
UFFI Reference Guide

Kevin M. Rosenberg
Heart Hospital of New Mexico

kevin@rosenberg.net
504 Elm Street N.E.

Albuquerque
New Mexico

87102

UFFI Reference Guide
by Kevin M. Rosenberg

$Id: bookinfo.sgml,v 1.2 2002/03/14 16:53:27 kevin Exp $

File $Date: 2002/03/14 16:53:27 $

Copyright © 2002 Kevin M. Rosenberg

• TheUFFI package was designed and written by Kevin M. Rosenberg.

• Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, with the no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in theUFFI distribution.

• Allegro CL® is a registered trademark of Franz Inc.

• Lispworks® is a registered trademark of Xanalys Inc.

• Microsoft Windows® is a registered trademark of Microsoft Inc.

• Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents
Preface..i

1. Introduction ...1

Purpose..1
Background...1
Supported Implementations..1
Design...1

Overview...1
Priorities..2

2. Programming Notes..3

Implementation Specific Notes...3
AllegroCL..3
Lispworks..3
CMUCL...3

Foreign Object Representation and Access...3
Optimizing Code Using UFFI...3

Background..3
Cross-Implementation Optimization...3

I. Declarations...5

def-type...6

II. Primitive Types ..8

def-constant...9
def-foreign-type..10
null-char-p...11

III. Aggregate Types...13

def-enum...14
def-struct...15
get-slot-value...16
get-slot-pointer..17
def-array-pointer...18
deref-array...19
def-union...21

IV. Objects...23

allocate-foreign-object..24
free-foreign-object..25
with-foreign-object..26
size-of-foreign-type...27
pointer-address..28
deref-pointer..29
ensure-char-character..30
ensure-char-integer..31
make-null-pointer..33
null-pointer-p...34
+null-cstring-pointer+...35
with-cast-pointer...35

iii

V. Strings ...37

convert-from-cstring..38
convert-to-cstring..38
free-cstring..39
with-cstring...40
convert-from-foreign-string..42
convert-to-foreign-string...43
allocate-foreign-string...44

VI. Functions & Libraries ..46

def-function...47
load-foreign-library...48
find-foreign-library..49

A. Installation ..51

DownloadUFFI ..51
Installation...51

Glossary...52

iv

Preface
This reference guide describes the usage and features ofUFFI . The first chapter provides an
overview to the design ofUFFI . Following that chapter is the reference section for all user
accessible functions ofUFFI . The appendix covers the installation and implementation-specifc
features ofUFFI .

i

Chapter 1. Introduction

Purpose
This reference guide describesUFFI , a package that provides a cross-implementation interface from
Common Lisp to C-language compatible libraries.

Background
Every Common Lisp implementation has a method for interfacing to C-language compatible
libraries. These methods are often termed aForeign Function Library Interface(FFI). Unfortunately,
these methods vary widely amongst implementations, thus preventing the writing of a portable FFI
to a particular C-library.

UFFI gathers a common subset of functionality between Common Lisp implementations.UFFI
wraps this common subset of functionality with it’s own syntax and provides macro translation of
uffi functions into the specific syntax of supported Common Lisp implementations.

Developers who useUFFI to interface with C libraries will automatically have their code function in
each of uffi’s supported implementations.

Supported Implementations
The primary tested and supported platforms forUFFI are:

• AllegroCL v6.2 on Debian GNU/Linux FreeBSD 4.5, Solaris v2.8, and Microsoft Windows XP.

• Lispworks v4.2 on Debian GNU/Linux and Microsoft Windows XP.

• CMUCL 18d on Debian GNU/Linux, FreeBSD 4.5, and Solaris 2.8

• SBCL 0.7.8 on Debian GNU/Linux

• SCL 1.1.1 on Debian GNU/Linux

• OpenMCL 0.13 on Debian GNU/Linux for PowerPC

Beta code is included withUFFI for

• OpenMCL and MCL with MacOSX

Design

Overview
UFFI was designed as a cross-implementation compatibleForeign Function Interface. Necessarily,
only a common subset of functionality can be provided. Likewise, not every optimization for that a
specific implementation provides can be supported. Wherever possible, though,
implementation-specific optimizations are invoked.

