r550: no message
[ctsim.git] / doc / ctsim-concepts.tex
index 27d342a33b72062f926b846809afc8a727379829..3f0bb1640554d5fe31f0415e017792f94566b778 100644 (file)
@@ -2,7 +2,7 @@
 \setheader{{\it CHAPTER \thechapter}}{}{}{\ctsimheadtitle}{}{{\it CHAPTER \thechapter}}
 \ctsimfooter
 
-\section{Overview}\index{Conceptual overview}
+\section{Conceptual Overview}\index{Conceptual overview}
 The operation of \ctsim\ begins with the phantom object.  A
 phantom object consists of geometric elements.  A scanner is
 specified and the collection of x-ray data, or projections, is
@@ -18,7 +18,6 @@ concerned with are the \helprefn{phantom}{conceptphantom} and the
 \helprefn{scanner}{conceptscanner}.
 
 \section{Phantoms}\label{conceptphantom}
-\subsection{Overview}\label{phantomoverview}\index{Phantom!Overview}%
 
 \ctsim\ uses geometrical objects to describe the object being
 scanned. A phantom is composed of one or more phantom elements.
@@ -63,12 +62,12 @@ Of note, the commonly used phantom described by
 Shepp and Logan\cite{SHEPP74} uses only ellipses.
 
 \subsubsection{rectangle}
-Rectangles use \texttt{cx} and \texttt{cy} to define the position of
+Rectangles use \texttt{(cx,cy)} to define the position of
 the center of the rectangle with respect to the origin.  \texttt{dx}
 and \texttt{dy} are the half-width and half-height of the rectangle.
 
 \subsubsection{triangle}
-Triangles are drawn with the center of the base at \texttt{(cx,cy)
+Triangles are drawn with the center of the base at \texttt{(cx,cy)}
 and a base half-width of \texttt{dx} and a height of \texttt{dy}.
 Rotations are then applied about the center of the base.
 
@@ -100,7 +99,6 @@ defined as a rectangle of size 0.1 by 0.1, the phantom size is
 0.101 in each direction.
 
 \section{Scanner}\label{conceptscanner}\index{Scanner!Concepts}%
-\subsection{Dimensions}
 Understanding the scanning geometry is the most complicated aspect of
 using \ctsim. For real-world CT simulators, this is actually quite
 simple. The geometry is fixed by the manufacturer during the
@@ -108,6 +106,7 @@ construction of the scanner and can not be changed. \ctsim,
 being a very flexible simulator, gives tremendous options in
 setting up the geometry for a scan.
 
+\subsection{Dimensions}
 The geometry for a scan starts with the size of
 the phantom being scanned. This is because \ctsim\ allows for
 statistical comparisons between the original phantom image and
@@ -212,7 +211,6 @@ significant distortions will occur.
 
 \subsection{Divergent Geometries}\label{geometrydivergent}\index{Equilinear geometry}\index{Equiangular geometry}
 \index{Scanner!Equilinear}\index{Scanner!Equiangular}
-\subsubsection{Overview}
 For both equilinear (second generation) and equiangular
 (third, fourth, and fifth generation) geometries,
 the x-ray beams diverge from a single source to a detector array.
@@ -359,10 +357,10 @@ by \ctsim. They are taken from the standard measurements used by
 Herman\cite{HERMAN80}. They are:
 
 \begin{itemize}\itemsep=0pt
-\item[-]\textbf{$d$}\quad The normalized root mean squared distance measure.
-\item[-]\textbf{$r$}\quad The normalized mean absolute distance measure.
-\item[-]\textbf{$e$}\quad The worst case distance measure over a \latexonly{$2\times2$}\latexignore{\emph{2 x 2}} pixel area.
-\end{twocollist}
+\item[]\textbf{$d$}\quad The normalized root mean squared distance measure.
+\item[]\textbf{$r$}\quad The normalized mean absolute distance measure.
+\item[]\textbf{$e$}\quad The worst case distance measure over a \latexonly{$2\times2$}\latexignore{\emph{2 x 2}} pixel area.
+\end{itemize}
 
 These measurements are defined in equations \ref{dequation} through \ref{bigrequation}.
 In these equations, $p$ denotes the phantom image, $r$ denotes the reconstruction