
works platforms the object is stack allocated for efficiency. Benchmarks show that AllegroCL performs
much better with static allocation.

Examples

(def un get hostnane2 ()
"Returns the hostnane"
(uffi:with-foreign-object (name '(:array :unsigned-char 256))
(if (zerop (c-gethostnane (uffi:char-array-to-pointer name) 256))
(uffi:convert-fromforeign-string nane)
(error "gethostnane() failed."))))

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

24

Name

size-of-foreign-type -- Returns the number of data bytes used by aforeign object type.

size-of-foreign-type

Syntax

size-of -foreign-type ftype

Arguments and Values

ftype A foreigntype specifier. This parameter is evaluated.

Description

Returns the number of data bytes used by a foreign object type. This does not include any Lisp storage
overhead.

Examples
(si ze-of -forei gn-object :unsigned-byte)
= 1

(size-of -forei gn-object 'nmy-100-byte-vector-type)
=> 100

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

25

Name

pointer-address -- Returns the address of a pointer.

pointer-address

Syntax

poi nt er - address ptr => address

Arguments and Values

ptr A pointer to aforeign object.

address Aninteger representing the pointer's address.

Description

Returns the address as an integer of a pointer.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

26

Name

deref-pointer -- Deferences a pointer.

deref-pointer

Syntax

deref-pointer ptr type => val ue

Arguments and Values

ptr A pointer to aforeign object.
type A foreigntype of the object being pointed to.

vaue Thevalue of the object where the pointer points.

Description

Returns the object to which a pointer points.

Examples

(let ((intp (allocate-foreign-object :int)))
(setf (deref-pointer intp :int) 10)

(progl
(deref-pointer intp :int)
(free-foreign-object intp)))
=> 10
Notes

The TYPE argument is ignored for CL implementations other than AllegroCL. If you want to cast a
pointer to another type use WITH-CAST-POINTER together with DEREF-POINT-
ER/DEREF-ARRAY.

Side Effects

None.

Affected by

None.

27

deref-pointer

Exceptional Situations

None.

28

Name

ensure-char-character -- Ensures that a dereferenced : char pointer is a character.

ensure-char-character

Syntax

ensur e-char -character object => char

Arguments and Values

obj ect Either acharacter or ainteger specifying a character code.

char A character.

Description

Ensures that an objects obtained by dereferencing : char and : unsi gned- char pointers are a lisp
character.

Examples

(let ((fs (convert-to-foreign-string "a")))
(progl
(ensure-char-character (deref-pointer fs :char))
(free-foreign-object fs)))
=> #\a

Side Effects

None.

Affected by

None.

Exceptional Situations

Depending upon the implementation and what UFFI expects, this macro may signal an error if the ob-
ject is not a character or integer.

29

Name

ensure-char-integer -- Ensuresthat a dereferenced : char pointer is an integer.

ensure-char-integer

Syntax

ensure-char-integer object => int

Arguments and Values

obj ect Either acharacter or ainteger specifying a character code.

int An integer.

Description

Ensures that an object obtained by dereferencing a: char pointer is an integer.

Examples

(let ((fs (convert-to-foreign-string "a")))
(progl
(ensure-char-integer (deref-pointer fs :char))
(free-foreign-object fs)))
=> 96

Side Effects

None.

Affected by

None.

Exceptional Situations

Depending upon the implementation and what UFFI expects, this macro may signa an error if the ob-
ject is not a character or integer.

30

Name

make-null-pointer -- Create a NULL pointer.

make-null-pointer

Syntax

make- nul | - poi nter type => ptr

Arguments and Values

type A typeof object to which the pointer refers.

ptr TheNULL pointer of typet ype.

Description

Createsa NULL pointer of a specified type.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

31

Name

null-pointer-p -- Tests a pointer for NULL value.

null-pointer-p

Syntax

nul |l -pointer-p ptr => is-null

Arguments and Values

ptr A foreign object pointer.
is-null The boolean flag.
Description

A predicate testing if apointer ishasaNULL value.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

32

Name

+null-cstring-pointer+ -- A constant NULL cstring pointer.
+null-cstring-pointer+

Description
A NULL cstring pointer. This can be used for testing if a cstring returned by afunction is NULL.