1

Chapter 1. Introduction

Priorities
The design ofUFFI is dictated by the order of these priorities:

• Code usingUFFI must operate correctly on all supported implementations.

• Take advantage of implementation-specific optimizations. Ideally, there will not a situation where
an implementation-specific FFI will be chosen due to lack of optimizations inUFFI .

• Provide a simple interface to developers usingUFFI . This priority is quite a bit lower than the
above priorities. This lower priority is manifest by programmers having to pass types in pointer
and array dereferencing, needing to usecstring wrapper functions, and the use of
ensure-char-character and ensure-char-integer functions. My hope is that the developer
inconvenience will be outweighed by the generation of optimized code that is
cross-implementation compatible.

2

Chapter 2. Programming Notes

Implementation Specific Notes

AllegroCL

Lispworks

CMUCL

Foreign Object Representation and Access
There are two main approaches used to represent foreign objects: an integer that represents an
address in memory, and a object that also includes run-time typing. The advantage of run-time
typing is the system can dereference pointers and perform array access without those functions
requiring a type at the cost of additional overhead to generate and store the run-time typing. The
advantage of integer representation, at least for AllegroCL, is that the compiler can generate inline
code to dereference pointers. Further, the overhead of the run-time type information is eliminated.
The disadvantage is the program must then supply the type to the functions to dereference objects
and array.

Optimizing Code Using UFFI

Background
Two implementions have different techniques to optimize (open-code) foreign objects. AllegroCL
can open-code foreign object access if pointers are integers and the type of object is specified in the
access function. Thus,UFFI represents objects in AllegroCL as integers which don’t have type
information.

CMUCL works best when keeping objects as typed objects. However, it’s compiler can open-code
object access when the object type is specified indeclare commands and in:type specifiers in
defstruct anddefclass .

Lispworks, in converse to AllegroCL and CMUCL does not do any open coding of object access.
Lispworks, by default, maintains objects with run-time typing.

3

Chapter 2. Programming Notes

Cross-Implementation Optimization
To fully optimize across platforms, both explicit type information must be passed to dereferencing of
pointers and arrays. Though this optimization only helps with AllegroCL,UFFI is designed to
require this type information be passed the dereference functions. Second, declarations of type
should be made in functions, structures, and classes where foreign objects will be help. This will
optimize access for Lispworks

Here is an example that should both methods being used for maximum cross-implementation
optimization:

(uffi:def-type the-struct-type-def the-struct-type)
(let ((a-foreign-struct (allocate-foreign-object ’the-struct-type)))

(declare ’the-struct-type-def a-foreign-struct)
(get-slot-value a-foreign-struct ’the-struct-type ’field-name))

4

I. Declarations

Overview
Declarations are used to give the compiler optimizing information about foreign types. Currently,
only CMUCL supports declarations. On AllegroCL and Lispworks, these expressions declare the
type generically asT

def-type

Name
def-type — Defines a Common Lisp type.

Macro

Syntax

def-type name type

Arguments and Values

name

A symbol naming the type

type

A form that is evaluated that specifies theUFFI type.

Description
Defines a Common Lisp type based on aUFFI type.

Examples

(def-type char-ptr ’(* :char))
...
(defun foo (ptr)

(declare (type char-ptr ptr))
...

Side Effects
Defines a new ANSI Common Lisp type.

Affected by
None.

6

Declarations

Exceptional Situations
None.

7

II. Primitive Types
Overview

Primitive types have a single value, these include characters, numbers, and pointers. They are all
symbols in the keyword package.

• :char - Signed 8-bits. A dereferenced :char pointer returns an character.

