
UFFI Reference Guide
Kevin M. Rosenberg

UFFI Reference Guide
Kevin M. Rosenberg
Copyright © 2002-2003 Kevin M. Rosenberg

• The UFFI package was designed and written by Kevin M. Rosenberg.

• Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with the no Front-Cover
Texts, and with no Back-Cover Texts. A copy of the license is included in the UFFI distribution.

• Allegro CL® is a registered trademark of Franz Inc.

• Lispworks® is a registered trademark of Xanalys Inc.

• Microsoft Windows® is a registered trademark of Microsoft Inc.

• Other brand or product names are the registered trademarks or trademarks of their respective holders.

Table of Contents
Preface ... vi
1. Introduction .. 7

Purpose ... 7
Background ... 7
Supported Implementations ... 7
Design .. 7

Overview ... 7
Priorities ... 8

2. Programming Notes ... 9
Implementation Specific Notes .. 9

AllegroCL ... 9
Lispworks .. 9
CMUCL .. 9

Foreign Object Representation and Access ... 9
Optimizing Code Using UFFI .. 9

Background ... 9
Cross-Implementation Optimization ... 9

I. Declarations .. 11
def-type ... 12

II. Primitive Types .. 13
def-constant ... 14
def-foreign-type .. 15
null-char-p ... 16

III. Aggregate Types .. 17
def-enum ... 18
def-struct ... 20
get-slot-value ... 21
get-slot-pointer ... 22
def-array-pointer ... 23
deref-array ... 24
def-union ... 26

IV. Objects .. 27
allocate-foreign-object ... 28
free-foreign-object .. 29
with-foreign-object .. 30
size-of-foreign-type ... 31
pointer-address ... 32
deref-pointer .. 33
ensure-char-character ... 35
ensure-char-integer .. 36
make-null-pointer .. 37
null-pointer-p ... 38
+null-cstring-pointer+ .. 39
with-cast-pointer ... 40
def-foreign-var ... 42

V. Strings .. 44
convert-from-cstring .. 46
convert-to-cstring .. 47
free-cstring .. 48
with-cstring .. 49
convert-from-foreign-string ... 50
convert-to-foreign-string ... 51
allocate-foreign-string .. 52

iv

VI. Functions & Libraries ... 53
def-function ... 54
load-foreign-library ... 56
find-foreign-library .. 58

A. Installation ... 59
Download UFFI ... 59
Loading ... 59

Glossary .. 60

UFFI Reference Guide

v

Preface
This reference guide describes the usage and features of UFFI. The first chapter provides an overview to
the design of UFFI. Following that chapter is the reference section for all user accessible functions of
UFFI. The appendix covers the installation and implementation-specifc features of UFFI.

vi

Chapter 1. Introduction
Purpose

This reference guide describes UFFI, a package that provides a cross-implementation interface from
Common Lisp to C-language compatible libraries.

Background
Every Common Lisp implementation has a method for interfacing to C-language compatible libraries.
These methods are often termed a Foreign Function Library Interface (FFI). Unfortunately, these meth-
ods vary widely amongst implementations, thus preventing the writing of a portable FFI to a particular
C-library.

UFFI gathers a common subset of functionality between Common Lisp implementations. UFFI wraps
this common subset of functionality with it's own syntax and provides macro translation of uffi functions
into the specific syntax of supported Common Lisp implementations.

Developers who use UFFI to interface with C libraries will automatically have their code function in
each of uffi's supported implementations.

Supported Implementations
The primary tested and supported platforms for UFFI are:

• AllegroCL v6.2 on Debian GNU/Linux FreeBSD 4.5, Solaris v2.8, and Microsoft Windows XP.

• Lispworks v4.2 on Debian GNU/Linux and Microsoft Windows XP.

• CMUCL 18d on Debian GNU/Linux, FreeBSD 4.5, and Solaris 2.8

• SBCL 0.7.8 on Debian GNU/Linux

• SCL 1.1.1 on Debian GNU/Linux

• OpenMCL 0.13 on Debian GNU/Linux for PowerPC

Beta code is included with UFFI for

• OpenMCL and MCL with MacOSX

Design
Overview

UFFI was designed as a cross-implementation compatible Foreign Function Interface. Necessarily, only
a common subset of functionality can be provided. Likewise, not every optimization for that a specific
implementation provides can be supported. Wherever possible, though, implementation-specific optim-
izations are invoked.