33

Name

with-cast-pointer -- Wraps a body of code with a pointer cast to a new type.

with-cast-pointer

Syntax

wi t h- cast - poi nter (bindi ng-nane ptr type) & body body => val ue

Arguments and Values

bi ndi ng- nane A symbol which will be bound to the casted object.

ptr A pointer to aforeign object.

type A foreign type of the object being pointed to.
value The value of the object where the pointer points.
Description

Executes BODY with POINTER cast to be a pointer to type TYPE. BINDING-NAME iswill be bound
to this value during the execution of BODY. This is a no-op in AllegroCL but will wrap BODY in a
LET form if BINDING-NAME is provided. This macro is meant to be used in conjunction with
DEREF-POINTER or DEREF-ARRAY . In Allegro CL the "cast" will actually take place in DEREF-
POINTER or DEREF-ARRAY .

Examples

(with-foreign-object (size :int)
;; FOOis a foreign function returning a : PO NTER- VO D
(let ((mermory (foo size)))
(when (nunbl e)
;; at this point we know for some reason that MEMORY points
;; to an array of unsigned bytes
(with-cast-pointer (menory :unsigned-byte)
(dotimes (i (deref-pointer size :int))
(do-sonet hing-with
(deref-array nenory ' (:array :unsigned-byte) i)))))))

Side Effects

None.

Affected by

with-cast-pointer

None.

Exceptional Situations

None.

35

Name

def-foreign-var -- Defines a symbol macro to access avariable in foreign code

def-foreign-var

Syntax

def -forei gn-var name type nodul e

Arguments and Values

nane A string or list specificying the symbol macro's name. If it is a string, that names the foreign
variable. A Lisp nameis created by trandlating #_ to #\- and by converting to upper-case in
case-insensitive Lisp implementations. If it is a ligt, the first item is a string specifying the
foreign variable name and the second it is a symbol stating the Lisp hame.

type A foreign type of the foreign variable.

module A string specifying the module (or library) the foreign variable residesin. (Required by Lisp-
works)

Description

Defines a symbol macro which can be used to access (get and set) the value of a variable in foreign
code.

Examples
C code
int baz = 3;
t ypedef struct {
int x;
doubl e v;

} foo_struct;
foo struct the_ struct = { 42, 3.2 };

int foo () {
return baz;

}
Lisp code

(uffi:def-struct foo-struct

36

def-foreign-var

(x :int)
(y :double))

(uffi:def-function ("foo" foo)

.returning :int
:modul e "foo")

(uffi:def-foreign-var ("baz" *baz*) :int "foo")
(uffi:def-foreign-var ("the_struct” *the-struct*) foo-struct "foo")

paz
=> 3

(i ncf *baz*)
= 4

(foo0)

=> 4

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

37

Strings

Overview

UFFI has functions to two types of C-compatible strings: cstring and foreign strings. cstrings are used
only as parameters to and from functions. In some implementations a cstring is not a foreign type but
rather the Lisp string itself. On other platforms a cstring is a newly allocated foreign vector for storing
characters. The following is an example of using cstrings to both send and return avalue.

(uffi:def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)

(defun ny-getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(uffi:with-cstring (key-native key)
(uffi:convert-fromcstring (c-getenv key-native))))

In contrast, foreign strings are always a foreign vector of characters which have memory alocated.
Thus, if you need to allocate memory to hold the return value of a string, you must use a foreign string
and not a cstring. The following is an example of using aforeign string for areturn value.

(uffi:def-function ("gethostname" c-gethostnane)
((name (* :unsigned-char))
(len :int))
:returning :int)

(defun get host name ()
"Returns the hostnane"
(let* ((nane (uffi:allocate-foreign-string 256))
(result-code (c-gethostnane name 256))
(host nane (when (zerop result-code)
(uffi:convert-fromforeign-string nane))))
(uffi:free-foreign-object nane)
(unl ess (zerop result-code)
(error "gethostname() failed."))))

Foreign functions that return pointers to freshly allocated strings should in general not return cstrings,
but foreign strings. (There is no portable way to release such cstrings from Lisp.) The following is an ex-
ample of handling such afunction.