• :unsigned-char - Unsigned 8-bits. A dereferenced :unsigned-char pointer returns an character.

• :byte - Signed 8-bits. A dereferenced :byte pointer returns an integer.

• :unsigned-byte - Unsigned 8-bits. A dereferenced :unsigned-byte pointer returns an integer.

• :short - Signed 16-bits.

• :unsigned-short - Unsigned 16-bits.

• :int - Signed 32-bits.

• :unsigned-int - Unsigned 32-bits.

• :long - Signed 32-bits.

• :unsigned-long - Unsigned 32-bits.

• :float - 32-bit floating point.

• :double - 64-bit floating point.

• :cstring - A NULL terminated string used for passing and returning characters strings with aC

function.

• :void - The absence of a value. Used to indicate that a function does not return a value.

• :pointer-void - Points to a generic object.

• * - Used to declare a pointer to an object

def-constant

Name
def-constant — Binds a symbol to a constant.

Macro

Syntax

def-constant name value &key export

Arguments and Values

name

A symbol that will be bound to the value.

value

An evaluated form that is bound the the name.

export

WhenT, the name is exported from the current package. The default isNIL

Description
This is a thin wrapper arounddefconstant . It evaluates at compile-time and optionally exports the
symbol from the package.

Examples

(def-constant pi2 (* 2 pi))
(def-constant exported-pi2 (* 2 pi) :export t)

Side Effects
Creates a new special variable..

9

Primitive Types

Affected by
None.

Exceptional Situations
None.

def-foreign-type

Name
def-foreign-type — Defines a new foreign type.

Macro

Syntax

def-foreign-type name type

Arguments and Values

name

A symbol naming the new foreign type.

value

A form that is not evaluated that defines the new foreign type.

Description
Defines a new foreign type.

Examples

(def-foreign-type my-generic-pointer :pointer-void)
(def-foreign-type a-double-float :double-float)
(def-foreign-type char-ptr (* :char))

10

Primitive Types

Side Effects
Defines a new foreign type.

Affected by
None.

Exceptional Situations
None.

null-char-p

Name
null-char-p — Tests a character forNULLvalue.

Macro

Syntax

null-char-p char => is-null

Arguments and Values

char

A character or integer.

is-null

A boolean flag indicating if char is aNULLvalue.

Description
A predicate testing if a character or integer isNULL. This abstracts the difference in implementations
where some return acharacter and some return ainteger whence dereferencing aC character
pointer.

11

Primitive Types

Examples

(def-array-pointer ca :unsigned-char)
(let ((fs (convert-to-foreign-string "ab")))

(values (null-char-p (deref-array fs ’ca 0))
(null-char-p (deref-array fs ’ca 2))))

=> NIL

T

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

12

III. Aggregate Types
Overview

Aggregate types are comprised of one or more primitive types.

def-enum

Name
def-enum — Defines aC enumeration.

Macro

Syntax

def-enum name fields &key separator-string

Arguments and Values

name

A symbol that names the enumeration.

fields

A list of field defintions. Each definition can be a symbol or a list of two elements. Symbols get
assigned a value of the current counter which starts at0 and increments by1 for each
subsequent symbol. It the field definition is a list, the first position is the symbol and the second
position is the value to assign the the symbol. The current counter gets set to1+ this value.

separator-string

A string that governs the creation of constants. The default is"#" .

Description
Declares aC enumeration. It generates constants with integer values for the elements of the
enumeration. The symbols for the these constant values are created by theconcatenation of the
enumeration name, separator-string, and field symbol. Also creates a foreign type with the name
name of type :int .

Examples

(def-enum abc (:a :b :c))
;; Creates constants abc#a (1), abc#b (2), abc#c (3) and defines
;; the foreign type "abc" to be :int

(def-enum efoo (:e1 (:e2 10) :e3) :separator-string "-")
;; Creates constants efoo-e1 (1), efoo-e2 (10), efoo-e3 (11) and defines
;; the foreign type efoo to be :int

14

Aggregate Types

Side Effects
Creates a :int foreign type, defines constants.