7

Priorities
The design of UFFI is dictated by the order of these priorities:

• Code using UFFI must operate correctly on all supported implementations.

• Take advantage of implementation-specific optimizations. Ideally, there will not a situation where an
implementation-specific FFI will be chosen due to lack of optimizations in UFFI.

• Provide a simple interface to developers using UFFI. This priority is quite a bit lower than the above
priorities. This lower priority is manifest by programmers having to pass types in pointer and array
dereferencing, needing to use cstring wrapper functions, and the use of ensure-char-character and
ensure-char-integer functions. My hope is that the developer inconvenience will be outweighed by the
generation of optimized code that is cross-implementation compatible.

Introduction

8

Chapter 2. Programming Notes
Implementation Specific Notes

AllegroCL

Lispworks

CMUCL

Foreign Object Representation and Access
There are two main approaches used to represent foreign objects: an integer that represents an address in
memory, and a object that also includes run-time typing. The advantage of run-time typing is the system
can dereference pointers and perform array access without those functions requiring a type at the cost of
additional overhead to generate and store the run-time typing. The advantage of integer representation,
at least for AllegroCL, is that the compiler can generate inline code to dereference pointers. Further, the
overhead of the run-time type information is eliminated. The disadvantage is the program must then sup-
ply the type to the functions to dereference objects and array.

Optimizing Code Using UFFI
Background

Two implementions have different techniques to optimize (open-code) foreign objects. AllegroCL can
open-code foreign object access if pointers are integers and the type of object is specified in the access
function. Thus, UFFI represents objects in AllegroCL as integers which don't have type information.

CMUCL works best when keeping objects as typed objects. However, it's compiler can open-code ob-
ject access when the object type is specified in declare commands and in :type specifiers in def-
struct and defclass.

Lispworks, in converse to AllegroCL and CMUCL does not do any open coding of object access. Lisp-
works, by default, maintains objects with run-time typing.

Cross-Implementation Optimization
To fully optimize across platforms, both explicit type information must be passed to dereferencing of
pointers and arrays. Though this optimization only helps with AllegroCL, UFFI is designed to require
this type information be passed the dereference functions. Second, declarations of type should be made
in functions, structures, and classes where foreign objects will be help. This will optimize access for
Lispworks

Here is an example that should both methods being used for maximum cross-implementation optimiza-
tion:

9

(uffi:def-type the-struct-type-def the-struct-type)
(let ((a-foreign-struct (allocate-foreign-object 'the-struct-type)))
(declare 'the-struct-type-def a-foreign-struct)
(get-slot-value a-foreign-struct 'the-struct-type 'field-name))

Programming Notes

10

Declarations
Overview

Declarations are used to give the compiler optimizing information about foreign types. Currently, only
CMUCL supports declarations. On AllegroCL and Lispworks, these expressions declare the type gener-
ically as T

11

Name
def-type — Defines a Common Lisp type.
Macro

Syntax

def-type name type

Arguments and Values

name A symbol naming the type

type A form that specifies the UFFI type. It is not evaluated.

Description
Defines a Common Lisp type based on a UFFI type.

Examples

(def-type char-ptr '(* :char))
...
(defun foo (ptr)
(declare (type char-ptr ptr))
...

Side Effects
Defines a new ANSI Common Lisp type.

Affected by
None.

Exceptional Situations
None.

12

Primitive Types

Overview
Primitive types have a single value, these include characters, numbers, and pointers. They are all sym-
bols in the keyword package.

• :char - Signed 8-bits. A dereferenced :char pointer returns an character.

• :unsigned-char - Unsigned 8-bits. A dereferenced :unsigned-char pointer returns an character.

• :byte - Signed 8-bits. A dereferenced :byte pointer returns an integer.

• :unsigned-byte - Unsigned 8-bits. A dereferenced :unsigned-byte pointer returns an integer.

• :short - Signed 16-bits.

• :unsigned-short - Unsigned 16-bits.

• :int - Signed 32-bits.