(uffi:def-function ("readline" c-readline)

((prompt :cstring))
:returning (* :char))

(defun readline (pronpt)
"Reads a string fromconsole with line-editing."
(with-cstring (c-pronpt pronpt)
(let* ((c-str (c-readline c-pronpt))

38

Overview

(str (convert-fromforeign-string c-str)))
(uffi:free-foreign-object c-str)

str)))

39

Name

convert-from-cstring -- Converts a cstring to a Lisp string.

convert-from-cstring

Syntax

convert-fromcstring
cstring

=>

string

Arguments and Values

cstring A cstring.

string A Lisp string.

Description

ConvertsalLisp stringtoacst ri ng. Thisis most often used when processing the results of a foreign
function that returns a cstring.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

40

Name

convert-to-cstring -- Converts a Lisp string to a cstring.

convert-to-cstring

Syntax

convert-to-cstring
string

=>

cstring

Arguments and Values

string A Lispstring.

cstring A cstring.

Description

ConvertsalLispstringtoacstri ng. Thecst ri ng should be freed withf r ee- cstri ng.

Side Effects

On some implementations, this function allocates memory.

Affected by

None.

Exceptional Situations

None.

41

Name

free-cstring -- Free memory used by cstring.

free-cstring

Syntax

free-cstring cstring

Arguments and Values

cstring A cstring.

Description

Frees any memory possibly allocated by convert -t o- cst ri ng. On some implementions, a cstring
isjust the Lisp string itself.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

42

Name

with-cstring -- Binds a newly created cstring.

with-cstring

Syntax

wi th-cstring
(cstring string) {body}

Arguments and Values

cstring A symbol naming the cstring to be created.
string A Lispstring that will be translated to a cstring.

body The body of where the cstring will be bound.

Description

Binds a symbol to a cstring created from conversion of a string. Automatically freesthecst ri ng.

Examples

(def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)
(defun getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(with-cstring (key-cstring key)
(convert-fromecstring (c-getenv key-cstring))))

Side Effects

None.

Affected by

None.

Exceptional Situations

43

with-cstring

None.

Name

convert-from-foreign-string -- Converts aforeign string into a Lisp string.

convert-from-foreign-string

Syntax

convert-fromforeign-string

foreign-string & ey length null-ternm nated-p
=>

string

Arguments and Values

foreign-string A foreign string.

| ength The length of the foreign string to convert. The default is the length of the
string until a NULL character is reached.

nul | -term nated-p A boolean flag with a default value of T When true, the string is converted
until the first NULL character is reached.

string A Lisp string.

Description

Returns a Lisp string from aforeign string. Can translated ASCI| and binary strings.

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

45

Name

convert-to-foreign-string -- Converts a Lisp string to aforeign string.

convert-to-foreign-string

Syntax

convert-to-foreign-string
string =>
foreign-string

Arguments and Values

string A Lisp string.
foreign-string A foreign string.
Description

Convertsa Lisp string to aforeign string. Memory should be freed with f r ee- f or ei gn- obj ect .

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

46

Name

allocate-foreign-string -- Allocates space for aforeign string.

allocate-foreign-string

Syntax

al | ocate-foreign-string size
&key unsigned =>
foreign-string

Arguments and Values

si ze The size of the space to be allocated in bytes.

unsi gned A boolean flag with a default value of T. When true, marks the pointer as an
:unsi gned- char.

foreign-string A foreign string which has undefined contents.

Description

Allocates space for aforeign string. Memory should be freed with f r ee- f or ei gn- obj ect .

Side Effects

None.

Affected by

None.

Exceptional Situations

None.

47

Functions & Libraries

48

Name

def-function -- Declares a function.

def-function

Syntax

def-function nane args &key nodul e returning

Arguments and Values

nane A string or list specificying the function name. If it is a string, that names the foreign
function. A Lisp name is created by trandlating #A_ to #\- and by converting to upper-
case in case-insensitive Lisp implementations. If it isalist, the first item is a string spe-
cifying the foreign function name and the second it is a symbol stating the Lisp name.

ar gs A list of argument declarations. If NI L, indicates that the function does not take any ar-
guments.
nodul e A string specifying which module (or library) that the foreign function resides.

(Required by Lispworks)

returning A declaration specifying the result type of the foreign function. If : voi d indicates
module does not return any value.

Description

Declares aforeign function.

Examples

(def -function "gethost nane"
((name (* :unsigned-char))
(len :int))
:returning :int)

Side Effects

None.