Affected by
None.

Exceptional Situations
None.

def-struct

Name
def-struct — Defines aC structure.

Macro

Syntax

def-struct name &rest fields

Arguments and Values

name

A symbol that names the structure.

fields

A variable number of field defintions. Each definition is a list consisting of a symbol naming the
field followed by its foreign type.

Description
Declares a structure. A special type is available as a slot in the field. It is a pointer that points to an
instance of the parent structure. It’s type is:pointer-self .

15

Aggregate Types

Examples

(def-struct foo (a :unsigned-int)
(b (* :char))
(c (:array :int 10))
(next :pointer-self))

Side Effects
Creates a foreign type.

Affected by
None.

Exceptional Situations
None.

get-slot-value

Name
get-slot-value — Retrieves a value from a slot of a structure.

Macro

Syntax

get-slot-value obj type field => value

Arguments and Values

obj

A pointer to foreign structure.

type

A name of the foreign structure.

field

A name of the desired field in foreign structure.

16

Aggregate Types

value

The value of the field in the structure.

Description
Accesses a slot value from a structure.

Examples

(get-slot-value foo-ptr ’foo-structure ’field-name)

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

get-slot-pointer

Name
get-slot-pointer — Retrieves a pointer from a slot of a structure.

Macro

Syntax

get-slot-pointer obj type field => pointer

17

Aggregate Types

Arguments and Values

obj

A pointer to foreign structure.

type

A name of the foreign structure.

field

A name of the desired field in foreign structure.

pointer

The value of the field in the structure.

Description
This is similar toget-slot-value . It is used when the value of a slot is a pointer type.

Examples

(get-slot-pointer foo-ptr ’foo-structure ’my-char-ptr)

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

def-array-pointer

Name
def-array-pointer — Defines a pointer to a array of type.

Macro

18

Aggregate Types

Syntax

def-array-pointer name type

Arguments and Values

name

A name of the new foreign type.

type

The foreign type of the array elements.

Description
Defines a type tat is a pointer to an array of type.

Examples

(def-array-pointer byte-array-pointer :unsigned-char)

Side Effects
Defines a new foreign type.

Affected by
None.

Exceptional Situations
None.

deref-array

Name
deref-array — Deference an array.

Macro

19

Aggregate Types

Syntax

deref-array array type positon => value

Arguments and Values

array

A foreign array.

type

The foreign type of the array.

position

An integer specifying the position to retrieve from the array.

value

The value stored in the position of the array.

Description
Dereferences (retrieves) the value of an array element.

Examples

(def-array-pointer ca :char)
(let ((fs (convert-to-foreign-string "ab")))

(values (null-char-p (deref-array fs ’ca 0))
(null-char-p (deref-array fs ’ca 2))))

=> NIL

T

Notes
The TYPE argument is ignored for CL implementations other than AllegroCL. If you want to cast a
pointer to another type use WITH-CAST-POINTER together with
DEREF-POINTER/DEREF-ARRAY.

Side Effects
None.

20

Aggregate Types

Affected by
None.

Exceptional Situations
None.

def-union

Name
def-union — Defines a foreign union type.

Macro

Syntax

def-union name &rest fields

Arguments and Values

name

A name of the new union type.

fields

A list of fields of the union.

Description
Defines a foreign union type.

Examples

(def-union test-union
(a-char :char)
(an-int :int))

(let ((u (allocate-foreign-object ’test-union))
(setf (get-slot-value u ’test-union ’an-int) (+ 65 (* 66 256)))
(prog1

(ensure-char-character (get-slot-value u ’test-union ’a-char))

21

Aggregate Types

(free-foreign-object u)))
=> #\A

Side Effects
Defines a new foreign type.

Affected by
None.

Exceptional Situations
None.