• :unsigned-int - Unsigned 32-bits.

• :long - Signed 32 or 64 bits, depending upon the platform.

• :unsigned-long - Unsigned 32 or 64 bits, depending upon the platform.

• :float - 32-bit floating point.

• :double - 64-bit floating point.

• :cstring - A NULL terminated string used for passing and returning characters strings with a C
function.

• :void - The absence of a value. Used to indicate that a function does not return a value.

• :pointer-void - Points to a generic object.

• * - Used to declare a pointer to an object

13

Name
def-constant — Binds a symbol to a constant.
Macro

Syntax

def-constant name value &key export

Arguments and Values

name A symbol that will be bound to the value.

value An evaluated form that is bound the the name.

export When T, the name is exported from the current package. The default is NIL

Description
This is a thin wrapper around defconstant. It evaluates at compile-time and optionally exports the
symbol from the package.

Examples

(def-constant pi2 (* 2 pi))
(def-constant exported-pi2 (* 2 pi) :export t)

Side Effects
Creates a new special variable..

Affected by
None.

Exceptional Situations
None.

14

Name
def-foreign-type — Defines a new foreign type.
Macro

Syntax

def-foreign-type name type

Arguments and Values

name A symbol naming the new foreign type.

value A form that is not evaluated that defines the new foreign type.

Description
Defines a new foreign type.

Examples

(def-foreign-type my-generic-pointer :pointer-void)
(def-foreign-type a-double-float :double-float)
(def-foreign-type char-ptr (* :char))

Side Effects
Defines a new foreign type.

Affected by
None.

Exceptional Situations
None.

15

Name
null-char-p — Tests a character for NULL value.
Macro

Syntax

null-char-p char => is-null

Arguments and Values

char A character or integer.

is-null A boolean flag indicating if char is a NULL value.

Description
A predicate testing if a character or integer is NULL. This abstracts the difference in implementations
where some return a character and some return a integer whence dereferencing a C character
pointer.

Examples

(def-array-pointer ca :unsigned-char)
(let ((fs (convert-to-foreign-string "ab")))

(values (null-char-p (deref-array fs 'ca 0))
(null-char-p (deref-array fs 'ca 2))))

=> NIL
T

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

16

Aggregate Types

Overview
Aggregate types are comprised of one or more primitive types.

17

Name
def-enum — Defines a C enumeration.
Macro

Syntax

def-enum name fields &key separator-string

Arguments and Values

name A symbol that names the enumeration.

fields A list of field defintions. Each definition can be a symbol or a list of two ele-
ments. Symbols get assigned a value of the current counter which starts at 0
and increments by 1 for each subsequent symbol. It the field definition is a
list, the first position is the symbol and the second position is the value to as-
sign the the symbol. The current counter gets set to 1+ this value.

separator-string A string that governs the creation of constants. The default is "#".

Description
Declares a C enumeration. It generates constants with integer values for the elements of the enumera-
tion. The symbols for the these constant values are created by the concatenation of the enumeration
name, separator-string, and field symbol. Also creates a foreign type with the name name of type :int.

Examples

(def-enum abc (:a :b :c))
;; Creates constants abc#a (1), abc#b (2), abc#c (3) and defines
;; the foreign type "abc" to be :int

(def-enum efoo (:e1 (:e2 10) :e3) :separator-string "-")
;; Creates constants efoo-e1 (1), efoo-e2 (10), efoo-e3 (11) and defines
;; the foreign type efoo to be :int

Side Effects
Creates a :int foreign type, defines constants.

Affected by
None.

Exceptional Situations

18

None.

def-enum

19

Name
def-struct — Defines a C structure.
Macro

Syntax

def-struct name &rest fields

Arguments and Values

name A symbol that names the structure.

fields A variable number of field defintions. Each definition is a list consisting of a symbol naming
the field followed by its foreign type.

Description
Declares a structure. A special type is available as a slot in the field. It is a pointer that points to an in-
stance of the parent structure. It's type is :pointer-self.

Examples

(def-struct foo (a :unsigned-int)
(b (* :char))
(c (:array :int 10))
(next :pointer-self))

Side Effects
Creates a foreign type.

Affected by
None.