Affected by

None.

49

def-function

Exceptional Situations

None.

50

Name

load-foreign-library -- Loads aforeign library.

load-foreign-library

Syntax

| oad-foreign-library fil ename &ey nodul e supporting-libraries force-1|oa

Arguments and Values

fil enane A string or pathname specifying the library location in the filesystem.
At least one implementation (Lispworks) can not accept a logical path-
name,

nmodul e A string designating the name of the module to apply to functions in

thislibrary. (Required for Lispworks)

supporting-libraries A listof strings naming the libraries required to link the foreign library.

(Required by CMUCL)
force-| oad Forces the loading of the library if it has been previously loaded.
success A boolean flag, T if the library was able to be loaded successfully or if

the library has been previously loaded, otherwise NI L.

Description

Loads aforeign library. Applies a module name to functions within the library. Ensures that a library is
only loaded once during a session. A library can be reloaded by using the :force-load key.

Examples

(load-foreign-library #p"/usr/lib/libmysglclient.so"
:modul e "nysql "
ssupporting-libraries '("c"))

= T

Side Effects

Loads the foreign code into the Lisp system.

Affected by

Ability to load thefile.

51

|load-foreign-library

Exceptional Situations

None.

52

Name

find-foreign-library -- Finds aforeign library file.

find-foreign-library

Syntax

find-foreign-library names directories & drive-letters types => path

Arguments and Values

nanes A string or list of strings containing the base name of the library file.
directories A string or list of strings containing the directory the library file.

drive-letters A stringor list of strings containing the drive letters for the library file.

types A string or list of strings containing the file type of the library file. Default isNI L.

If NI L, will use adefault type based on the currently running implementation.
path A path containing the path found, or NI L if the library file was not found.
Description

Finds aforeign library by searching through a number of possible locations. Returns the path of the first
found file.

Examples

(find-foreign-1ibrar

y ("l t" "lib
"("/opt/mysql/lib/msql lib
)

(
\

n nysql "
ocal / "

)
/" "lusr/libl" "/mysqgl/lib/lopt/")
ctypes '("so" "d
cdrive-letters '

Side Effects

None.

Affected by

None.

Exceptional Situations

53

find-foreign-library

None.

Appendix A. Installation
Download UFFI

Y ou heed to download the UFFI package from its web home [http://uffi.b9.com]. Y ou also need to have
a copy of ASDF. If you need a copy of ASDF, it is included in the CCLAN
[http://www.sourceforge.net/projects/cclan] package. You can download the file def system |i sp
from the CV Stree [http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/asdf .lisp].

Loading

After downloading and installing ASDF, simply push the directory containing UFFI into
asdf: *central -regi stry* variable. Whenever you want to load the UFFI package, use the form
(asdf: operate 'asdf:load-op :uffi).

55

http://uffi.b9.com
http://www.sourceforge.net/projects/cclan
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/asdf.lisp

Glossary

Foreign Function Interface
FFI) Aninterface to a C-compatible library.

56

	UFFI Reference Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	Background
	Supported Implementations
	Design
	Overview
	Priorities

	Chapter 2. Programming Notes
	Implementation Specific Notes
	AllegroCL
	Lispworks
	CMUCL

	Foreign Object Representation and Access
	Optimizing Code Using UFFI
	Background
	Cross-Implementation Optimization

	Declarations
	Overview
	def-type

	Primitive Types
	def-constant
	def-foreign-type
	null-char-p

	Aggregate Types
	def-enum
	def-struct
	get-slot-value
	get-slot-pointer
	def-array-pointer
	deref-array
	def-union

	Objects
	allocate-foreign-object
	free-foreign-object
	with-foreign-object
	size-of-foreign-type
	pointer-address
	deref-pointer
	ensure-char-character
	ensure-char-integer
	make-null-pointer
	null-pointer-p
	+null-cstring-pointer+
	with-cast-pointer
	def-foreign-var

	Strings
	convert-from-cstring
	convert-to-cstring
	free-cstring
	with-cstring
	convert-from-foreign-string
	convert-to-foreign-string
	allocate-foreign-string

	Functions & Libraries
	def-function
	load-foreign-library
	find-foreign-library

	Appendix A. Installation
	Download UFFI
	Loading

	Glossary