22

IV. Objects
Overview

Objects are entities that can allocated, referred to by pointers, and can be freed.

allocate-foreign-object

Name
allocate-foreign-object — Allocates an instance of a foreign object.

Macro

Syntax

allocate-foreign-object type &optional size => ptr

Arguments and Values

type

The type of foreign object to allocate. This parameter is evaluated.

size

An optional size parameter that is evaluated. If specified, allocates and returns an array oftype
that issize members long. This parameter is evaluated.

ptr

A pointer to the foreign object.

Description
Allocates an instance of a foreign object. It returns a pointer to the object.

Examples

(def-struct ab (a :int) (b :double))
(allocate-foreign-object ’ab)
=> #<ptr >

Side Effects
None.

24

Objects

Affected by
None.

Exceptional Situations
None.

free-foreign-object

Name
free-foreign-object — Frees memory that was allocated for a foreign boject.

Macro

Syntax

free-foreign-object ptr

Arguments and Values

ptr

A pointer to the allocated foreign object to free.

Description
Frees the memory used by the allocation of a foreign object.

Side Effects
None.

Affected by
None.

25

Objects

Exceptional Situations
None.

with-foreign-object

Name
with-foreign-object — Wraps the allocation of a foreign object around a body of code.

Macro

Syntax

with-foreign-object (var type) &body body => form-return

Arguments and Values

var

The variable name to bind.

type

The type of foreign object to allocate. This parameter is evaluated.

form-return

The result of evaluating thebody .

Description
This function wraps the allocation, binding, and destruction of a foreign object. On CMUCL and
Lispworks platforms the object is stack allocated for efficiency. Benchmarks show that AllegroCL
performs much better with static allocation.

Examples

(defun gethostname2 ()
"Returns the hostname"
(uffi:with-foreign-object (name ’(:array :unsigned-char 256))

(if (zerop (c-gethostname (uffi:char-array-to-pointer name) 256))
(uffi:convert-from-foreign-string name)
(error "gethostname() failed."))))

26

Objects

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

size-of-foreign-type

Name
size-of-foreign-type — Returns the number of data bytes used by a foreign object type.

Macro

Syntax

size-of-foreign-type ftype

Arguments and Values

ftype

A foreign type specifier. This parameter is evaluated.

Description
Returns the number of data bytes used by a foreign object type. This does not include any Lisp
storage overhead.

Examples

(size-of-foreign-object :unsigned-byte)
=> 1
(size-of-foreign-object ’my-100-byte-vector-type)
=> 100

27

Objects

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

pointer-address

Name
pointer-address — Returns the address of a pointer.

Macro

Syntax

pointer-address ptr => address

Arguments and Values

ptr

A pointer to a foreign object.

address

An integer representing the pointer’s address.

Description
Returns the address as an integer of a pointer.

28

Objects

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

deref-pointer

Name
deref-pointer — Deferences a pointer.

Macro

Syntax

deref-pointer ptr type => value

Arguments and Values

ptr

A pointer to a foreign object.

type

A foreign type of the object being pointed to.

value

The value of the object where the pointer points.

Description
Returns the object to which a pointer points.

29

Objects

Examples

(let ((intp (allocate-foreign-object :int)))
(setf (deref-pointer intp :int) 10)
(prog1

(deref-pointer intp :int)
(free-foreign-object intp)))

=> 10

Notes
The TYPE argument is ignored for CL implementations other than AllegroCL. If you want to cast a
pointer to another type use WITH-CAST-POINTER together with
DEREF-POINTER/DEREF-ARRAY.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

ensure-char-character

Name
ensure-char-character — Ensures that a dereferenced:char pointer is a character.

Macro

Syntax

ensure-char-character object => char

30

Objects

Arguments and Values

object

Either a character or a integer specifying a character code.

char

A character.

Description
Ensures that an objects obtained by dereferencing:char and:unsigned-char pointers are a lisp
character.