Exceptional Situations
None.

20

Name
get-slot-value — Retrieves a value from a slot of a structure.
Macro

Syntax

get-slot-value obj type field => value

Arguments and Values

obj A pointer to foreign structure.

type A name of the foreign structure.

field A name of the desired field in foreign structure.

value The value of the field in the structure.

Description
Accesses a slot value from a structure. This is generalized and can be used with setf.

Examples

(get-slot-value foo-ptr 'foo-structure 'field-name)
(setf (get-slot-value foo-ptr 'foo-structure 'field-name) 10)

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

21

Name
get-slot-pointer — Retrieves a pointer from a slot of a structure.
Macro

Syntax

get-slot-pointer obj type field => pointer

Arguments and Values

obj A pointer to foreign structure.

type A name of the foreign structure.

field A name of the desired field in foreign structure.

pointer The value of the field in the structure.

Description
This is similar to get-slot-value. It is used when the value of a slot is a pointer type.

Examples

(get-slot-pointer foo-ptr 'foo-structure 'my-char-ptr)

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

22

Name
def-array-pointer — Defines a pointer to a array of type.
Macro

Syntax

def-array-pointer name type

Arguments and Values

name A name of the new foreign type.

type The foreign type of the array elements.

Description
Defines a type tat is a pointer to an array of type.

Examples

(def-array-pointer byte-array-pointer :unsigned-char)

Side Effects
Defines a new foreign type.

Affected by
None.

Exceptional Situations
None.

23

Name
deref-array — Deference an array.
Macro

Syntax

deref-array array type position => value

Arguments and Values

array A foreign array.

type The foreign type of the array.

position An integer specifying the position to retrieve from the array.

value The value stored in the position of the array.

Description
Dereferences (retrieves) the value of an array element.

Examples

(def-array-pointer ca :char)
(let ((fs (convert-to-foreign-string "ab")))

(values (null-char-p (deref-array fs 'ca 0))
(null-char-p (deref-array fs 'ca 2))))

=> NIL
T

Notes
The TYPE argument is ignored for CL implementations other than AllegroCL. If you want to cast a
pointer to another type use WITH-CAST-POINTER together with DEREF-POINT-
ER/DEREF-ARRAY.

Side Effects
None.

Affected by
None.

24

Exceptional Situations
None.

deref-array

25

Name
def-union — Defines a foreign union type.
Macro

Syntax

def-union name &rest fields

Arguments and Values

name A name of the new union type.

fields A list of fields of the union.

Description
Defines a foreign union type.

Examples

(def-union test-union
(a-char :char)
(an-int :int))

(let ((u (allocate-foreign-object 'test-union))
(setf (get-slot-value u 'test-union 'an-int) (+ 65 (* 66 256)))
(prog1
(ensure-char-character (get-slot-value u 'test-union 'a-char))
(free-foreign-object u)))

=> #\A

Side Effects
Defines a new foreign type.

Affected by
None.

Exceptional Situations
None.

26

Objects

Overview
Objects are entities that can allocated, referred to by pointers, and can be freed.

27

Name
allocate-foreign-object — Allocates an instance of a foreign object.
Macro

Syntax

allocate-foreign-object type &optional size => ptr

Arguments and Values

type The type of foreign object to allocate. This parameter is evaluated.

size An optional size parameter that is evaluated. If specified, allocates and returns an array of type
that is size members long. This parameter is evaluated.

ptr A pointer to the foreign object.

Description
Allocates an instance of a foreign object. It returns a pointer to the object.

Examples

(def-struct ab (a :int) (b :double))
(allocate-foreign-object 'ab)
=> #<ptr>

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

28

Name
free-foreign-object — Frees memory that was allocated for a foreign boject.
Macro

Syntax

free-foreign-object ptr

Arguments and Values

ptr A pointer to the allocated foreign object to free.

Description
Frees the memory used by the allocation of a foreign object.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

29

Name
with-foreign-object — Wraps the allocation of a foreign object around a body of code.
Macro

Syntax

with-foreign-object (var type) &body body => form-return

Arguments and Values

var The variable name to bind.

type The type of foreign object to allocate. This parameter is evaluated.

form-return The result of evaluating the body.