Examples

(let ((fs (convert-to-foreign-string "a")))
(prog1

(ensure-char-character (deref-pointer fs :char))
(free-foreign-object fs)))

=> #\a

Side Effects
None.

Affected by
None.

Exceptional Situations
Depending upon the implementation and whatUFFI expects, this macro may signal an error if the
object is not a character or integer.

31

Objects

ensure-char-integer

Name
ensure-char-integer — Ensures that a dereferenced:char pointer is an integer.

Macro

Syntax

ensure-char-integer object => int

Arguments and Values

object

Either a character or a integer specifying a character code.

int

An integer.

Description
Ensures that an object obtained by dereferencing a:char pointer is an integer.

Examples

(let ((fs (convert-to-foreign-string "a")))
(prog1

(ensure-char-integer (deref-pointer fs :char))
(free-foreign-object fs)))

=> 96

Side Effects
None.

Affected by
None.

32

Objects

Exceptional Situations
Depending upon the implementation and whatUFFI expects, this macro may signal an error if the
object is not a character or integer.

make-null-pointer

Name
make-null-pointer — Create aNULLpointer.

Macro

Syntax

make-null-pointer type => ptr

Arguments and Values

type

A type of object to which the pointer refers.

ptr

TheNULLpointer of typetype .

Description
Creates aNULLpointer of a specified type.

Side Effects
None.

Affected by
None.

33

Objects

Exceptional Situations
None.

null-pointer-p

Name
null-pointer-p — Tests a pointer forNULLvalue.

Macro

Syntax

null-pointer-p ptr => is-null

Arguments and Values

ptr

A foreign object pointer.

is-null

The boolean flag.

Description
A predicate testing if a pointer is has aNULLvalue.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

34

Objects

+null-cstring-pointer+

Name
+null-cstring-pointer+ — A constantNULLcstring pointer.

Constant

Description
A NULLcstring pointer. This can be used for testing if a cstring returned by a function isNULL.

with-cast-pointer

Name
with-cast-pointer — Wraps a body of code with a pointer cast to a new type.

Macro

Syntax

with-cast-pointer (binding-name ptr type) & body body => value

Arguments and Values

ptr

A pointer to a foreign object.

type

A foreign type of the object being pointed to.

value

The value of the object where the pointer points.

35

Objects

Description
Executes BODY with POINTER cast to be a pointer to type TYPE. If BINDING-NAME is provided
the cast pointer will be bound to this name during the execution of BODY. If BINDING-NAME is
not provided POINTER must be a name bound to the pointer which should be cast. This name will
be bound to the cast pointer during the execution of BODY. This is a no-op in AllegroCL but will
wrap BODY in a LET form if BINDING-NAME is provided. This macro is meant to be used in
conjunction with DEREF-POINTER or DEREF-ARRAY. In Allegro CL the "cast" will actually take
place in DEREF-POINTER or DEREF-ARRAY.

Examples

(with-foreign-object (size :int)
;; FOO is a foreign function returning a :POINTER-VOID
(let ((memory (foo size)))

(when (mumble)
;; at this point we know for some reason that MEMORY points
;; to an array of unsigned bytes
(with-cast-pointer (memory :unsigned-byte)

(dotimes (i (deref-pointer size :int))
(do-something-with

(deref-array memory ’(:array :unsigned-byte) i)))))))

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

36

V. Strings
Overview

UFFI has functions to two types ofC-compatible strings:cstringandforeignstrings. cstrings are
usedonlyas parameters to and from functions. In some implementations a cstring is not a foreign
type but rather the Lisp string itself. On other platforms a cstring is a newly allocated foreign vector
for storing characters. The following is an example of using cstrings to both send and return a value.

(uffi:def-function ("getenv" c-getenv)
((name :cstring))

:returning :cstring)

(defun my-getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(uffi:with-cstring (key-native key)

(uffi:convert-from-cstring (c-getenv key-native))))

In contrast, foreign strings are always a foreign vector of characters which have memory allocated.
Thus, if you need to allocate memory to hold the return value of a string, you must use a foreign
string and not a cstring. The following is an example of using a foreign string for a return value.

(uffi:def-function ("gethostname" c-gethostname)
((name (* :unsigned-char))

(len :int))
:returning :int)

(defun gethostname ()
"Returns the hostname"
(let* ((name (uffi:allocate-foreign-string 256))

(result-code (c-gethostname name 256))
(hostname (when (zerop result-code)

(uffi:convert-from-foreign-string name))))
(uffi:free-foreign-object name)
(unless (zerop result-code)

(error "gethostname() failed."))))

Foreign functions that return pointers to freshly allocated strings should in general not return
cstrings, but foreign strings. (There is no portable way to release such cstrings from Lisp.) The
following is an example of handling such a function.

(uffi:def-function ("readline" c-readline)
((prompt :cstring))

:returning (* :char))

(defun readline (prompt)
"Reads a string from console with line-editing."
(with-cstring (c-prompt prompt)

(let* ((c-str (c-readline c-prompt))
(str (convert-from-foreign-string c-str)))

(uffi:free-foreign-object c-str)
str)))

convert-from-cstring

Name
convert-from-cstring — Converts a cstring to a Lisp string.

Macro

Syntax

convert-from-cstring cstring => string

Arguments and Values

cstring

A cstring.

string

A Lisp string.

Description
Converts a Lisp string to acstring . This is most often used when processing the results of a
foreign function that returns a cstring.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

38

Strings

convert-to-cstring

Name
convert-to-cstring — Converts a Lisp string to a cstring.

Macro

Syntax

convert-to-cstring string => cstring

Arguments and Values

string

A Lisp string.

cstring

A cstring.

Description
Converts a Lisp string to acstring . Thecstring should be freed withfree-cstring .

Side Effects
On some implementations, this function allocates memory.

Affected by
None.

Exceptional Situations
None.

39

Strings

free-cstring

Name
free-cstring — Free memory used by cstring.

Macro

Syntax

free-cstring cstring

Arguments and Values

cstring

A cstring.

Description
Frees any memory possibly allocated byconvert-to-cstring . On some implementions, a cstring
is just the Lisp string itself.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

40

Strings

with-cstring

Name
with-cstring — Binds a newly created cstring.

Macro

Syntax

with-cstring (cstring string) {body}

Arguments and Values

cstring

A symbol naming the cstring to be created.

string

A Lisp string that will be translated to a cstring.

body

The body of where the cstring will be bound.

Description
Binds a symbol to a cstring created from conversion of a string. Automatically frees thecstring .

Examples

(def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)

(defun getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(with-cstring (key-cstring key)

(convert-from-cstring (c-getenv key-cstring))))

41

Strings

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

convert-from-foreign-string

Name
convert-from-foreign-string — Converts a foreign string into a Lisp string.

Macro

Syntax

convert-from-foreign-string foreign-string &key length null-terminated-p => string

Arguments and Values

foreign-string

A foreign string.

length

The length of the foreign string to convert. The default is the length of the string until aNULL

character is reached.

null-terminated-p

A boolean flag with a default value ofT When true, the string is converted until the firstNULL

character is reached.

string

A Lisp string.

42

Strings

Description
Returns a Lisp string from a foreign string. Can translated ASCII and binary strings.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

convert-to-foreign-string

Name
convert-to-foreign-string — Converts a Lisp string to a foreign string.

Macro

Syntax

convert-to-foreign-string string => foreign-string

Arguments and Values

string

A Lisp string.

foreign-string

A foreign string.

Description
Converts a Lisp string to a foreign string. Memory should be freed withfree-foreign-object .

43

Strings

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

allocate-foreign-string

Name
allocate-foreign-string — Allocates space for a foreign string.