Description
This function wraps the allocation, binding, and destruction of a foreign object. On CMUCL and Lisp-
works platforms the object is stack allocated for efficiency. Benchmarks show that AllegroCL performs
much better with static allocation.

Examples

(defun gethostname2 ()
"Returns the hostname"
(uffi:with-foreign-object (name '(:array :unsigned-char 256))
(if (zerop (c-gethostname (uffi:char-array-to-pointer name) 256))

(uffi:convert-from-foreign-string name)
(error "gethostname() failed."))))

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

30

Name
size-of-foreign-type — Returns the number of data bytes used by a foreign object type.
Macro

Syntax

size-of-foreign-type ftype

Arguments and Values

ftype A foreign type specifier. This parameter is evaluated.

Description
Returns the number of data bytes used by a foreign object type. This does not include any Lisp storage
overhead.

Examples

(size-of-foreign-object :unsigned-byte)
=> 1
(size-of-foreign-object 'my-100-byte-vector-type)
=> 100

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

31

Name
pointer-address — Returns the address of a pointer.
Macro

Syntax

pointer-address ptr => address

Arguments and Values

ptr A pointer to a foreign object.

address An integer representing the pointer's address.

Description
Returns the address as an integer of a pointer.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

32

Name
deref-pointer — Deferences a pointer.
Macro

Syntax

deref-pointer ptr type => value

Arguments and Values

ptr A pointer to a foreign object.

type A foreign type of the object being pointed to.

value The value of the object where the pointer points.

Description
Returns the object to which a pointer points.

Examples

(let ((intp (allocate-foreign-object :int)))
(setf (deref-pointer intp :int) 10)
(prog1
(deref-pointer intp :int)
(free-foreign-object intp)))

=> 10

Notes
The TYPE argument is ignored for CL implementations other than AllegroCL. If you want to cast a
pointer to another type use WITH-CAST-POINTER together with DEREF-POINT-
ER/DEREF-ARRAY.

Side Effects
None.

Affected by
None.

Exceptional Situations

33

None.

deref-pointer

34

Name
ensure-char-character — Ensures that a dereferenced :char pointer is a character.
Macro

Syntax

ensure-char-character object => char

Arguments and Values

object Either a character or a integer specifying a character code.

char A character.

Description
Ensures that an objects obtained by dereferencing :char and :unsigned-char pointers are a lisp
character.

Examples

(let ((fs (convert-to-foreign-string "a")))
(prog1
(ensure-char-character (deref-pointer fs :char))
(free-foreign-object fs)))

=> #\a

Side Effects
None.

Affected by
None.

Exceptional Situations
Depending upon the implementation and what UFFI expects, this macro may signal an error if the ob-
ject is not a character or integer.

35

Name
ensure-char-integer — Ensures that a dereferenced :char pointer is an integer.
Macro

Syntax

ensure-char-integer object => int

Arguments and Values

object Either a character or a integer specifying a character code.

int An integer.

Description
Ensures that an object obtained by dereferencing a :char pointer is an integer.

Examples

(let ((fs (convert-to-foreign-string "a")))
(prog1
(ensure-char-integer (deref-pointer fs :char))
(free-foreign-object fs)))

=> 96

Side Effects
None.

Affected by
None.

Exceptional Situations
Depending upon the implementation and what UFFI expects, this macro may signal an error if the ob-
ject is not a character or integer.

36

Name
make-null-pointer — Create a NULL pointer.
Macro

Syntax

make-null-pointer type => ptr

Arguments and Values

type A type of object to which the pointer refers.

ptr The NULL pointer of type type.

Description
Creates a NULL pointer of a specified type.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

37

Name
null-pointer-p — Tests a pointer for NULL value.
Macro

Syntax

null-pointer-p ptr => is-null

Arguments and Values

ptr A foreign object pointer.

is-null The boolean flag.

Description
A predicate testing if a pointer is has a NULL value.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

38

Name
+null-cstring-pointer+ — A constant NULL cstring pointer.
Constant

Description
A NULL cstring pointer. This can be used for testing if a cstring returned by a function is NULL.

39

Name
with-cast-pointer — Wraps a body of code with a pointer cast to a new type.
Macro

Syntax

with-cast-pointer (binding-name ptr type) & body body => value

Arguments and Values

binding-name A symbol which will be bound to the casted object.

ptr A pointer to a foreign object.

type A foreign type of the object being pointed to.

value The value of the object where the pointer points.

Description
Executes BODY with POINTER cast to be a pointer to type TYPE. BINDING-NAME is will be bound
to this value during the execution of BODY. This is a no-op in AllegroCL but will wrap BODY in a
LET form if BINDING-NAME is provided. This macro is meant to be used in conjunction with
DEREF-POINTER or DEREF-ARRAY. In Allegro CL the "cast" will actually take place in DEREF-
POINTER or DEREF-ARRAY.

Examples

(with-foreign-object (size :int)
;; FOO is a foreign function returning a :POINTER-VOID
(let ((memory (foo size)))

(when (mumble)
;; at this point we know for some reason that MEMORY points
;; to an array of unsigned bytes
(with-cast-pointer (memory :unsigned-byte)
(dotimes (i (deref-pointer size :int))
(do-something-with
(deref-array memory '(:array :unsigned-byte) i)))))))

Side Effects
None.

Affected by
None.

40

Exceptional Situations
None.

with-cast-pointer

41

Name
def-foreign-var — Defines a symbol macro to access a variable in foreign code
Macro

Syntax

def-foreign-var name type module

Arguments and Values

name A string or list specificying the symbol macro's name. If it is a string, that names the foreign
variable. A Lisp name is created by translating #_ to #\- and by converting to upper-case in
case-insensitive Lisp implementations. If it is a list, the first item is a string specifying the
foreign variable name and the second it is a symbol stating the Lisp name.

type A foreign type of the foreign variable.

module A string specifying the module (or library) the foreign variable resides in. (Required by Lisp-
works)

Description
Defines a symbol macro which can be used to access (get and set) the value of a variable in foreign
code.

Examples

C code

int baz = 3;

typedef struct {
int x;
double y;

} foo_struct;

foo_struct the_struct = { 42, 3.2 };

int foo () {
return baz;

}

Lisp code

(uffi:def-struct foo-struct
(x :int)
(y :double))

42

(uffi:def-function ("foo" foo)
()

:returning :int
:module "foo")

(uffi:def-foreign-var ("baz" *baz*) :int "foo")
(uffi:def-foreign-var ("the_struct" *the-struct*) foo-struct "foo")

baz
=> 3

(incf *baz*)
=> 4

(foo)
=> 4

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

def-foreign-var

43

Strings

Overview
UFFI has functions to two types of C-compatible strings: cstring and foreign strings. cstrings are used
only as parameters to and from functions. In some implementations a cstring is not a foreign type but
rather the Lisp string itself. On other platforms a cstring is a newly allocated foreign vector for storing
characters. The following is an example of using cstrings to both send and return a value.

(uffi:def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)

(defun my-getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(uffi:with-cstring (key-native key)
(uffi:convert-from-cstring (c-getenv key-native))))

In contrast, foreign strings are always a foreign vector of characters which have memory allocated.
Thus, if you need to allocate memory to hold the return value of a string, you must use a foreign string
and not a cstring. The following is an example of using a foreign string for a return value.

(uffi:def-function ("gethostname" c-gethostname)
((name (* :unsigned-char))
(len :int))

:returning :int)

(defun gethostname ()
"Returns the hostname"
(let* ((name (uffi:allocate-foreign-string 256))

(result-code (c-gethostname name 256))
(hostname (when (zerop result-code)

(uffi:convert-from-foreign-string name))))
;; UFFI does not yet provide a universal way to free
;; memory allocated by C's malloc. At this point, a program
;; needs to call C's free function to free such memory.
(unless (zerop result-code)
(error "gethostname() failed."))))

Foreign functions that return pointers to freshly allocated strings should in general not return cstrings,
but foreign strings. (There is no portable way to release such cstrings from Lisp.) The following is an ex-
ample of handling such a function.

(uffi:def-function ("readline" c-readline)
((prompt :cstring))

:returning (* :char))

(defun readline (prompt)
"Reads a string from console with line-editing."