Macro

Syntax

allocate-foreign-string size &key unsigned => foreign-string

Arguments and Values

size

The size of the space to be allocated in bytes.

unsigned

A boolean flag with a default value ofT. When true, marks the pointer as an:unsigned-char .

foreign-string

A foreign string which has undefined contents.

Description
Allocates space for a foreign string. Memory should be freed withfree-foreign-object .

44

Strings

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

45

VI. Functions & Libraries

def-function

Name
def-function — Declares a function.

Macro

Syntax

def-function name args &key module returning

Arguments and Values

name

A string or list specificying the function name. If it is a string, that names the foreign function.
A Lisp name is created by translating #_ to #\- and by converting to upper-case in
case-insensitive Lisp implementations. If it is a list, the first item is a string specifying the
foreign function name and the second it is a symbol stating the Lisp name.

args

A list of argument declarations. IfNIL , indicates that the function does not take any arguments.

module

A string specifying which module (or library) that the foreign function resides. (Required by
Lispworks)

returning

A declaration specifying the result type of the foreign function. If:void indicates module does
not return any value.

Description
Declares a foreign function.

Examples

(def-function "gethostname"
((name (* :unsigned-char))

(len :int))
:returning :int)

47

Functions & Libraries

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

load-foreign-library

Name
load-foreign-library — Loads a foreign library.

Function

Syntax

load-foreign-library filename &key module supporting-libraries force-load => success

Arguments and Values

filename

A string or pathname specifying the library location in the filesystem. At least one
implementation (Lispworks) can not accept a logical pathname.

module

A string designating the name of the module to apply to functions in this library. (Required for
Lispworks)

supporting-libraries

A list of strings naming the libraries required to link the foreign library. (Required by CMUCL)

force-load

Forces the loading of the library if it has been previously loaded.

48

Functions & Libraries

success

A boolean flag,T if the library was able to be loaded successfully or if the library has been
previously loaded, otherwiseNIL .

Description
Loads a foreign library. Applies a module name to functions within the library. Ensures that a library
is only loaded once during a session. A library can be reloaded by using the:force-load key.

Examples

(load-foreign-library #p"/usr/lib/libmysqlclient.so"
:module "mysql"
:supporting-libraries ’("c"))

=> T

Side Effects
Loads the foreign code into the Lisp system.

Affected by
Ability to load the file.

Exceptional Situations
None.

find-foreign-library

Name
find-foreign-library — Finds a foreign library file.

Function

Syntax

find-foreign-library names directories & drive-letters types => path

49

Functions & Libraries

Arguments and Values

names

A string or list of strings containing the base name of the library file.

directories

A string or list of strings containing the directory the library file.

drive-letters

A string or list of strings containing the drive letters for the library file.

types

A string or list of strings containing the file type of the library file. Default isNIL . If NIL , will
use a default type based on the currently running implementation.

path

A path containing the path found, orNIL if the library file was not found.

Description
Finds a foreign library by searching through a number of possible locations. Returns the path of the
first found file.

Examples

(find-foreign-library ’("libmysqlclient" "libmysql")
’("/opt/mysql/lib/mysql/" "/usr/local/lib/" "/usr/lib/" "/mysql/lib/opt/")
:types ’("so" "dll")
:drive-letters ’("C" "D" "E"))

=> #P"D:\\mysql\\lib\\opt\\libmysql.dll"

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

50

Appendix A. Installation

DownloadUFFI
You need to download theUFFI package from its webhome(http://uffi.med-info.com). You also
need to have a copy of ASDF. If you need a copy of ASDF, it is included in theCCLAN
(http://www.sourceforge.net/projects/cclan) package. You can download the filedefsystem.lisp

from the CVStree(http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/asdf.lisp).

Installation
After downloading and installing ASDF, simplypush the directory containingUFFI into
asdf:*central-registry* variable. Whenever you want to load theUFFI package, use the
function(asdf:oos ’asdf:load-op :uffi) .

51

Glossary
Foreign Function Interface FFI)

An interface to a C-compatible library.

52