44

(with-cstring (c-prompt prompt)
(let* ((c-str (c-readline c-prompt))

(str (convert-from-foreign-string c-str)))
(uffi:free-foreign-object c-str)
str)))

Overview

45

Name
convert-from-cstring — Converts a cstring to a Lisp string.
Macro

Syntax

convert-from-cstring
cstring
=>
string

Arguments and Values

cstring A cstring.

string A Lisp string.

Description
Converts a Lisp string to a cstring. This is most often used when processing the results of a foreign
function that returns a cstring.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

46

Name
convert-to-cstring — Converts a Lisp string to a cstring.
Macro

Syntax

convert-to-cstring
string
=>
cstring

Arguments and Values

string A Lisp string.

cstring A cstring.

Description
Converts a Lisp string to a cstring. The cstring should be freed with free-cstring.

Side Effects
On some implementations, this function allocates memory.

Affected by
None.

Exceptional Situations
None.

47

Name
free-cstring — Free memory used by cstring.
Macro

Syntax

free-cstring cstring

Arguments and Values

cstring A cstring.

Description
Frees any memory possibly allocated by convert-to-cstring. On some implementions, a cstring
is just the Lisp string itself.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

48

Name
with-cstring — Binds a newly created cstring.
Macro

Syntax

with-cstring
(cstring string) {body}

Arguments and Values

cstring A symbol naming the cstring to be created.

string A Lisp string that will be translated to a cstring.

body The body of where the cstring will be bound.

Description
Binds a symbol to a cstring created from conversion of a string. Automatically frees the cstring.

Examples

(def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)

(defun getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(with-cstring (key-cstring key)
(convert-from-cstring (c-getenv key-cstring))))

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

49

Name
convert-from-foreign-string — Converts a foreign string into a Lisp string.
Macro

Syntax

convert-from-foreign-string
foreign-string &key length null-terminated-p
=>
string

Arguments and Values

foreign-string A foreign string.

length The length of the foreign string to convert. The default is the length of the
string until a NULL character is reached.

null-terminated-p A boolean flag with a default value of T When true, the string is converted
until the first NULL character is reached.

string A Lisp string.

Description
Returns a Lisp string from a foreign string. Can translated ASCII and binary strings.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

50

Name
convert-to-foreign-string — Converts a Lisp string to a foreign string.
Macro

Syntax

convert-to-foreign-string
string =>
foreign-string

Arguments and Values

string A Lisp string.

foreign-string A foreign string.

Description
Converts a Lisp string to a foreign string. Memory should be freed with free-foreign-object.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

51

Name
allocate-foreign-string — Allocates space for a foreign string.
Macro

Syntax

allocate-foreign-string size
&key unsigned =>
foreign-string

Arguments and Values

size The size of the space to be allocated in bytes.

unsigned A boolean flag with a default value of T. When true, marks the pointer as an
:unsigned-char.

foreign-string A foreign string which has undefined contents.

Description
Allocates space for a foreign string. Memory should be freed with free-foreign-object.

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

52

Functions & Libraries

53

Name
def-function — Declares a function.
Macro

Syntax

def-function name args &key module returning

Arguments and Values

name A string or list specificying the function name. If it is a string, that names the foreign
function. A Lisp name is created by translating #_ to #\- and by converting to upper-
case in case-insensitive Lisp implementations. If it is a list, the first item is a string spe-
cifying the foreign function name and the second it is a symbol stating the Lisp name.

args A list of argument declarations. If NIL, indicates that the function does not take any ar-
guments.

module A string specifying which module (or library) that the foreign function resides.
(Required by Lispworks)

returning A declaration specifying the result type of the foreign function. If :void indicates
module does not return any value.

Description
Declares a foreign function.

Examples

(def-function "gethostname"
((name (* :unsigned-char))
(len :int))
:returning :int)

Side Effects
None.

Affected by
None.

Exceptional Situations

54

None.

def-function

55

Name
load-foreign-library — Loads a foreign library.
Function

Syntax

load-foreign-library filename &key module supporting-libraries force-load => success

Arguments and Values

filename A string or pathname specifying the library location in the filesystem.
At least one implementation (Lispworks) can not accept a logical path-
name. If this parameter denotes a pathname without a directory com-
ponent then most of the supported Lisp implementations will be able to
find the library themselves if it is located in one of the standard loca-
tions as defined by the underlying operating system.

module A string designating the name of the module to apply to functions in
this library. (Required for Lispworks)

supporting-libraries A list of strings naming the libraries required to link the foreign library.
(Required by CMUCL)

force-load Forces the loading of the library if it has been previously loaded.

success A boolean flag, T if the library was able to be loaded successfully or if
the library has been previously loaded, otherwise NIL.

Description
Loads a foreign library. Applies a module name to functions within the library. Ensures that a library is
only loaded once during a session. A library can be reloaded by using the :force-load key.

Examples

(load-foreign-library #p"/usr/lib/libmysqlclient.so"
:module "mysql"
:supporting-libraries '("c"))

=> T

Side Effects
Loads the foreign code into the Lisp system.

Affected by
Ability to load the file.

56

Exceptional Situations
None.

load-foreign-library

57

Name
find-foreign-library — Finds a foreign library file.
Function

Syntax

find-foreign-library names directories & drive-letters types => path

Arguments and Values

names A string or list of strings containing the base name of the library file.

directories A string or list of strings containing the directory the library file.

drive-letters A string or list of strings containing the drive letters for the library file.

types A string or list of strings containing the file type of the library file. Default is NIL.
If NIL, will use a default type based on the currently running implementation.

path A path containing the path found, or NIL if the library file was not found.

Description
Finds a foreign library by searching through a number of possible locations. Returns the path of the first
found file.

Examples

(find-foreign-library '("libmysqlclient" "libmysql")
'("/opt/mysql/lib/mysql/" "/usr/local/lib/" "/usr/lib/" "/mysql/lib/opt/")
:types '("so" "dll")
:drive-letters '("C" "D" "E"))

=> #P"D:\\mysql\\lib\\opt\\libmysql.dll"

Side Effects
None.

Affected by
None.

Exceptional Situations
None.

58

Appendix A. Installation
Download UFFI

You need to download the UFFI package from its web home [http://uffi.b9.com]. You also need to have
a copy of ASDF. If you need a copy of ASDF, it is included in the CCLAN [ht-
tp://www.sourceforge.net/projects/cclan] package. You can download the file defsystem.lisp from
the CVS tree [http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/asdf.lisp].

Loading
After downloading and installing ASDF, simply push the directory containing UFFI into
asdf:*central-registry* variable. Whenever you want to load the UFFI package, use the form
(asdf:operate 'asdf:load-op :uffi).

59

http://uffi.b9.com
http://uffi.b9.com
http://www.sourceforge.net/projects/cclan
http://www.sourceforge.net/projects/cclan
http://www.sourceforge.net/projects/cclan
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/asdf.lisp
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/asdf.lisp

Glossary
Foreign Function Interface
FFI)

An interface to a C-compatible library.

60

	UFFI Reference Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Purpose
	Background
	Supported Implementations
	Design
	Overview
	Priorities

	Chapter 2. Programming Notes
	Implementation Specific Notes
	AllegroCL
	Lispworks
	CMUCL

	Foreign Object Representation and Access
	Optimizing Code Using UFFI
	Background
	Cross-Implementation Optimization

	Declarations
	Overview
	def-type

	Primitive Types
	def-constant
	def-foreign-type
	null-char-p

	Aggregate Types
	def-enum
	def-struct
	get-slot-value
	get-slot-pointer
	def-array-pointer
	deref-array
	def-union

	Objects
	allocate-foreign-object
	free-foreign-object
	with-foreign-object
	size-of-foreign-type
	pointer-address
	deref-pointer
	ensure-char-character
	ensure-char-integer
	make-null-pointer
	null-pointer-p
	+null-cstring-pointer+
	with-cast-pointer
	def-foreign-var

	Strings
	convert-from-cstring
	convert-to-cstring
	free-cstring
	with-cstring
	convert-from-foreign-string
	convert-to-foreign-string
	allocate-foreign-string

	Functions & Libraries
	def-function
	load-foreign-library
	find-foreign-library

	Appendix A. Installation
	Download UFFI
	Loading

	Glossary

